JPS63236723A - Quartz glass products for semiconductor industry - Google Patents
Quartz glass products for semiconductor industryInfo
- Publication number
- JPS63236723A JPS63236723A JP7021487A JP7021487A JPS63236723A JP S63236723 A JPS63236723 A JP S63236723A JP 7021487 A JP7021487 A JP 7021487A JP 7021487 A JP7021487 A JP 7021487A JP S63236723 A JPS63236723 A JP S63236723A
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- tube
- cristobalite
- quartz
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 239000004065 semiconductor Substances 0.000 title claims description 15
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 22
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 12
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 8
- 150000001768 cations Chemical class 0.000 claims abstract description 7
- 239000013078 crystal Substances 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims description 28
- 239000010410 layer Substances 0.000 claims description 23
- 239000002344 surface layer Substances 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 abstract description 16
- 238000004031 devitrification Methods 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 7
- 239000010453 quartz Substances 0.000 abstract description 6
- 238000011109 contamination Methods 0.000 abstract description 2
- 239000000155 melt Substances 0.000 abstract description 2
- 239000000843 powder Substances 0.000 abstract description 2
- 239000002019 doping agent Substances 0.000 abstract 2
- 238000007598 dipping method Methods 0.000 abstract 1
- 230000002265 prevention Effects 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 8
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 239000003513 alkali Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum ions Chemical class 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
- C03B32/02—Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C1/00—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
- C03C1/02—Pretreated ingredients
- C03C1/022—Purification of silica sand or other minerals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/02—Pure silica glass, e.g. pure fused quartz
- C03B2201/03—Impurity concentration specified
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/02—Pure silica glass, e.g. pure fused quartz
- C03B2201/03—Impurity concentration specified
- C03B2201/04—Hydroxyl ion (OH)
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野J
本発明は半導体工業用石英ガラス製品に係り、特に半導
体ウェハの熱処理工程に用いられる炉芯管やシリコン単
結晶の引きEげに用いられる石英ガラス製ルツボに関す
る。Detailed Description of the Invention "Industrial Application Field J The present invention relates to quartz glass products for the semiconductor industry, and in particular to quartz glass products used for furnace core tubes used in heat treatment processes of semiconductor wafers and for drawing silicon single crystals. Regarding crucible manufacturing.
「従来の技術」
半導体ウェハの熱処理工程に用いられる炉芯管等には、
純度が優れていて且つ汚染されにくい透明石英ガラス管
を用いて形成しているが、該石英ガラス管は、天然産の
水晶を原料としている為に、アルミニウム、アルカリ等
の微量不純物元素の混入が避けられず、特にアルカリは
通常各元素が各々1〜3 ppm含まれていた。"Conventional technology" Furnace core tubes used in the heat treatment process of semiconductor wafers, etc.
It is made using a transparent quartz glass tube that has excellent purity and is difficult to contaminate. However, since the quartz glass tube is made from naturally produced quartz, there is a risk of contamination with trace impurity elements such as aluminum and alkali. In particular, alkali usually contains 1 to 3 ppm of each element.
このような石英ガラス製の炉芯管を1150〜1300
°C前後の高温下で熱処理を行う拡散炉等に使用した場
合には粘性が低下して熱変形を起こし易く、この為使用
寿命が極めて短くなるという欠点を有していた。This kind of quartz glass furnace core tube is 1150~1300.
When used in a diffusion furnace or the like where heat treatment is carried out at a high temperature of around .degree. C., the viscosity decreases and thermal deformation tends to occur, resulting in an extremely short service life.
又炉芯管内に混入されている不純物が内部へ拡散し、該
不純物が核となって前記炉芯管が結晶化(失透)を起こ
し、クラック等を発生して使用不可能になる場合があり
、更には、不純物が炉芯管よりガラスを通過して半導体
ウェハ等の被処理物にまで悪影響を及ぼす場合もあった
。In addition, impurities mixed in the furnace core tube may diffuse into the interior, and the impurities may become nuclei, causing crystallization (devitrification) of the furnace core tube, causing cracks, etc., and making it unusable. Furthermore, impurities may pass through the glass from the furnace core tube and have an adverse effect on objects to be processed, such as semiconductor wafers.
このような石英ガラス材の熱変形や失透は、前記不純物
の内特にNa、 K 、 Li等のアルカリ金属が最も
影響する事が知られており、この為例えば特開昭59−
23314号において、前記アルカリ金属を0.5pp
m以下に抑えた技術が提案されている。It is known that the thermal deformation and devitrification of quartz glass materials are most affected by impurities, especially alkali metals such as Na, K, and Li.
No. 23314, the alkali metal is added to 0.5 ppp.
Techniques have been proposed to reduce the number to m or less.
「発明が解決しようとする問題点」
しかしながらかかる従来技術においては、炉芯管内に混
入されている不純物が及ぼす悪影響については防止出来
るが、加熱中に炉芯管外周囲に位置する炉壁等から発生
する不純物の侵入には無防備であり、該不純物の侵入に
より特に長時間の連続加熱によりやはり前記失透や熱変
形が生じる場合がある。而も近年の半導体被処理物の高
密度化と高集積化に伴ない、僅かな不純物が前記炉芯管
を透過しても半導体被処理物にまで悪影響を及ぼす場合
もあり、前記のように炉壁等から発生する不純物の侵入
に無防備な装置を使用する事はユーザ側において多大の
不安がある。"Problems to be Solved by the Invention" However, in this conventional technology, although it is possible to prevent the adverse effects of impurities mixed in the furnace core tube, It is defenseless against the intrusion of generated impurities, and due to the intrusion of these impurities, the above-mentioned devitrification and thermal deformation may occur, especially when continuously heated for a long time. However, with the recent increase in the density and integration of semiconductor processing objects, even a small amount of impurity passing through the furnace core tube may have an adverse effect on the semiconductor processing object. There is a great deal of anxiety on the part of the user when using a device that is unprotected from the intrusion of impurities generated from the furnace walls and the like.
このような不純物の侵入を防止する技術とじて例えば、
特公昭47−1477号において、粉末状の最純枠のク
リストバライト石を前記石英ガラス管外周面Hに吹付け
た後、該クリストバライト石を火炎により焼付ける事に
より、前記石英ガラス外周面トに、石英の変態結晶が結
合されたクリストバライト層からなる被膜を形成し、該
クリストバライト層により前記不純物の侵入を阻止せん
とした技術が提案されているが、かかる技術においては
石英ガラス外周面に前記被膜が単に固着されているのみ
であるから、高温下における前記石英ガラス管の僅かな
がらの熱変形と熱膨張の繰り返しにより、前記被膜に目
視で確認出来る程度のひび割れが入ったり又該被膜と石
英ガラス本体側間で剥離が生じ、該剥離部分からの不純
物の侵入により失透が生じたり、又前記ひび割れの発生
によりフナ
リストバライト層が有する、石英ガラス井の熱変形を防
1卜する力も弱まる。Examples of technologies to prevent the intrusion of such impurities include:
In Japanese Patent Publication No. 47-1477, after spraying a powdered cristobalite stone of the purest frame onto the outer circumferential surface H of the quartz glass tube, the cristobalite stone is baked with a flame, so that the outer circumferential surface H of the quartz glass is heated. A technique has been proposed in which a coating consisting of a cristobalite layer in which transformed crystals of quartz are bonded is formed, and the cristobalite layer prevents the impurities from entering. Since the quartz glass tube is simply fixed, repeated slight thermal deformation and thermal expansion of the quartz glass tube under high temperatures may cause visible cracks in the coating or damage to the coating and the quartz glass body. Peeling occurs between the sides, and devitrification occurs due to the intrusion of impurities from the peeled portion, and the cracking also weakens the ability of the funaristobarite layer to prevent thermal deformation of the quartz glass well.
本発明はかかる従来技術の欠点に鑑み、前記高温下で長
時間連続熱処理を行う場合においても熱変形や失透を防
止し、°これにより使用寿命期間の大幅向上を達成し得
る半導体工業用の石英ガラス製品を提供する事を目的と
する。In view of the drawbacks of the prior art, the present invention has developed a technology for the semiconductor industry that prevents thermal deformation and devitrification even when heat treatment is performed continuously at high temperatures for long periods of time, thereby significantly extending the service life. The purpose is to provide quartz glass products.
ヌ木発明の目的は、炉壁等から発生する不純物の侵入を
完全に防止し得、半導体被処理物の高密度化と高集積化
に対応し得る半導体工業用の石英ガラス製品を提供する
事を目的とする。The purpose of Nuki's invention is to provide a quartz glass product for the semiconductor industry that can completely prevent the intrusion of impurities generated from the furnace walls, etc., and can cope with the increasing density and integration of semiconductor processing objects. With the goal.
「問題点を解決する為の手段」 本発明はかかる技術的課題を達成する為に。"Means to solve problems" The present invention aims to achieve this technical problem.
■0.5ppm以下の含有量に設定したNa、 K及び
Liのアルカリ金属の内、特に特に拡散速度の早いNa
、 Kを更に低含有量化し、それぞれ0.2ppm以下
に設定した点
(わ熱変形に影響を与えるOH基を10ppm+以下の
含有量に設定した点
(笥前記不純物含有量を有する石英ガラス材の外表面層
に拡散速度の遅い不純物元素、特に三価の陽イオン原子
をドーピングし、該原子を核としてクリストバライト結
晶層を形成した点、
この場合前記クリストバライト結晶層の層厚が外表面よ
り10〜100 ILtaの深さになるよう設定するの
がよい。■Of the alkali metals Na, K, and Li whose content is set to 0.5 ppm or less, Na has a particularly fast diffusion rate.
, the content of K was further lowered to 0.2 ppm or less (the content of OH groups, which affect thermal deformation, was set to 10 ppm+ or less). The outer surface layer is doped with an impurity element having a slow diffusion rate, particularly a trivalent cation atom, and a cristobalite crystal layer is formed using the atom as a nucleus. It is preferable to set the depth to 100 ILta.
「作用」 本発明の作用を熱変形と失透の両者に分けて説明する。"action" The effects of the present invention will be explained separately for both thermal deformation and devitrification.
先ず熱変形の問題を考えてみると、又1通常使用されて
いる石英ガラスはOH基を100〜300ppm程台ん
でおり、一般にOH基の多いガラス程、高温下における
形状安定性に劣ると言われている。そこで本発明は前記
OH基を10ppm以下と実質的には0と等しい程度に
抑えるとともに、前記石英ガラスの粘性に悪影響を与え
るNa、 Kを0.2ppm以下及びLiを 0.5p
pm以下と極めて低濃度に抑えた為に、従来の石英ガラ
スと比較して飛躍的に粘度が向トする。First, considering the problem of thermal deformation, 1. The quartz glass that is commonly used has 100 to 300 ppm of OH groups, and it is generally said that the glass with more OH groups has poorer shape stability at high temperatures. It is being said. Therefore, the present invention suppresses the OH groups to 10 ppm or less, which is substantially equal to 0, and also suppresses Na and K, which have an adverse effect on the viscosity of the quartz glass, to 0.2 ppm or less and Li to 0.5 ppm.
Because the concentration is kept to an extremely low level of pm or less, the viscosity is dramatically lower than that of conventional quartz glass.
更に該石英ガラスの表面層に形成されているクリストバ
ライト層は一定の規則配列による結晶層であり、而も該
クリストバライト層は石英ガラス表面上に被膜として形
成されているのではなく、石英ガラスと一体化している
為に、前記クリストバライト層が石英ガラスの圧縮応力
層として機能17、熱変形を抑制する方向に働く。Furthermore, the cristobalite layer formed on the surface layer of the quartz glass is a crystal layer with a certain regular arrangement, and the cristobalite layer is not formed as a film on the surface of the quartz glass, but is formed integrally with the quartz glass. Because of this, the cristobalite layer functions as a compressive stress layer 17 of the silica glass and works in the direction of suppressing thermal deformation.
この結果本発明品を1300℃以上の高温下で加熱した
場合においても熱変形がほとんど生じる事なく、一層耐
熱性を向上させる効果がある。As a result, even when the product of the present invention is heated at a high temperature of 1300° C. or higher, almost no thermal deformation occurs, and the heat resistance is further improved.
次に失透の問題を考えてみると、高温下で石英ガラス中
を移動し易いアルカリ金属、特にNa、 Kを0.2p
pa+以下及びLiを0.5ppm以下に抑えた為に、
石英ガラス内に混入されている不純物に起因する失透を
防1F出来る。又高温加熱、中に例えば炉芯管外周囲に
位置する炉壁等から発生する不純物が石英ガラス内に侵
入せんとした場合でも、その表面層に形成されているク
リストバライト層によりその侵入を阻止する事が出来る
。Next, considering the problem of devitrification, alkali metals that easily move in quartz glass at high temperatures, especially Na and K, should be added by 0.2p.
By keeping pa+ below and Li below 0.5 ppm,
Loss of clarity caused by impurities mixed in the quartz glass can be prevented by 1F. In addition, even if impurities generated from the furnace wall located around the outside of the furnace core tube during high-temperature heating try to penetrate into the quartz glass, the cristobalite layer formed on the surface layer prevents the impurities from entering. I can do things.
而も、前記クリストバライト層は被膜としてではなく、
石英ガラスと一体化して形成されている為に、高温下に
おける前記石英ガラス管の僅かながらの熱変形と熱膨張
の繰り返しが生じても、クリストバライト層にひび割れ
が入ったり又石英ガラス本体側間で剥離が生じたりする
事なく長時間に亙って前記不純物の侵入を阻止し得る。However, the cristobalite layer is not used as a film,
Because it is formed integrally with quartz glass, even if the quartz glass tube repeatedly undergoes slight thermal deformation and thermal expansion under high temperatures, the cristobalite layer may crack or the quartz glass tube may crack between the sides of the quartz glass body. Intrusion of the impurities can be prevented for a long time without peeling.
又前記クリストバライト層の核となる不純物元素は、拡
散速度の遅い、特にAL等の三価の陽イオンである為に
、石英ガラス表面層に安定して存在する事となり、半導
体被処理物にまで悪影響を及ぼす市はない。In addition, since the impurity elements that form the core of the cristobalite layer are trivalent cations such as AL, which have a slow diffusion rate, they stably exist in the quartz glass surface layer, and even reach the semiconductor processing object. There are no cities that are negatively affected.
更に前記三価の陽イオンである不純物元素は一価の陽イ
オンを捕捉してSiと同じ四価になろうとする傾向があ
る為に1例えNa、 K 、 Li等の拡散速度の早い
不純物が前記クリストバライト層を突き抜けて石英ガラ
ス中に侵入しようとしても、これを前記三価の陽イオン
で捕捉し、内面側への通過を阻1トする事が出来る。Furthermore, impurity elements that are trivalent cations have a tendency to capture monovalent cations and become tetravalent like Si, so for example, impurities with fast diffusion rates such as Na, K, and Li Even if the cristobalite layer attempts to penetrate into the quartz glass, it can be captured by the trivalent cations and prevented from passing toward the inner surface.
従って、前記クリストバライト層は、Na、 K、Li
等の拡散速度の早い不純物の侵入拡散に対して障壁とし
ての役目を確実に果す事が出来、この結果高密度化と高
集積化された半導体被処理物の熱処理に使用するのに最
も好適な半導体工業用ガラス製品を提供する事が出来る
。Therefore, the cristobalite layer contains Na, K, Li
It can reliably act as a barrier against the intrusion and diffusion of impurities with a fast diffusion rate such as We can provide glass products for the semiconductor industry.
「実施例」
以下、本発明の好適な実施例を例示的に詳しく説明子る
。ただしこの実施例に記載されている構、戊部品の寸法
、材質、形状、その相対配置などは粘に嘘定的な記載が
ない限りは、この発明の範囲をそれのみに限定する趣旨
ではなく、単なる説明例に過ぎない。"Example" Hereinafter, preferred embodiments of the present invention will be explained in detail by way of example. However, the structure described in this example, the dimensions, materials, shapes of the parts, their relative positions, etc. are not intended to limit the scope of this invention only, unless there is a false description. , is merely an illustrative example.
先ず、天然石英を微粉砕して粒度は一定になるよう振る
い分は選別した後、フッ化水素にて浸漬洗浄した精製粉
を、電気炉にて10〜12時間程度長時間加熱溶融する
事により、OH基が10pp−以下の含有諧の溶融体を
得、これを成形して炉芯管を製造する材料となる透明石
英ガラス管を形成した後、次にこれを加熱炉内で塩素ガ
ス又は塩化水素ガスを流しながら数時間熱処理を行う事
によりNaとKを0.1 ppm 、 Liを0.3p
pmに抑えた石英ガラス管を得る事が出来た。First, natural quartz is finely pulverized and the particles are sorted so that the particle size is constant.The purified powder is immersed and washed in hydrogen fluoride and then heated and melted in an electric furnace for about 10 to 12 hours. After obtaining a melt with an OH group content of 10 pp- or less and molding it to form a transparent quartz glass tube that is the material for manufacturing a furnace core tube, it is then heated in a heating furnace with chlorine gas or By performing heat treatment for several hours while flowing hydrogen chloride gas, Na and K were reduced to 0.1 ppm and Li to 0.3 p.
We were able to obtain a quartz glass tube with reduced pm.
そして前記石英ガラス管の外周面上に、不純物元素とし
てアルミニウムイオンを含む溶液を付着せしめた後、加
熱処理を行う。After a solution containing aluminum ions as an impurity element is deposited on the outer peripheral surface of the quartz glass tube, a heat treatment is performed.
そして該加熱処理は前記石英ガラス管を石英ガラスの軟
化点以上の温度で加熱して処理され、これにより前記溶
液中のイオン化アルミニウム元素が石英ガラス管の表面
層にドーピングされる。The heat treatment is performed by heating the quartz glass tube at a temperature equal to or higher than the softening point of the quartz glass, whereby the ionized aluminum element in the solution is doped into the surface layer of the quartz glass tube.
この状態では、成形された石英ガラス管1表面層に前記
アルミ原子が均一にドーピングされているのみでクリス
トバライト層は発現していないので、前記炉芯管1をユ
ーザ段階又はメーカ側で電気炉にて約10〜15時間、
1300℃前後で加熱する事により、図面に示すように
石英ガラス管1の全外表面に均一に、外表面より10〜
100 kmの層厚を有するクリストバライト層2が発
現する。In this state, the surface layer of the formed quartz glass tube 1 is only uniformly doped with the aluminum atoms and no cristobalite layer has appeared, so the furnace core tube 1 is placed in the electric furnace at the user stage or the manufacturer's side. for about 10 to 15 hours,
By heating at around 1300°C, as shown in the drawing, the entire outer surface of the quartz glass tube 1 is uniformly heated by 10 to 10°C from the outer surface.
A cristobalite layer 2 with a layer thickness of 100 km develops.
次にかかる石英ガラス管1をリング状に切り出I7たも
の(本発明品)と、前記アルミ溶液を付着せしめずに加
熱処理する事によりクリストバライト層2が形成されて
いないもの(比較例1)と、NaとKが0.1 ppm
、 Liが0.3ppmであるが、OH基が170p
P11有する炉芯管1の表面に、特公昭47−1477
号に基づいて形成された、クリストバライト層からなる
被膜を形成したもの(比較例2)の、三種類のリング管
を使用して1300℃で24時間加熱した場合の変形度
(最大径/最少径)を及び1500℃で加熱した場合の
不純物の失透が発生するまでの時間の2点を比較した。Next, the quartz glass tube 1 is cut into a ring shape (product of the present invention), and the cristobalite layer 2 is not formed by heat treatment without adhering the aluminum solution (comparative example 1). and 0.1 ppm of Na and K.
, Li is 0.3 ppm, but OH group is 170 p
On the surface of the furnace core tube 1 having P11,
The degree of deformation (maximum diameter/minimum diameter) when heating a film made of cristobalite layer (Comparative Example 2) at 1300℃ for 24 hours using three types of ring tubes ) and the time until devitrification of impurities occurs when heated at 1500° C. were compared.
この結果、本発明品は変形率が1.01とほとんど無視
し得る程度の変形であるのに対し、比較例2は変形率が
1.87と最大値を示し且つ表面にひび割れが発生して
いたのを確認出来た0、又比較例1においては1.10
程度と本発明品より大なる熱変形が見られた。As a result, the product of the present invention had a deformation rate of 1.01, which was almost negligible, whereas Comparative Example 2 had a deformation rate of 1.87, the maximum value, and no cracks had occurred on the surface. 0, and 1.10 in Comparative Example 1.
A larger degree of thermal deformation was observed than that of the product of the present invention.
一方、失透発生時間については、本発明品が1000時
間と極めて長時間の加熱によっても発生しな0時間程度
の加熱によりクリストバライト層のひび割れや剥離が生
じた部分より失透が生じていた。On the other hand, regarding the time required for devitrification to occur, in the product of the present invention, devitrification did not occur even when heated for an extremely long time of 1,000 hours, but devitrification occurred in areas where the cristobalite layer cracked or peeled off after heating for about 0 hours.
「発明の効果」
以北記載の如く本発明によれば、高温下で長時間連続熱
処理を行う場合においても熱変形や失透が生じる事なく
、これにより使用寿命期間の大幅向Eを達成し得る半導
体工業用の石英ガラス製品を提供する事が出来る。``Effects of the Invention'' As described above, according to the present invention, thermal deformation and devitrification do not occur even when continuous heat treatment is performed at high temperatures for a long time, thereby achieving a significant improvement in the service life. We can provide quartz glass products for the semiconductor industry.
又本発明によれば、炉壁等から発生する拡散速度の早い
アルカリ金属等の不純物の侵入を完全に防1トし得、半
導体被処理物の高密度化と高集積化に十分対応し得る0
等の種々の著効を有す。Further, according to the present invention, it is possible to completely prevent impurities such as alkali metals, which have a high diffusion rate, from entering the furnace wall, etc., and it is possible to fully cope with the high density and high integration of semiconductor processing objects. 0
It has various effects such as
図面は本発明の実施例に係る石英ガラス製炉芯管の断面
図を示している。The drawing shows a cross-sectional view of a quartz glass furnace core tube according to an embodiment of the present invention.
Claims (1)
する半導体工業用石英ガラス製品において、Na、Kを
それぞれ0.2ppm以下で且つOH基を10ppm以
下の含有量に設定するとともに、その外表面層にドーピ
ングされている不純物元素を核としてクリストバライト
結晶層を形成した事を特徴とする石英ガラス製品 2)前記不純物元素が三価の陽イオン原子である特許請
求の範囲第1項記載の石英ガラス製品 3)前記クリストバライト層の層厚が外表面より10〜
100μmの深さである特許請求の範囲第1項又は第2
項記載の石英ガラス製品[Claims] 1) A quartz glass product for the semiconductor industry having a content of Na, K, and Li of 0.5 ppm or less, with a content of Na, K, and OH groups of 0.2 ppm or less and 10 ppm or less, respectively. 2) A quartz glass product characterized in that a cristobalite crystal layer is formed using an impurity element doped in the outer surface layer as a core.2) A quartz glass product characterized in that the impurity element is a trivalent cation atom. 3) The cristobalite layer has a thickness of 10 to 10 mm from the outer surface.
The depth of claim 1 or 2 is 100 μm.
Quartz glass products listed in section
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62070214A JPH068181B2 (en) | 1987-03-26 | 1987-03-26 | Quartz glass products for the semiconductor industry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62070214A JPH068181B2 (en) | 1987-03-26 | 1987-03-26 | Quartz glass products for the semiconductor industry |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63236723A true JPS63236723A (en) | 1988-10-03 |
JPH068181B2 JPH068181B2 (en) | 1994-02-02 |
Family
ID=13425054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62070214A Expired - Fee Related JPH068181B2 (en) | 1987-03-26 | 1987-03-26 | Quartz glass products for the semiconductor industry |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH068181B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02124739A (en) * | 1988-10-31 | 1990-05-14 | Shin Etsu Chem Co Ltd | Synthetic quartz glass and its production |
JPH03146496A (en) * | 1989-10-31 | 1991-06-21 | Shinetsu Sekiei Kk | Silica glass crucible for pulling silicon single crystal and method for inspecting the same |
US5174801A (en) * | 1990-06-25 | 1992-12-29 | Shin-Etsu Quartz Products Co. Ltd. | Manufacture of quartz glass crucible for use in the manufacture of single crystal silicon |
US5395452A (en) * | 1992-06-19 | 1995-03-07 | Fujitsu Limited | Apparatus made of silica for semiconductor device fabrication |
US6245147B1 (en) | 1997-12-16 | 2001-06-12 | Fujitsu Limited | Thermal processing jig for use in manufacturing semiconductor devices and method of manufacturing the same |
US6504302B2 (en) | 2000-01-12 | 2003-01-07 | Nec Microwave Tube, Ltd. | High-pressure discharge lamp |
WO2003095384A1 (en) * | 2002-05-10 | 2003-11-20 | General Electric Company | Fused quartz article having controlled devitrification |
JP2005255488A (en) * | 2004-03-12 | 2005-09-22 | Komatsu Electronic Metals Co Ltd | Quartz crucible and method of manufacturing semiconductor single crystal using the same |
JP2007073923A (en) * | 2005-08-12 | 2007-03-22 | Sumco Corp | Heat-processing tool for semiconductor silicon substrate and manufacturing method thereof |
JP2008063157A (en) * | 2006-09-05 | 2008-03-21 | Shinetsu Quartz Prod Co Ltd | Quartz glass member for semiconductor manufacture |
KR100842232B1 (en) * | 2001-03-26 | 2008-06-30 | 토소가부시키가이샤 | High durability quartz glass, method of and apparatus for making it, and members and apparatus using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4869794A (en) * | 1971-12-24 | 1973-09-21 | ||
US3772134A (en) * | 1970-08-04 | 1973-11-13 | Heraeus Schott Quarzschmelze | Quartz glass elements |
JPS53113817A (en) * | 1977-03-17 | 1978-10-04 | Toshiba Ceramics Co | Quartz glass crucible for pulling up single crysal of silicon |
JPS59129421A (en) * | 1983-01-14 | 1984-07-25 | Toshiba Ceramics Co Ltd | Member for heat treatment of semiconductor |
JPS6123315A (en) * | 1984-07-11 | 1986-01-31 | Toshiba Ceramics Co Ltd | Silica material for heat-treatment of semiconductor |
-
1987
- 1987-03-26 JP JP62070214A patent/JPH068181B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3772134A (en) * | 1970-08-04 | 1973-11-13 | Heraeus Schott Quarzschmelze | Quartz glass elements |
JPS4869794A (en) * | 1971-12-24 | 1973-09-21 | ||
JPS53113817A (en) * | 1977-03-17 | 1978-10-04 | Toshiba Ceramics Co | Quartz glass crucible for pulling up single crysal of silicon |
JPS59129421A (en) * | 1983-01-14 | 1984-07-25 | Toshiba Ceramics Co Ltd | Member for heat treatment of semiconductor |
JPS6123315A (en) * | 1984-07-11 | 1986-01-31 | Toshiba Ceramics Co Ltd | Silica material for heat-treatment of semiconductor |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02124739A (en) * | 1988-10-31 | 1990-05-14 | Shin Etsu Chem Co Ltd | Synthetic quartz glass and its production |
JPH0450262B2 (en) * | 1988-10-31 | 1992-08-13 | Shinetsu Chem Ind Co | |
JPH03146496A (en) * | 1989-10-31 | 1991-06-21 | Shinetsu Sekiei Kk | Silica glass crucible for pulling silicon single crystal and method for inspecting the same |
US5174801A (en) * | 1990-06-25 | 1992-12-29 | Shin-Etsu Quartz Products Co. Ltd. | Manufacture of quartz glass crucible for use in the manufacture of single crystal silicon |
US5395452A (en) * | 1992-06-19 | 1995-03-07 | Fujitsu Limited | Apparatus made of silica for semiconductor device fabrication |
US6245147B1 (en) | 1997-12-16 | 2001-06-12 | Fujitsu Limited | Thermal processing jig for use in manufacturing semiconductor devices and method of manufacturing the same |
US6504302B2 (en) | 2000-01-12 | 2003-01-07 | Nec Microwave Tube, Ltd. | High-pressure discharge lamp |
KR100842232B1 (en) * | 2001-03-26 | 2008-06-30 | 토소가부시키가이샤 | High durability quartz glass, method of and apparatus for making it, and members and apparatus using the same |
WO2003095384A1 (en) * | 2002-05-10 | 2003-11-20 | General Electric Company | Fused quartz article having controlled devitrification |
US6875515B2 (en) | 2002-05-10 | 2005-04-05 | General Electric Company | Fused quartz article having controlled devitrification |
JP2005255488A (en) * | 2004-03-12 | 2005-09-22 | Komatsu Electronic Metals Co Ltd | Quartz crucible and method of manufacturing semiconductor single crystal using the same |
JP2007073923A (en) * | 2005-08-12 | 2007-03-22 | Sumco Corp | Heat-processing tool for semiconductor silicon substrate and manufacturing method thereof |
JP2008063157A (en) * | 2006-09-05 | 2008-03-21 | Shinetsu Quartz Prod Co Ltd | Quartz glass member for semiconductor manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPH068181B2 (en) | 1994-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007063996A1 (en) | Quartz glass crucible, process for producing the same, and use | |
JPS63236723A (en) | Quartz glass products for semiconductor industry | |
EP2251461B1 (en) | Process for producing a quartz glass crucible | |
US6302957B1 (en) | Quartz crucible reproducing method | |
JP2001097734A (en) | Quartz glass container and method for producing the same | |
JP3268049B2 (en) | Quartz glass material and its manufacturing method | |
EP1024118A2 (en) | Large diameter quartz glass crucible for pulling up single crystalline silicon | |
JPH08119649A (en) | Production of polygonal columnar silica glass rod | |
JPH11310423A (en) | Synthetic quartz glass and its production | |
US3998667A (en) | Barium aluminoborosilicate glass-ceramics for semiconductor doping | |
US3962000A (en) | Barium aluminoborosilicate glass-ceramics for semiconductor doping | |
JPH0575703B2 (en) | ||
JP3434572B2 (en) | Method for producing opaque quartz glass member with transparent quartz glass layer | |
JP2777855B2 (en) | Composite quartz glass tube for semiconductor heat treatment | |
JPS6272537A (en) | Production of high-purity quartz glass | |
JPH08104540A (en) | Production of opaque quartz glass | |
JP3400180B2 (en) | Silica glass jig | |
JPS62226820A (en) | Production of infrared transmittable chalcogenide glass containing silicon | |
JP2777858B2 (en) | Silica glass tube for heat treatment of semiconductor and method for producing the same | |
JP7379054B2 (en) | Method for manufacturing quartz glass crucible and quartz glass crucible for melting optical glass | |
JP3294356B2 (en) | Quartz glass furnace core tube for semiconductor wafer processing | |
JP3050353B2 (en) | Method for producing opaque quartz glass | |
JPS63215600A (en) | Quartz glass component for production of semiconductor | |
JPS63310748A (en) | Quartz glass member for producing semiconductor | |
JP3371399B2 (en) | Cristobalite crystalline phase-containing silica glass and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |