JP3294356B2 - Quartz glass furnace core tube for semiconductor wafer processing - Google Patents

Quartz glass furnace core tube for semiconductor wafer processing

Info

Publication number
JP3294356B2
JP3294356B2 JP35793592A JP35793592A JP3294356B2 JP 3294356 B2 JP3294356 B2 JP 3294356B2 JP 35793592 A JP35793592 A JP 35793592A JP 35793592 A JP35793592 A JP 35793592A JP 3294356 B2 JP3294356 B2 JP 3294356B2
Authority
JP
Japan
Prior art keywords
quartz glass
core tube
furnace core
ppm
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35793592A
Other languages
Japanese (ja)
Other versions
JPH06191873A (en
Inventor
春夫 田添
智治 永田
利明 浦橋
龍也 露木
信幸 上嶋
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18456698&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3294356(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP35793592A priority Critical patent/JP3294356B2/en
Publication of JPH06191873A publication Critical patent/JPH06191873A/en
Application granted granted Critical
Publication of JP3294356B2 publication Critical patent/JP3294356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウェーハの処理
用石英ガラス製炉芯管に関し、詳しくは内層部のOH基
含有量を所定量として、被処理物半導体ウェーハの汚染
を抑止した半導体ウェーハの処理用石英ガラス製炉芯管
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass furnace core tube for treating semiconductor wafers, and more particularly, to a semiconductor wafer having a predetermined amount of OH group content in an inner layer to prevent contamination of a semiconductor wafer to be treated. And a quartz glass furnace core tube for processing.

【0002】[0002]

【従来の技術】石英ガラスは、耐熱性、耐熱衝撃性、耐
薬品性に優れ、且つ機械的強度も高く、各種用途の部材
として用いられている。従来から半導体製造工程におい
ても、多くの石英ガラスが素材または部材として用いら
れている。例えば、珪素(Si)単結晶引上げ用ルツボ
や、拡散炉用炉芯管等が挙げられる。半導体の製造工程
においては不純物汚染が極めて問題であり、石英ガラス
は、半導体ウェーハを構成するシリカ(SiO2 )と構
成成分が同一であるため、汚染を防止できるとされ多用
されてきた。しかし、近年、各種多方面で使用される集
積回路は高集積化の方向で急進展し、その基板の半導体
ウェーハの仕様も厳しく、より高純度なウェーハが求め
られている。
2. Description of the Related Art Quartz glass has excellent heat resistance, thermal shock resistance, chemical resistance, and high mechanical strength, and is used as a member for various applications. Conventionally, many quartz glass materials have been used as materials or members in semiconductor manufacturing processes. For example, there are a crucible for pulling a silicon (Si) single crystal, a furnace core tube for a diffusion furnace, and the like. In a semiconductor manufacturing process, impurity contamination is a serious problem, and quartz glass has been used frequently because it has the same constituent components as silica (SiO 2 ) constituting a semiconductor wafer, and can prevent contamination. However, in recent years, integrated circuits used in various fields have rapidly advanced in the direction of high integration, and the specifications of semiconductor wafers for the substrates are strict, and wafers with higher purity are required.

【0003】そのため、従来から製造工程に使用する各
種部材から発生する汚染物質の抑制に関し、種々の提案
がされている。例えば、特公昭54−5404号公報で
は、拡散管等に使用する多層石英ガラス体として、合成
石英ガラス管内層を被覆する外層の内部に外層肉厚の1
0〜90%の肉厚の分割層を設け、その分割層にOHイ
オン等を含有させ、内層石英ガラス中のNa等の不純物
の外表面への拡散及び外部への飛散を防止することが提
案されている。上記の方法は、不純物の拡散、飛散の阻
止部材としてのOH基の導入が示され、具体的な導入方
法としては、酸水素バーナによる水晶粒子の溶融時に生
成するOH基の取り込みが記載されているが、1000
ppm以上のOH基をこの方法で導入することは工業的
に実用性に乏しい。また、OH基の含有量が増加する
と、石英ガラスの粘性が低下し、高温強度が低下する。
そのため、炉芯管としての高温強度を確保するために
は、内層及び分割層含む外層の各肉厚を厚くする必要が
あり、全体の肉厚を厚くすることは原料コストが増大す
ると共に、炉芯管としては熱効率が悪くなり、昇温、冷
却時の熱応答も低下する。
[0003] For this reason, various proposals have conventionally been made regarding the control of contaminants generated from various members used in the manufacturing process. For example, Japanese Patent Publication No. 54-5404 discloses that a multilayer quartz glass body used for a diffusion tube or the like has an outer layer thickness of 1 mm inside an outer layer covering an inner layer of a synthetic quartz glass tube.
It is proposed to provide a dividing layer having a thickness of 0 to 90% and to include OH ions and the like in the dividing layer to prevent diffusion of impurities such as Na in the inner layer quartz glass to the outer surface and scattering to the outside. Have been. The above method shows the introduction of an OH group as a member for preventing diffusion and scattering of impurities, and as a specific introduction method, the incorporation of an OH group generated at the time of melting quartz particles by an oxyhydrogen burner is described. But 1000
Introducing OH groups of not less than ppm by this method is not industrially practical. Further, when the content of the OH group increases, the viscosity of the quartz glass decreases, and the high-temperature strength decreases.
Therefore, in order to ensure high-temperature strength as a furnace core tube, it is necessary to increase the thickness of each of the outer layers including the inner layer and the divided layers, and increasing the overall thickness increases the material cost and increases the furnace cost. The thermal efficiency of the core tube is deteriorated, and the thermal response at the time of temperature rise and cooling is also reduced.

【0004】また、上記の欠点を解消するため、半導体
製造工程の拡散工程における高温使用の炉芯管に提供で
きる部材として、OH基含有量を極力抑制する石英ガラ
ス部材の開発がなされている。例えば、特開平4−21
587号公報では、本体部を高粘性の天然結晶質石英で
形成し、その一外表面にシリコンアルコキシドの加水分
解生成物から得られる合成非晶質シリカのライニング層
を一体的に形成された半導体製造用石英ガラス部材が提
案されている。
In order to solve the above-mentioned drawbacks, a quartz glass member has been developed as a member which can be provided for a furnace core tube used at a high temperature in a diffusion step of a semiconductor manufacturing process, in which an OH group content is suppressed as much as possible. For example, Japanese Patent Application Laid-Open No.
No. 587 discloses a semiconductor in which a main body is formed of high-viscosity natural crystalline quartz, and a lining layer of synthetic amorphous silica obtained from a hydrolysis product of silicon alkoxide is integrally formed on one outer surface thereof. A quartz glass member for manufacturing has been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記提案の半導体製造
用石英ガラス部材は、高温において変形することなく、
ライニング層が高純度の合成非晶質シリカで形成される
ため拡散炉用炉芯管等半導体製造工程部材に用いてもシ
リコンウェーハ等を汚染することがなく、半導体製造用
石英ガラス部材としては有用である。しかしながら、上
記の石英ガラス部材は、高温強度確保を第一として粘性
増加を図り、Na等の金属不純物の拡散阻止部材として
作用するOH基の含有量を100ppm以下に抑えてい
るため、高粘性が得られるものの、被処理物のシリコン
ウェーハの不純物汚染を十分に防止することが困難な場
合がある。
The quartz glass member for semiconductor production proposed above does not deform at high temperatures,
Since the lining layer is made of high-purity synthetic amorphous silica, it does not contaminate silicon wafers even when used in semiconductor manufacturing process members such as furnace furnace tubes for diffusion furnaces, and is useful as a quartz glass member for semiconductor manufacturing. It is. However, the above-mentioned quartz glass member is designed to increase the viscosity in order to ensure high-temperature strength, and the content of the OH group acting as a diffusion blocking member for metal impurities such as Na is suppressed to 100 ppm or less. Although it can be obtained, it may be difficult to sufficiently prevent impurity contamination of the silicon wafer to be processed.

【0006】本発明は、上記現状を鑑み、必要な高温強
度を保持しつつ、石英ガラス内の金属不純物の拡散を抑
止して被処理シリコンウェーハの汚染を十分に防止で
き、且つ、耐久性に優れ、長期間安定して熱効率よく半
導体ウェーハを加熱処理可能な石英ガラス製炉芯管を提
供することを目的とする。発明者らは、上記目的のた
め、被処理物が配備される管内の内壁を構成する多層炉
芯管の最内層部を形成する石英ガラスのOH基含有量及
びその肉厚について種々検討した結果、本発明を完成す
るに至った。
The present invention has been made in view of the above-mentioned circumstances, and while suppressing the diffusion of metal impurities in quartz glass while maintaining the required high-temperature strength, contamination of the silicon wafer to be processed can be sufficiently prevented, and the durability is improved. An object of the present invention is to provide a quartz glass furnace core tube that is excellent in heat treatment of a semiconductor wafer stably and efficiently over a long period of time. The inventors have conducted various studies on the OH group content and the wall thickness of the quartz glass forming the innermost layer of the multilayer furnace core tube constituting the inner wall of the tube in which the object to be treated is arranged for the above purpose. Thus, the present invention has been completed.

【0007】[0007]

【課題を解決するための手段】本発明によれば、半導体
ウェーハの処理用石英ガラス製炉芯管であって、少なく
とも2層からなり、最内部層が炉芯管総肉厚の5〜35
%の肉厚を有すると共にOH基含有量が1000〜20
00ppmの合成石英ガラスで形成され、該最内部層の
外側に形成される外部層が高純度石英ガラスで形成され
ることを特徴とする半導体ウェーハの処理用石英ガラス
製炉芯管が提供される。
According to the present invention, there is provided a quartz glass furnace core tube for processing a semiconductor wafer, comprising at least two layers, wherein the innermost layer has a total wall thickness of 5 to 35 mm.
% And an OH group content of 1000 to 20%
A quartz glass furnace core tube for processing a semiconductor wafer is provided, wherein the quartz glass core tube is formed of synthetic quartz glass of 00 ppm, and an outer layer formed outside the innermost layer is formed of high-purity quartz glass. .

【0008】[0008]

【作用】本発明は上記のように構成され、被処理物のシ
リコンウェーハの置かれる管内の内壁層、即ち、上記所
定肉厚の最内部層を構成する合成石英ガラスのOH基含
有量を1000〜2000ppmとすることにより、汚
染物拡散を防止することができ、所定の粘性を保持して
高温強度を維持することができる。
According to the present invention, the OH group content of the synthetic quartz glass constituting the inner wall layer in the tube in which the silicon wafer to be processed is placed, that is, the innermost layer having the predetermined thickness, is set to 1000. By setting the content to 2,000 ppm, it is possible to prevent the diffusion of contaminants, maintain a predetermined viscosity, and maintain high-temperature strength.

【0009】以下、本発明を詳細に説明する。本発明の
半導体ウェーハの処理用石英ガラス製炉芯管は、いわゆ
るウェーハ処理工程の熱酸化・拡散炉に用いられ、その
内部に石英ボート上に静置されたウェーハを配置し、外
周部に設置される電気炉により加熱すると共に、酸素ガ
ス等を流通させてウェーハを処理する管体であって、従
来から、通常、円筒等の筒状体に形成され、ウェーハの
汚染防止のため高純度石英ガラスや上記のように多層構
造の形態が採用されている。本発明の炉芯管は、基本的
には従来と同様に、筒状形態で、筒部が多層構造の石英
ガラスから形成される。筒部の長さ及び肉厚は、特に制
限されるものではなく、その炉芯管の使用条件応じて適
宜選択することができる。通常、肉厚は3〜6mmとす
るのが好ましい。長さは、設置場所や、処理量に応じて
任意に設定することができる。
Hereinafter, the present invention will be described in detail. The quartz glass furnace core tube for processing a semiconductor wafer according to the present invention is used in a so-called thermal oxidation / diffusion furnace in a wafer processing step, in which a wafer placed on a quartz boat is placed and installed on the outer peripheral portion. A tube that processes the wafer by heating it with an electric furnace and passing oxygen gas etc., conventionally, usually formed into a cylindrical body such as a cylinder, and high-purity quartz to prevent wafer contamination. Glass or a multilayer structure as described above is employed. The furnace core tube of the present invention has a cylindrical shape and a cylindrical portion is formed of quartz glass having a multi-layer structure, similarly to the related art. The length and thickness of the cylindrical portion are not particularly limited, and can be appropriately selected according to the use conditions of the furnace core tube. Usually, the thickness is preferably 3 to 6 mm. The length can be set arbitrarily according to the installation location and the amount of processing.

【0010】筒部を構成する多層構造は、少なくとも最
内部層とその外側の外部層との2層からなる。最内部層
と外部層との各肉厚比が約1/20〜1/2であって、
最内部層の肉厚が、炉芯管筒部の総肉厚の5〜35%と
するのが好ましく、より好ましくは、15〜25%とす
る。最内部層の肉厚が、筒部総肉厚の5%より少ないと
下記する最内部層が機能する不純物拡散抑止効果が得ら
れず、一方、35%より多いと最内部層を構成する合成
石英ガラスの組成により炉芯管の粘性が低下し、炉芯管
の高温強度が低くなり好ましくない。
[0010] The multilayer structure constituting the cylindrical portion is composed of at least two layers, an innermost layer and an outer layer outside the innermost layer. Each thickness ratio of the innermost layer and the outer layer is about 1/20 to 1/2,
The innermost layer preferably has a thickness of 5 to 35%, more preferably 15 to 25%, of the total thickness of the furnace core tube. If the thickness of the innermost layer is less than 5% of the total thickness of the cylindrical portion, the following effect of suppressing the diffusion of impurities in the innermost layer cannot be obtained. The viscosity of the furnace core tube decreases due to the composition of the quartz glass, and the high-temperature strength of the furnace core tube decreases, which is not preferable.

【0011】上記した本発明の炉芯管筒部の多層構造に
おいて、最内部層を除いた外部層は、炉芯管の基体を構
成し、主に、高温強度に優れ、高粘性を有する高純度石
英ガラスにより形成される。高純度石英ガラスとして
は、一般に公知の高純度シリカ原料を溶融して石英イン
ゴットとした後、更に約1100℃以上で直流電流を流
して純化させて得られた高純度石英ガラスを用いること
ができる。また、好ましくは天然結晶質石英ガラス及び
それに類似する組成の石英ガラスを用いることができ
る。外部層が多層である場合は、それらの各層は同一組
成の高純度石英ガラスでもよいし、また異なる組成の高
純度石英ガラスでもよい。
In the above-mentioned multilayer structure of the furnace core tube section of the present invention, the outer layer excluding the innermost layer constitutes the base of the furnace core tube, and mainly has a high temperature strength and a high viscosity. It is formed of pure quartz glass. As the high-purity quartz glass, it is possible to use a high-purity quartz glass obtained by melting a generally known high-purity silica raw material to form a quartz ingot, and further purifying by passing a direct current at about 1100 ° C. or more. . Preferably, natural crystalline quartz glass and quartz glass having a composition similar to that can be used. When the outer layer is a multilayer, each layer may be made of high-purity quartz glass having the same composition or high-purity quartz glass having a different composition.

【0012】また、最内部層は、炉芯管の内壁を構成
し、上記外部層の内側に積層形成することができる。こ
の最内部層は、合成石英ガラスにより形成されるが、そ
の合成ガラス中に含有されるOH基を1000〜200
0ppmの範囲内とする。OH基の含有量が1000p
pmより少ないと、外部層及び/または最内部層の石英
ガラス中を拡散するNa等の不純物金属の抑止効果が低
下する。また、2000ppmより多いと最内部層が失
透し易いため好ましくない。炉芯管における失透の発生
は、失透部の熱伝導性が他の石英ガラス部と異なるため
処理中に熱ムラが生じ、均一な処理ができない。本発明
の炉芯管の最内部層を構成する高純度合成石英ガラス
は、通常の石英ガラスの形成方法、例えば、気相合成法
の四塩化珪素(SiCl4 )、水素(H2)及び酸素
(O2 )を原料としてCVD(化学蒸着)法で、炉芯管
の外部層の内部に石英ガラス前駆体層を形成し、その
後、キャリアーガスとして窒素またはヘリウムガスを用
い水蒸気(H2 O)を形成した石英ガラス前駆体層に接
触するように流通させ水蒸気(H2 O)加熱処理して約
800〜1200℃でガラス化させて形成することがで
きる。また、本発明の炉芯管において、内部層に含有さ
れるOH基が外部層側から内部方向に傾斜的に減少する
形態を有するように形成するのがより好ましい。このよ
うな形態に形成することにより、内部層をより高い高温
強度と、より高い金属不純物拡散防止効果を得ることが
できる。慈雨基のような形態を有する炉芯管は、例え
ば、上記水蒸気(H2 O)加熱処理後に、更に、炉芯管
内部からバーナー加熱することにより得ることができ
る。
Further, the innermost layer constitutes the inner wall of the furnace core tube and can be formed by lamination inside the outer layer. The innermost layer is formed of synthetic quartz glass, and the OH group contained in the synthetic glass is 1000 to 200
It is within the range of 0 ppm. OH group content is 1000p
When it is less than pm, the effect of suppressing impurity metals such as Na diffusing in the quartz glass of the outer layer and / or the innermost layer decreases. On the other hand, if it is more than 2000 ppm, the innermost layer is apt to devitrify, which is not preferable. The occurrence of devitrification in the furnace core tube causes unevenness in heat during processing because the thermal conductivity of the devitrified part is different from that of other quartz glass parts, and uniform processing cannot be performed. The high-purity synthetic quartz glass constituting the innermost layer of the furnace core tube of the present invention can be produced by a usual quartz glass forming method, for example, silicon tetrachloride (SiCl 4 ), hydrogen (H 2 ) and oxygen Using (O 2 ) as a raw material, a quartz glass precursor layer is formed inside the outer layer of the furnace core tube by a CVD (chemical vapor deposition) method, and thereafter, using nitrogen or helium gas as a carrier gas, water vapor (H 2 O) Can be formed by flowing the mixture so as to come into contact with the quartz glass precursor layer on which water vapor (H 2 O) is heated and vitrified at about 800 to 1200 ° C. Further, in the furnace core tube of the present invention, it is more preferable that the OH group contained in the inner layer is formed so as to have a form in which the OH group is inclined from the outer layer side toward the inner side. By forming in such a form, the internal layer can have higher high-temperature strength and higher metal impurity diffusion prevention effect. A furnace core tube having a form such as a charcoal base can be obtained by, for example, heating the inside of the furnace core tube after the above-mentioned steam (H 2 O) heat treatment.

【0013】本発明の半導体ウェーハ処理用石英ガラス
炉芯管は、上記のようにして高純度石英ガラスの外部層
を構成する基体の内部に所定の最内部層を形成して製造
され、得られる炉芯管の外周面にヒーター等を配置し
て、管内にシリコンウェーハを適宜配置してNa等金属
不純物の汚染を排除して加熱・拡散処理することができ
る。なお、外部層の外側に所定のOH基含有量の合成石
英ガラス層を形成して、管内にヒーターを設置して、炉
芯管外でシリコンウェーハを加熱・拡散処理することも
考えられるが、所定のOH基含有量の外部合成石英ガラ
スは、不純物等の接触や付着により失透し易く、外部被
覆は好ましくない。
The quartz glass furnace core tube for processing a semiconductor wafer of the present invention is manufactured and obtained by forming a predetermined innermost layer inside a base constituting an outer layer of high-purity quartz glass as described above. By arranging a heater or the like on the outer peripheral surface of the furnace core tube and appropriately arranging a silicon wafer in the tube, it is possible to perform heating and diffusion treatment while eliminating contamination of metal impurities such as Na. It is also conceivable to form a synthetic quartz glass layer having a predetermined OH group content outside the outer layer, install a heater inside the tube, and heat and diffuse the silicon wafer outside the furnace core tube. External synthetic quartz glass having a predetermined OH group content is easily devitrified due to contact or adhesion of impurities or the like, and external coating is not preferable.

【0014】[0014]

【実施例】以下、本発明を実施例に基づき詳細に説明す
る。但し、本発明は下記実施例により制限されるもので
ない。 実施例1〜2及び比較例1〜2 不純物としてAl:8ppm、Fe:0.4ppm、N
a:0.8ppm、K:0.8ppm、Cu:0.02
ppm、B:0.3ppm含む高純度シリカ原料粉を溶
融して得られた石英インゴットを、1100℃で100
0Vの直流電圧で120分間通電し純化した。得られた
高純度石英ガラスインゴットの不純物含有量は、Al:
8ppm、Fe:0.4ppm、Na:0.1ppm、
K:0.1ppm、Cu:0.01ppm、B:0.0
3ppmで、OH基:300ppmであった。上記で得
られた高純度石英インゴットを用い外径207mmφ、
内径200mmφで、長さ1400mmの筒部の肉厚が
3.5mmの高純度石英ガラス製円筒体を4本作製し
た。作製した円筒体を電気炉内に配置し、約700℃に
昇温加熱し、その後、炉内にSiCl4 20g/分、H
2 200リットル/分、O2 100リットル/分で30
分間流通し、円筒体の内部に、1.0mmの厚さに石英
ガラス前駆体層を形成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments. However, the present invention is not limited by the following examples. Examples 1-2 and Comparative Examples 1-2 Al: 8 ppm, Fe: 0.4 ppm, N as impurities
a: 0.8 ppm, K: 0.8 ppm, Cu: 0.02
ppm, B: a quartz ingot obtained by melting a high-purity silica raw material powder containing 0.3 ppm at 100 ° C.
Purification was performed by applying a current of 0 V DC for 120 minutes. The impurity content of the obtained high-purity quartz glass ingot is Al:
8 ppm, Fe: 0.4 ppm, Na: 0.1 ppm,
K: 0.1 ppm, Cu: 0.01 ppm, B: 0.0
At 3 ppm, the OH group was 300 ppm. Using the high-purity quartz ingot obtained above, an outer diameter of 207 mmφ,
Four high-purity quartz glass cylinders having an inner diameter of 200 mmφ and a wall thickness of 1,400 mm and a thickness of 3.5 mm were produced. The produced cylindrical body was placed in an electric furnace, heated to about 700 ° C. and heated, and then, SiCl 4 20 g / min.
2 200 l / min, 30 at 100 l / min O 2
Then, the quartz glass precursor layer having a thickness of 1.0 mm was formed inside the cylindrical body.

【0015】ついで、水蒸気(H2 O)を窒素ガスをキ
ャリアガスとして炉内に20リットル/分で流通させ、
水蒸気(H2 O)雰囲気下で上記のようにして形成した
石英ガラス前駆体層をガラス化させた。この場合、水蒸
気と窒素ガスとの比率を1/1〜1/5で変化させ、ガ
ラス化形成された合成石英ガラス層中のOH基の含有量
が500ppm、1000ppm、2000ppm及び
2500ppmとなるように制御した。なお、形成され
た内部層の合成石英ガラスのOH基含有量は、FTIR
(フーリエ変換赤外分光計)を用い2.73μmの赤外
吸収帯より測定した。また、内部層の合成石英ガラス中
の不純物は、Al:0.1ppm、Fe:0.05pp
m、Na:0.05ppm、K:0.05ppm、C
u:<0.01ppm、B:<0.01ppmであっ
た。得られた各多層石英ガラス円筒体を用いて炉芯管を
作製し、通常の加熱装置を用いて、作製した炉芯管内で
シリコンウェーハを、アルゴン(Ar)雰囲気下、室温
から昇温して約1100℃で、30分間保持して加熱し
た後、室温まで放冷する加熱処理サイクルをそれぞれ2
00回繰り返し行った。各加熱処理サイクル後のシリコ
ンウェーハの不純物量を測定した。内部層中のOH基含
有量が500ppm(比較例1)、1000ppm(実
施例1)、2000ppm(実施例2)及び2500p
pm(比較例2)の各炉芯管の測定結果を、それぞれ加
熱処理サイクル数と不純物量との関係として図1に示し
た。比較例2の内部層のOH基含有量が2500ppm
の炉芯管は、加熱処理サイクル150回で失透が多発し
たため、それ以上の加熱処理は中止した。
Next, steam (H 2 O) is passed through the furnace at a rate of 20 liters / minute using nitrogen gas as a carrier gas.
The quartz glass precursor layer formed as described above was vitrified in a water vapor (H 2 O) atmosphere. In this case, the ratio of steam to nitrogen gas is changed in a range of 1/1 to 1/5 so that the OH group content in the vitrified synthetic quartz glass layer becomes 500 ppm, 1000 ppm, 2000 ppm, and 2500 ppm. Controlled. The OH group content of the synthetic quartz glass of the formed inner layer was determined by FTIR
(Fourier transform infrared spectrometer) and measured from an infrared absorption band of 2.73 μm. The impurities in the synthetic quartz glass of the inner layer were as follows: Al: 0.1 ppm, Fe: 0.05 pp
m, Na: 0.05 ppm, K: 0.05 ppm, C
u: <0.01 ppm, B: <0.01 ppm. A furnace core tube was manufactured using each of the obtained multilayer quartz glass cylinders, and the silicon wafer was heated from room temperature under an argon (Ar) atmosphere in the manufactured furnace core tube using a normal heating device. After heating at about 1100 ° C. for 30 minutes and then cooling to room temperature, two heat treatment cycles were performed.
Repeated 00 times. The impurity amount of the silicon wafer after each heat treatment cycle was measured. OH group content in the inner layer is 500 ppm (Comparative Example 1), 1000 ppm (Example 1), 2000 ppm (Example 2), and 2500 p
FIG. 1 shows the measurement results of each furnace core tube in pm (Comparative Example 2) as the relationship between the number of heat treatment cycles and the amount of impurities. OH group content of the inner layer of Comparative Example 2 was 2500 ppm
As for the furnace core tube, devitrification occurred frequently after 150 heat treatment cycles, and further heat treatment was stopped.

【0016】比較例3 肉厚を4.5mmとした以外は、実施例1と同様にして
高純度石英インゴットを用い、高純度石英ガラス製円筒
体を作製した。この単層高純度石英ガラス製円筒体をそ
のまま用いて炉芯管を作製し、実施例1と同様にシリコ
ンウェーハの加熱処理サイクルを繰り返し行い、同様に
シリコンウェーハの不純物の増加を測定した。その結果
を、同様に図1に示した。また、FTIRによる観察の
結果、実施例1〜2及び比較例1〜2の炉芯管の内部層
に含有されるOH基が外部層側から内部方向に傾斜的に
減少して分布されるのに対し、比較例3の炉芯管の高純
度石英ガラス単層中ではほぼ均一に分布されていた。
Comparative Example 3 A high-purity quartz glass cylinder was manufactured using a high-purity quartz ingot in the same manner as in Example 1 except that the thickness was 4.5 mm. Using the single-layer high-purity quartz glass cylindrical body as it was, a furnace core tube was produced, and the heat treatment cycle of the silicon wafer was repeated as in Example 1, and the increase in impurities in the silicon wafer was measured in the same manner. The results are also shown in FIG. Also, as a result of observation by FTIR, the OH groups contained in the inner layers of the furnace core tubes of Examples 1 and 2 and Comparative Examples 1 and 2 are distributed in such a manner as to decrease inclining from the outer layer side to the inner direction. On the other hand, it was almost uniformly distributed in the single layer of high purity quartz glass of the furnace core tube of Comparative Example 3.

【0017】実施例3〜5及び比較例4〜5 実施例1と同様の方法により高純度石英ガラス製円筒体
を4本作製した。作製した円筒体を電気炉内に配置し、
約700℃に昇温加熱し、その後、炉内にSiCl4
0〜80g/分、H2 60〜240リットル/分、O2
30〜120リットル/分で変化させて流通し、円筒体
の内部に、0.2mm(比較例4)、0.5mm(実施
例3)、1.0mm(実施例4)、1.5mm(実施例
5)、2mm(比較例5)の厚さに石英ガラス前駆体を
形成した。なお、これら石英ガラス前駆体の肉厚は、い
ずれも総和が4.5mmとなるようにした。次いで、水
蒸気(H2 O)と窒素ガスとの比率を1/2として内部
層のOH基の含有量が1500ppmとなるようにした
以外は、実施例1と同様にして多層石英ガラス円筒体を
作製した。得られた各多層石英ガラス円筒体を用いて炉
芯管を作製し、作製した各炉芯管を用いそれぞれ実施例
1と同様にしてシリコンウェーハの加熱処理サイクルを
行い、シリコンウェーハの不純物の増加量を測定した。
その結果を、同様に加熱処理サイクル数と不純物量との
関係として図2に示した。比較例5の内部層の肉厚が2
mmの炉芯管は、加熱処理サイクル100回で変形が著
しいため、加熱処理を中止した。
Examples 3-5 and Comparative Examples 4-5 Four high-purity quartz glass cylinders were produced in the same manner as in Example 1. Place the produced cylinder in an electric furnace,
The temperature was increased to about 700 ° C., and then SiCl 4 2 was introduced into the furnace.
0~80g / min, H 2 60~240 liters / min, O 2
It is circulated at a rate of 30 to 120 liters / minute and flows inside the cylindrical body at 0.2 mm (Comparative Example 4), 0.5 mm (Example 3), 1.0 mm (Example 4), 1.5 mm (Example 4). Example 5) A quartz glass precursor was formed to a thickness of 2 mm (Comparative Example 5). The total thickness of these quartz glass precursors was 4.5 mm. Next, a multilayer quartz glass cylinder was prepared in the same manner as in Example 1 except that the ratio of water vapor (H 2 O) to nitrogen gas was set to 1/2 so that the content of OH groups in the inner layer was 1500 ppm. Produced. A furnace core tube was manufactured using each of the obtained multilayer quartz glass cylinders, and a heat treatment cycle of the silicon wafer was performed using each of the manufactured furnace core tubes in the same manner as in Example 1 to increase impurities in the silicon wafer. The amount was measured.
FIG. 2 similarly shows the results as a relationship between the number of heat treatment cycles and the amount of impurities. The thickness of the inner layer of Comparative Example 5 is 2
The heating process was stopped because the furnace core tube of mm was significantly deformed after 100 heating cycles.

【0018】比較例6 円筒形成型を用い、実施例1と同様にして、SiCl4
20g/分、H2 200リットル/分、O2 100リッ
トル/分で30分間流通し、次いで実施例3と同様にし
て水蒸気(H2 O)と窒素ガスを流通して、OH基の含
有量が1500ppmの実施例3で内部層を構成する合
成石英ガラス単層の円筒体を得た。得られた円筒体を用
いて炉芯管を作製し、作製した炉芯管を用い実施例1と
同様にしてシリコンウェーハの加熱処理サイクルを行っ
たが、50回のサイクル後に変形著しく加熱処理の継続
は困難であった。
Comparative Example 6 SiCl 4 was used in the same manner as in Example 1 using a cylindrical forming die.
The mixture was circulated at 20 g / min, 200 liters / minute of H 2, and 100 liters / minute of O 2 for 30 minutes, and then steam (H 2 O) and nitrogen gas were passed in the same manner as in Example 3 to obtain an OH group content. Was 1500 ppm to obtain a cylindrical body of a single layer of synthetic quartz glass constituting the inner layer in Example 3. A furnace core tube was manufactured using the obtained cylindrical body, and a heat treatment cycle of a silicon wafer was performed in the same manner as in Example 1 using the manufactured furnace core tube. Continuing was difficult.

【0019】上記実施例及び比較例から、外部層が高純
度石英ガラスで、その内部に所定肉厚で形成されるOH
基含有量が1000〜2000ppmの範囲の合成石英
ガラスの内部層からなる石英ガラス製炉芯管は、シリコ
ンウェーハの加熱処理の高温において繰り返し使用して
も変形しないことが明らかである。更に、処理されるシ
リコンウェーハの汚染も極めて微量であることが分か
る。
From the above Examples and Comparative Examples, it was found that the outer layer was made of high-purity quartz glass, and the OH formed therein was formed with a predetermined thickness.
It is clear that a quartz glass furnace core tube having an inner layer of synthetic quartz glass having a base content in the range of 1000 to 2000 ppm does not deform even when repeatedly used at a high temperature of the heat treatment of the silicon wafer. Further, it can be seen that the contamination of the silicon wafer to be processed is extremely small.

【0020】[0020]

【発明の効果】本発明の半導体ウェーハ処理用石英ガラ
ス製炉芯管は、高温強度を保持し高温の加熱処理に繰り
返し使用しても変形することがない上、炉芯管中のNa
等の金属不純物の拡散を抑止して、被処理体の半導体ウ
ェーハの汚染を防止することができる。更に、長期間安
定して半導体ウェーハを汚染することなく繰り返し使用
することができ、耐久性に優れ、信頼性が高く工業的に
極めて有用である。
Industrial Applicability The quartz glass furnace core tube for processing semiconductor wafers of the present invention retains high-temperature strength, does not deform even when repeatedly used for high-temperature heat treatment, and contains Na in the furnace core tube.
It is possible to suppress the diffusion of metal impurities such as that described above, thereby preventing contamination of the semiconductor wafer to be processed. Furthermore, the semiconductor wafer can be repeatedly used without contaminating the semiconductor wafer for a long period of time, and has excellent durability, high reliability, and is extremely useful industrially.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の炉芯管の内部層中のOH基含
有量の影響を示した半導体ウェーハの加熱処理サイクル
数と不純物量との関係図である。
FIG. 1 is a diagram showing the relationship between the number of heat treatment cycles of a semiconductor wafer and the amount of impurities, showing the influence of the OH group content in the inner layer of the furnace core tube according to the embodiment of the present invention.

【図2】本発明の実施例の炉芯管の内部層の肉厚の影響
を示した半導体ウェーハの加熱処理サイクル数と不純物
量との関係図である。
FIG. 2 is a diagram showing the relationship between the number of heat treatment cycles of a semiconductor wafer and the amount of impurities showing the influence of the thickness of the inner layer of the furnace core tube of the embodiment of the present invention.

フロントページの続き (72)発明者 露木 龍也 神奈川県秦野市曽屋30 東芝セラミック ス株式会社 開発研究所内 (72)発明者 上嶋 信幸 神奈川県秦野市曽屋30 東芝セラミック ス株式会社 開発研究所内 (56)参考文献 特開 昭62−268129(JP,A) 実開 昭62−14722(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 21/22 C03C 1/00 - 14/00 H01L 21/324 Continuing from the front page (72) Inventor Tatsuya Rouki 30 Development Center of Toshiba Ceramics Co., Ltd., Hadano-shi, Kanagawa Prefecture (72) Inventor Nobuyuki Ueshima 30 Development Center of Toshiba Ceramics Co., Ltd., Hadano-shi, Kanagawa Prefecture (56) Reference Reference JP-A-62-268129 (JP, A) JP-A-62-14722 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/22 C03C 1/00-14 / 00 H01L 21/324

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体ウェーハの処理用石英ガラス製炉
芯管であって、少なくとも2層からなり、最内部層が炉
芯管総肉厚の5〜35%の肉厚を有すると共にOH基含
有量が1000〜2000ppmの合成石英ガラスで形
成され、該最内部層の外側に形成される外部層が高純度
石英ガラスで形成されることを特徴とする半導体ウェー
ハの処理用石英ガラス製炉芯管。
1. A quartz glass furnace core tube for processing a semiconductor wafer, comprising at least two layers, an innermost layer having a thickness of 5 to 35% of the total thickness of the furnace core tube and containing an OH group. A quartz glass core tube for processing semiconductor wafers, wherein the quartz glass core tube is made of synthetic quartz glass having an amount of 1000 to 2000 ppm, and an outer layer formed outside the innermost layer is made of high-purity quartz glass. .
JP35793592A 1992-12-25 1992-12-25 Quartz glass furnace core tube for semiconductor wafer processing Expired - Fee Related JP3294356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35793592A JP3294356B2 (en) 1992-12-25 1992-12-25 Quartz glass furnace core tube for semiconductor wafer processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35793592A JP3294356B2 (en) 1992-12-25 1992-12-25 Quartz glass furnace core tube for semiconductor wafer processing

Publications (2)

Publication Number Publication Date
JPH06191873A JPH06191873A (en) 1994-07-12
JP3294356B2 true JP3294356B2 (en) 2002-06-24

Family

ID=18456698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35793592A Expired - Fee Related JP3294356B2 (en) 1992-12-25 1992-12-25 Quartz glass furnace core tube for semiconductor wafer processing

Country Status (1)

Country Link
JP (1) JP3294356B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101516602B1 (en) * 2012-03-23 2015-05-04 신에쯔 세끼에이 가부시키가이샤 A silica container for pulling up monocrystalline silicon and method for manufacturing same

Also Published As

Publication number Publication date
JPH06191873A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
KR100261872B1 (en) Heat treatment facility for synthetic vitreous silica bodies
JP5177979B2 (en) Composite quartz glass tube for semiconductor manufacturing
AU750391B2 (en) Method for purifying SiO2-particles, device for carrying out said method and granulation produced according to said method
TW200821275A (en) Component of quartz glass for use in semiconductor manufacture and method for producing the same
JPH11228233A (en) Sic molded product and its production
JP2548949B2 (en) Semiconductor manufacturing components
EP0340802B1 (en) Silicon carbide diffusion tube for semi-conductor
JP3498182B2 (en) Silica glass member for semiconductor and manufacturing method thereof
JP3294356B2 (en) Quartz glass furnace core tube for semiconductor wafer processing
JPH11310423A (en) Synthetic quartz glass and its production
JPS63236723A (en) Quartz glass products for semiconductor industry
JP3268049B2 (en) Quartz glass material and its manufacturing method
JP2522830B2 (en) Quartz glass material for semiconductor heat treatment and manufacturing method thereof
JPH10114532A (en) Production of jig for heat-treating quartz-glass semiconductor
JPS59129421A (en) Member for heat treatment of semiconductor
JP3698372B2 (en) CVD-SiC coated member
US3304200A (en) Semiconductor devices and methods of making same
JPH06127923A (en) Fluidized bed reactor for producing polycrystalline silicon
JP3187510B2 (en) Method of manufacturing member for heat treatment of semiconductor wafer
JPS6018638B2 (en) Silicon single crystal pulling equipment
JP3687872B2 (en) Method for producing electric furnace material for heat treatment such as high purity silicon, and electric furnace material for heat treatment
JPS6133256B2 (en)
JPS62153130A (en) Production of parent material for optical fiber glass
JPH05279049A (en) Production of synthetic quartz glass
US3957476A (en) Method of diffusing ions into quartz glass

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees