JPH03146496A - Silica glass crucible for pulling silicon single crystal and method for inspecting the same - Google Patents

Silica glass crucible for pulling silicon single crystal and method for inspecting the same

Info

Publication number
JPH03146496A
JPH03146496A JP28392689A JP28392689A JPH03146496A JP H03146496 A JPH03146496 A JP H03146496A JP 28392689 A JP28392689 A JP 28392689A JP 28392689 A JP28392689 A JP 28392689A JP H03146496 A JPH03146496 A JP H03146496A
Authority
JP
Japan
Prior art keywords
crucible
silica glass
silicon single
glass crucible
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28392689A
Other languages
Japanese (ja)
Other versions
JP2631321B2 (en
Inventor
Kyoichi Inagi
恭一 稲木
Fujio Iwatani
岩谷 富士雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP1283926A priority Critical patent/JP2631321B2/en
Publication of JPH03146496A publication Critical patent/JPH03146496A/en
Application granted granted Critical
Publication of JP2631321B2 publication Critical patent/JP2631321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve quality by producing a synthetic SiO2 glass crucible with SiCl4, Si alkoxide or inorg. silicate as starting material, irradiating the surface of the wall of the crucible with UV having a specified wavelength and counting the number of fluorescent spots generated on the wall. CONSTITUTION:Amorphous SiO2 glass powder produced with SiCl4, Si alkoxide or inorg. silicate as starting material is melted and SiO2 glass crucibles are produced. The surfaces of the walls of the crucibles are irradiated with UV having <365nm wavelength and an SiO2 glass crucible having generated fluorescent spots whose wavelength is within the range of 420-600nm by <=5/1,000cm<2> on the inner surface and near the inner surface is selected. When the selected crucible is used as a crucible for pulling an Si single crystal, an Si single crystal nearly free from crystal defects is obtd.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、シリカガラスルツボに関し、特に、シリコン
単結晶引上用に好適なシリカガラスルツボに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a vitreous silica crucible, and particularly to a vitreous silica crucible suitable for pulling silicon single crystals.

また、本発明は、シリカガラスルツボ製品の選別のため
の検査方法に関し、特に、Si単結晶引上用に使用され
る高純度シリカガラスルツボ製品の選別のための検査方
法に関する。
The present invention also relates to an inspection method for screening silica glass crucible products, and particularly relates to an inspection method for screening high-purity silica glass crucible products used for pulling Si single crystals.

(ロ)従来技術 従来、シリコン単結晶引上用シリカガラスルツボは、天
然に産出する結晶質石英粉末を原料として製造されてい
る。
(B) Prior Art Conventionally, vitreous silica crucibles for pulling silicon single crystals have been manufactured using naturally occurring crystalline quartz powder as a raw material.

しかしながら、天然に産出する結晶質石英粉末には、H
m、に、Li、^1、Ti等の不純物成分が多量に含有
されており、このような不純物成分は、シリカガラスル
ツボの製造の際に、僅か一部が蒸発して分離されるもの
の、その殆どは分離されずにシリカガラスルツボに残留
して、シリコン単結晶引上時にシリコン融液中に溶解す
るので問題とされている。
However, naturally occurring crystalline quartz powder contains H
m, contains a large amount of impurity components such as Li, ^1, and Ti, and although a small portion of these impurity components is evaporated and separated during the production of a silica glass crucible, Most of it remains in the vitreous vitreous crucible without being separated and dissolves into the silicon melt when pulling the silicon single crystal, which is a problem.

(ハ〉発明が解決しようとする課題 シリコン単結晶引上用シリカガラスルツボに含有される
不純物は、得られるシリコン単結晶の質を劣下させるの
で、シリコン単結晶引上用シリカガラスルツボの純度を
向上させる試みが行われている。
(C) Problem to be Solved by the Invention Impurities contained in the silica glass crucible for pulling silicon single crystals degrade the quality of the obtained silicon single crystal, so the purity of the vitreous silica crucible for pulling silicon single crystals is Attempts are being made to improve this.

しかし、シリカガラスルツボ中の不純物含有量は、例え
ば、数ppm台であり、このような高純度のシリカガラ
スルツボ中には、不純物は平均的に存在するのではなく
、局在するものと考えられている。このように、不純物
が局在していても、現在のシリカガラスの分析技手4)
では、シリカガラス中の不純物含有量は、その平均値と
して求められるにすぎず、局所的な不純、′り1含有量
については測定不能である。
However, the impurity content in a silica glass crucible is, for example, on the order of several ppm, and it is thought that impurities are not present on the average but localized in such a high purity silica glass crucible. It is being In this way, even if impurities are localized, current silica glass analysis techniques4)
In this case, the impurity content in silica glass can only be determined as its average value, and local impurities and 1 content cannot be measured.

したがって、シリカガラスルツボ中に、実際に不純物が
局所的に高濃度に混入していて、その箇所が、シリコン
単結晶引上時に、シリコン単結晶の結晶欠陥の原因とな
り問題であるとしても、平均値の不純物含有量が基準以
下であれば、不良製品となるべきものが不良製品となら
ず問題である。
Therefore, even if impurities are actually mixed locally at a high concentration in a vitreous silica crucible, and this location causes crystal defects in the silicon single crystal during pulling of the silicon single crystal and causes a problem, the average If the impurity content of the value is below the standard, there is a problem in that what should be a defective product does not become a defective product.

本発明は、以上のように、シリカガラスルツボ中に局在
する不純物のスボ・tト密度についての問題点を解決す
ることを目的としている。
As described above, the present invention aims to solve the problem regarding the concentration of impurities localized in a vitreous silica crucible.

〈二〉課題を解決するための手段 本発明は、シリカガラスルツボ中に局在する不純物につ
いて、容易に検出できる検査法を提供し、シリコン単結
晶引上用として高い性能を有するシリカガラスルツボを
提供することを目的としている。
<2> Means for Solving the Problems The present invention provides an inspection method that can easily detect impurities localized in a silica glass crucible, and provides a silica glass crucible with high performance for pulling silicon single crystals. is intended to provide.

即ち、本発明の要旨は、365 nmよりも短い波長の
紫外光を、壁面に照射したとき、該壁面に発生する42
0 nmから60Onmの範囲内の波長の蛍光斑点が内
表面及び内表面近傍で10個以下であることを特徴とす
るシリコン単結晶引上用シリカガラスルツボにあり、ま
た、本発明の要旨は、365 nmよりも短い波長の紫
外光を、シリカガラスルツボの壁面に照射し、該シリカ
ガラスルツボ壁面に発生する420 nts乃至600
 nmの範囲内の波長の蛍光斑点を計測することを特徴
とするシリコン単結晶引上用シリカガラスルツボの検査
方法にある。
That is, the gist of the present invention is that when a wall surface is irradiated with ultraviolet light having a wavelength shorter than 365 nm, 42 nm is generated on the wall surface.
The gist of the present invention resides in a vitreous silica crucible for pulling a silicon single crystal, characterized in that there are 10 or less fluorescent spots with a wavelength in the range of 0 nm to 60 Onm on the inner surface and in the vicinity of the inner surface. Ultraviolet light with a wavelength shorter than 365 nm is irradiated onto the wall surface of a silica glass crucible, and 420 nts to 600 nts generated on the silica glass crucible wall surface.
A method for inspecting a vitreous silica crucible for pulling silicon single crystals, which is characterized by measuring fluorescent spots with a wavelength within the nanometer range.

本発明は、ルツボの内表面及び内表面近傍層中に検出さ
れる螢光斑点の数と、当該ルツボを使用して引上げられ
たシリコン単結晶中の結晶欠陥の密度との相関を求め、
結晶欠陥を低減させる上で必要なルツボの螢光斑点の閾
値が存在することを、本発明者によって発見されたこと
に基づいている。
The present invention involves determining the correlation between the number of fluorescent spots detected on the inner surface of a crucible and a layer near the inner surface, and the density of crystal defects in a silicon single crystal pulled using the crucible,
This invention is based on the discovery by the present inventor that there is a threshold value of fluorescent spots in the crucible that is necessary to reduce crystal defects.

本発明において、検出に使用される紫外光は、365n
mよりも短い波長域の紫外光であり、例えば、低圧水銀
ランプから発せられる254 nmもしくは365 n
sの輝線を用いることができる。この場合の低圧水銀ラ
ンプの出力は数100μW/cen”で良く、一般に、
例えば、UVP INC社のυVGL −25型ハンデ
イ型UVランプで、波長254 ns、出力180μW
/as”で測定される。しかし、場合によっては、波長
365 nmで、出力260μW/e1m”で測定する
ことができる。
In the present invention, the ultraviolet light used for detection is 365n
Ultraviolet light in a wavelength range shorter than m, for example, 254 nm or 365 nm emitted from a low-pressure mercury lamp.
An emission line of s can be used. In this case, the output of the low-pressure mercury lamp may be several 100 μW/cen", and generally,
For example, the υVGL-25 type handy type UV lamp manufactured by UVP INC has a wavelength of 254 ns and an output of 180 μW.
/as''. However, in some cases it can be measured at a wavelength of 365 nm and an output of 260 μW/e1m''.

斑点の大きさとしては、目視により観察される大きさで
あるのが観察が容易であるので好ましいが、拡大するこ
とによって個数に対応する面積が観察できれば足りるの
で、特に大きさについては、規定する必要がない、また
、形状は個数が観察できる形状であるのが測定が容易で
あるので好ましいが、例えば径が、0.1〜5III6
、好ましくは、0.1〜2−mの円もしくは楕円の個数
に対応するように面積が測定できれば足りるので、形状
は不定形であっても良い、螢光の波長については、特に
規定しないが目視で観察できる420nmからBoon
sの範囲の任意の波長であれば良く、螢光強度について
も特に規定しない。
As for the size of the spots, it is preferable to have a size that can be observed visually because it is easy to observe, but it is sufficient that the area corresponding to the number of spots can be observed by enlarging it, so the size in particular should be specified. It is not necessary, and it is preferable that the shape is such that the number can be observed because measurement is easy, but for example, if the diameter is 0.1 to 5
Preferably, it is sufficient that the area can be measured to correspond to the number of circles or ellipses of 0.1 to 2 m, so the shape may be irregular. The wavelength of the fluorescent light is not particularly specified. Boon from 420nm that can be observed visually
Any wavelength within the range of s may be used, and the fluorescence intensity is not particularly specified.

この螢光斑点の個数は、シリコン単結晶引上用シリカガ
ラスルツボ中のシリコンメルトと接触する部分で内表面
から5−輪以内の層に5個/1000c−以下であるの
が、シリコン単結晶引上用シリカガラスルツボとして好
ましい、もとより、シリコン単結晶引上用シリカガラス
ルツボのシリコンメルトと接触しない部分にも、上記の
限度以上に蛍光斑点が現れないのが好ましい。
The number of these fluorescent spots is 5/1000c- or less in the layer within 5 rings from the inner surface of the silicon single crystal in the part that contacts the silicon melt in the silica glass crucible for pulling silicon single crystals. It is preferred as a vitreous silica crucible for pulling silicon single crystals, and it is preferable that fluorescent spots do not appear in excess of the above limit even in the portions of the vitreous silica crucible for pulling silicon single crystals that do not come into contact with the silicon melt.

また、内表面から5同以内の層に蛍光斑点が現れないの
であれば、シリコン単結晶引上げ中にシリコンメルト中
に、不純物が溶は込む機会が無いので十分であるが、好
ましくはシリカガラスルツボ中に存在しないのが好まし
い。
In addition, if no fluorescent spots appear in the layer within 5 layers from the inner surface, it is sufficient because there is no chance for impurities to dissolve into the silicon melt during pulling of the silicon single crystal, but it is preferable to use a silica glass crucible. Preferably, it is not present inside.

このような要件を満足するシリカガラスルツボの製造方
法については、特に規定はしないが、例えば四塩化けい
素、シリコンアルコキシド又は無機けい酸塩を原料とし
て製造した、非晶質シリカガラス粉末を使用してシリカ
ガラスルツボに溶融して製造するのが好ましい、この場
合、四塩化けい素、シリコンアルコキシド又は無機けい
酸塩は液体状の原料であるため、均質性が良く不純物濃
度の分布が殆どなく、したがって、得られた非晶質シリ
カガラスを溶融したシリカガラスルツボには螢光を発す
る斑点は全く存在しないので好ましい。
There are no particular regulations regarding the manufacturing method of a silica glass crucible that satisfies these requirements, but for example, amorphous silica glass powder manufactured from silicon tetrachloride, silicon alkoxide, or inorganic silicate may be used. It is preferable to produce the silicon tetrachloride, silicon alkoxide, or inorganic silicate by melting it in a silica glass crucible.In this case, silicon tetrachloride, silicon alkoxide, or inorganic silicate is a liquid raw material, so it has good homogeneity and almost no distribution of impurity concentration. Therefore, the silica glass crucible in which the obtained amorphous silica glass is melted has no spots that emit fluorescence, which is preferable.

もとより、シリカガラス粉末の取り扱い時及びシリカガ
ラスルツボ溶融時には、雰囲気中もしくは治具等からの
塵埃等の異物が混入し易いので、これらの異物の混入を
極力避けることが必要である。これらの異物の混入は蛍
光斑点として現れ、製品の歩留まりを低下させる結果と
なるので好ましくない。
Of course, when handling silica glass powder and melting in a silica glass crucible, foreign substances such as dust from the atmosphere or from jigs are likely to get mixed in, so it is necessary to avoid the mixing of these foreign substances as much as possible. The contamination of these foreign substances is undesirable because it appears as fluorescent spots and lowers the yield of the product.

螢光斑点の個数については、5個/ 1000 cm2
以下としたが、この値は、18インチシリカガラスルツ
ボでの蛍光斑点が、大体30個に相当する。
Regarding the number of fluorescent spots, 5 pieces/1000 cm2
This value corresponds to approximately 30 fluorescent spots in an 18-inch vitreous silica crucible.

内表面近傍部とは、内表面より約5間の深さまでを示す
ので、本発明において規定される蛍光斑点の個数は、内
表面及び内表面近傍部で観測される蛍光斑点の個数を内
表面積で割った数値となる。
The area near the inner surface refers to the area up to a depth of about 5 mm from the inner surface, so the number of fluorescent spots defined in the present invention is the number of fluorescent spots observed on the inner surface and the area near the inner surface. It is the number divided by.

シリコン単結晶を引上げるのに好ましいシリカガラスル
ツボの選別の手法としては、365 n@以下の波長の
紫外光を、選別対象のシリカガラスルツボ壁面に照射し
て、400nmよりも短い波長側を吸収するフィルター
を介して、該照射壁面を観察し、現れる螢光斑点を計測
すれば良い。
A method of sorting a silica glass crucible that is preferable for pulling silicon single crystals is to irradiate the wall surface of the silica glass crucible to be sorted with ultraviolet light with a wavelength of 365 nm or less, and absorb wavelengths shorter than 400 nm. The irradiated wall surface can be observed through a filter, and the fluorescent spots that appear can be measured.

(ホ)作用 本発明は、365nmよりも短い波長の紫外光をシリカ
ガラスルツボ壁面に照射して、該壁面の内表面及び内表
面近傍において発生する420 nmがら600nmの
範囲内の波長の蛍光斑点が5個/1G00 cm2以下
のシリカガラスルツボをシリコン単結晶引上用とするの
で、本発明のルツボを使用してシリコン単結晶を引き上
げることにより、不純物の影響のない、したがって、結
晶欠陥等のない良好なシリコン単結晶を得ることができ
る。
(e) Effect The present invention is directed to irradiating the wall surface of a vitreous silica crucible with ultraviolet light having a wavelength shorter than 365 nm to detect fluorescent spots with a wavelength within the range of 420 nm to 600 nm that are generated on the inner surface of the wall surface and near the inner surface. Since a vitreous silica crucible with a size of 5 pieces/1G00 cm2 or less is used for pulling silicon single crystals, by pulling silicon single crystals using the crucible of the present invention, there is no influence of impurities, and therefore crystal defects etc. No good silicon single crystal can be obtained.

また、本発明は、365nmよりも短い波長の紫外光を
シリカガラスルツボ壁面に照射して、該ルツボの内表面
及び内表面近傍に発生する420 n+sから800 
nagの範囲内の波長の蛍光斑点の個数を測定すること
により、シリカガラスルツボの選別を行うので、シリコ
ン単結晶引上用として優れたシリカガラスルツボの選別
を、簡単且つ容易に行うことができる。
Further, the present invention provides ultraviolet light having a wavelength shorter than 365 nm on the wall surface of a vitreous silica crucible to reduce the 420 n+s to 800 nm generated on the inner surface and near the inner surface of the crucible.
Since vitreous silica crucibles are selected by measuring the number of fluorescent spots with wavelengths within the range of nag, it is possible to easily and easily select vitreous silica crucibles that are excellent for pulling silicon single crystals. .

(へ)実施例 以下、本発明の実施の態様を例をあげて説明するが、本
発明は、以下の例示及び説明によって何等限定されるも
のではない。
(f) Examples Hereinafter, embodiments of the present invention will be explained by giving examples, but the present invention is not limited in any way by the following examples and explanations.

(1)  実施例1及び比較例1 テトラエチルオルソシリケート(Si(OCJs)n)
と1%酢酸水溶液とを混合し、加水分解および縮重合し
て得られたゲルをシリカ−ガラス製容器中で乾燥及び焼
成して、150〜500μ曽のシリカガラス粉末を得た
。このシリカガラス粉末を回転成型アーク溶融法で18
インチのシリカガラスルツボを溶融した。
(1) Example 1 and Comparative Example 1 Tetraethyl orthosilicate (Si(OCJs)n)
and a 1% acetic acid aqueous solution, and the gel obtained by hydrolysis and polycondensation was dried and fired in a silica glass container to obtain a silica glass powder of 150 to 500 μm. This silica glass powder was rotomolded by arc melting to 18.
An inch silica glass crucible was melted.

このようにして溶融製造されたシリカガラスルツボ4:
: tlVP INC社ノUVGL−25型ハンテイ型
uvランプを用いて254nmと365nmの紫外線を
照射し螢光斑点の個数を測定した。
Silica glass crucible 4 produced by melting in this way:
: The number of fluorescent spots was measured by irradiating ultraviolet rays of 254 nm and 365 nm using a tlVP Inc. UVGL-25 model Huntei UV lamp.

以上より、螢光斑点の無いシリカガラスルツボを螢光斑
点の多いシリカガラスルツボと分けて、蛍光斑点の無い
シリカガラスルツボを実施例1の製品とし、蛍光斑点の
多いシリカガラスルツボを比較例1とし、夫々のシリカ
ガラスルツボについて、任意の箇所から3gサンプリン
グし、これを原子吸光光度法により分析した。純度につ
いての分析結果を、螢光斑点の個数と共に、次の表1に
示した。
From the above, the silica glass crucible without fluorescent spots is separated from the silica glass crucible with many fluorescent spots, and the silica glass crucible without fluorescent spots is the product of Example 1, and the silica glass crucible with many fluorescent spots is the product of Comparative Example 1. From each silica glass crucible, 3g was sampled from any location and analyzed by atomic absorption spectrometry. The analysis results for purity are shown in Table 1 below, along with the number of fluorescent spots.

比較例2 天然から産出する結晶質石英粉末を回転成形アーク溶融
法で18インチのシリカガラスルツボを熔融製造した。
Comparative Example 2 Naturally produced crystalline quartz powder was melted into an 18-inch vitreous silica crucible using a rotary molding arc melting method.

この製造されたシリカガラスルツボを、前記実施例1及
び比較例1と同様に、螢光斑点の個数を測定すると共に
、純度についての分析を行い、これらの結果を次の表1
に示した。
The produced vitreous silica crucible was measured for the number of fluorescent spots and analyzed for purity in the same manner as in Example 1 and Comparative Example 1, and the results are shown in Table 1 below.
It was shown to.

〈以下余白) (以下余白) 前記実施例1及び比較例1及び2の回転成形アーク熔融
法で熔融して製造された18インチシリカガラスルツボ
を使用−てシリコン単結晶を引上げたところ、実施例1
では、結晶欠陥の発生率が非常に低くなった。また、該
シリコン単結晶からシリコンウェー八を切り出して、こ
れを加熱後、ライフタイムを測定したところ、実施例1
では、5000μsecであり、比較例1では2000
μsecであり、比較例2では500  μsecであ
り、実施例1は非常に良い結果であった。
(Hereinafter in the margin) (Hereinafter in the margin) When a silicon single crystal was pulled using the 18-inch silica glass crucible manufactured by melting by the rotary molding arc melting method of Example 1 and Comparative Examples 1 and 2, the results were as follows. 1
In this case, the incidence of crystal defects was extremely low. In addition, when a silicon wafer was cut out from the silicon single crystal and the lifetime was measured after heating it, Example 1
In this case, it is 5000 μsec, and in Comparative Example 1 it is 2000 μsec.
In Comparative Example 2, it was 500 μsec, and in Example 1, the result was very good.

(ト)発明の効果 本発明は、385 nmよりも短い波長の紫外光を、シ
リカガラスルツボ壁面に照射して、該壁面の内表面及び
内表面近傍に発生する420nmから600nmの範囲
内の波長の蛍光斑点が5個/1000c1以下のシリカ
ガラスルツボをシリコン単結晶引上用とするので、従来
のシリコン単結晶引上用シリカガラスルツボの場合に比
して、結晶欠陥等のない良好なシリコン単結晶を、高い
歩留まりで効率良く得ることができる。
(G) Effects of the Invention The present invention provides ultraviolet light with a wavelength shorter than 385 nm on the wall surface of a vitreous silica crucible, and the wavelength within the range of 420 nm to 600 nm generated on the inner surface of the wall surface and near the inner surface. A vitreous silica crucible with 5 fluorescent spots/1000c1 or less is used for pulling silicon single crystals, so compared to the conventional vitreous silica crucible for pulling silicon single crystals, it can produce good silicon without crystal defects. Single crystals can be obtained efficiently with a high yield.

また、本発明は、365 naよりも短い波長の紫外光
を、シリカガラスルツボ壁面に照射して、該ルツボの内
表面及び内表面近傍に発生する420nmからBoo 
nsの範囲内の波長の蛍光斑点の個数を測定することに
より、シリカガラスルツボの選別を行うので、従来、純
度分析では選別することができない、不良のシリコン単
結晶引上用シリカガラスルツボを、簡単且つ容易に選別
できることとなり、シリコン単結晶引上げにおいて避け
ることができない結晶欠陥等を有する不良の単結晶シリ
コン発生を少なくすることができる。
In addition, the present invention irradiates the wall surface of a vitreous silica crucible with ultraviolet light having a wavelength shorter than 365 na, and removes Boo from 420 nm generated on the inner surface and near the inner surface of the crucible.
Since vitreous silica crucibles are sorted by measuring the number of fluorescent spots with wavelengths within the ns range, we can detect defective vitreous vitreous silica crucibles for pulling silicon single crystals, which conventionally cannot be screened by purity analysis. This allows simple and easy sorting, and it is possible to reduce the occurrence of defective single crystal silicon having crystal defects etc. that cannot be avoided in silicon single crystal pulling.

代 埋入teenager implantation

Claims (4)

【特許請求の範囲】[Claims] (1)365nmよりも短い波長の紫外光を、壁面に照
射したとき、該壁面に発生する420nmから600n
mの範囲内の波長の蛍光斑点が内表面及び内表面近傍で
5個/1000cm^2以下であることを特徴とするシ
リカガラスルツボ。
(1) When a wall is irradiated with ultraviolet light with a wavelength shorter than 365 nm, 420 nm to 600 nm is generated on the wall.
A vitreous silica crucible, characterized in that the number of fluorescent spots with a wavelength within the range of m is 5 or less per 1000 cm^2 on and near the inner surface.
(2)該シリカガラスルツボが、四塩化けい素、シリコ
ンアルコキシド又は無機けい酸塩を原料とする合成シリ
カガラスルツボであることを特徴とする請求項1に記載
のシリコン単結晶引上用シリカガラスルツボ。
(2) The silica glass for pulling silicon single crystals according to claim 1, wherein the silica glass crucible is a synthetic silica glass crucible made from silicon tetrachloride, silicon alkoxide, or inorganic silicate. Crucible.
(3)365nmよりも短い波長の紫外光を、シリカガ
ラスルツボの壁面に照射し、該シリカガラスルツボ壁面
に発生する420nm乃至600nmの範囲内の波長の
蛍光斑点の個数を計測することを特徴とするシリコン単
結晶引上用シリカガラスルツボの検査方法。
(3) The wall surface of a silica glass crucible is irradiated with ultraviolet light having a wavelength shorter than 365 nm, and the number of fluorescent spots with a wavelength within the range of 420 nm to 600 nm generated on the wall surface of the vitreous silica crucible is measured. A method for inspecting silica glass crucibles for pulling silicon single crystals.
(4)該シリカガラスルツボが、四塩化けい素、金属ア
ルコキシド又は無機けい酸塩を原料とする合成シリカガ
ラスルツボであることを特徴とする請求項3に記載のシ
リコン単結晶引上用シリカガラスルツボの検査方法。
(4) The silica glass for pulling silicon single crystals according to claim 3, wherein the silica glass crucible is a synthetic silica glass crucible made from silicon tetrachloride, metal alkoxide, or inorganic silicate. Crucible inspection method.
JP1283926A 1989-10-31 1989-10-31 Silica glass crucible for pulling silicon single crystal Expired - Lifetime JP2631321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1283926A JP2631321B2 (en) 1989-10-31 1989-10-31 Silica glass crucible for pulling silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283926A JP2631321B2 (en) 1989-10-31 1989-10-31 Silica glass crucible for pulling silicon single crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7352452A Division JP2814368B2 (en) 1995-12-18 1995-12-18 Inspection method for impurities localized in silica glass crucible for pulling silicon single crystal

Publications (2)

Publication Number Publication Date
JPH03146496A true JPH03146496A (en) 1991-06-21
JP2631321B2 JP2631321B2 (en) 1997-07-16

Family

ID=17672001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283926A Expired - Lifetime JP2631321B2 (en) 1989-10-31 1989-10-31 Silica glass crucible for pulling silicon single crystal

Country Status (1)

Country Link
JP (1) JP2631321B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492883A (en) * 1990-08-06 1992-03-25 Mitsubishi Materials Corp Quartz crucible for pulling up silicon signal crystal
WO2017158656A1 (en) * 2016-03-18 2017-09-21 株式会社Sumco Silica glass crucible and method for producing silica glass crucible
WO2017158655A1 (en) * 2016-03-18 2017-09-21 株式会社Sumco Crucible measurement device, crucible measurement method, and crucible production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137892A (en) * 1983-12-26 1985-07-22 Toshiba Ceramics Co Ltd Quartz glass crucible
JPS63236723A (en) * 1987-03-26 1988-10-03 Shinetsu Sekiei Kk Quartz glass products for semiconductor industry
JPS6425018A (en) * 1987-07-22 1989-01-27 Mitsubishi Electric Corp Measuring device of temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137892A (en) * 1983-12-26 1985-07-22 Toshiba Ceramics Co Ltd Quartz glass crucible
JPS63236723A (en) * 1987-03-26 1988-10-03 Shinetsu Sekiei Kk Quartz glass products for semiconductor industry
JPS6425018A (en) * 1987-07-22 1989-01-27 Mitsubishi Electric Corp Measuring device of temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492883A (en) * 1990-08-06 1992-03-25 Mitsubishi Materials Corp Quartz crucible for pulling up silicon signal crystal
WO2017158656A1 (en) * 2016-03-18 2017-09-21 株式会社Sumco Silica glass crucible and method for producing silica glass crucible
WO2017158655A1 (en) * 2016-03-18 2017-09-21 株式会社Sumco Crucible measurement device, crucible measurement method, and crucible production method

Also Published As

Publication number Publication date
JP2631321B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
TWI405729B (en) Silica container and method of manufacturing the same
JP4951040B2 (en) Silica container and method for producing the same
TWI454425B (en) Silica, silica containers and the manufacture of such powders or containers
JP4922355B2 (en) Silica container and method for producing the same
JPH05505167A (en) Method for producing non-porous, ultra-finely pulverized high-purity silica
KR20010039472A (en) Excimer laser and silica glass optical material for the same and its manufacturing method
JP2000344536A (en) Quartz glass crucible and its manufacture
US3935119A (en) Luminescent device, process, composition, and article
US8539793B2 (en) Method of molding synthetic silica glass molded body
EP2460913B1 (en) Vitreous silica crucible
JPH03146496A (en) Silica glass crucible for pulling silicon single crystal and method for inspecting the same
JP2814368B2 (en) Inspection method for impurities localized in silica glass crucible for pulling silicon single crystal
JPH06305767A (en) Silica glass for devitrification resistant discharge lamp
JP2000086259A (en) Optical material for vacuum ultraviolet ray
JP2000143258A (en) PRODUCTION OF SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER LITHOGRAPHY
JP3926371B2 (en) Silica glass plate and method for producing the same
JP2023016453A (en) quartz glass crucible
JP2699107B2 (en) Quartz glass for UV transmission
JPS6059177B2 (en) Manufacturing method of anhydrous quartz glass
Andreev et al. The Influence of the Chemical Composition on the Color of Lead-Silicate Glass Caused by Gold Nanoparticles
JP3792105B2 (en) Method for producing quartz glass
JP2003012331A (en) Synthetic quartz glass particle with high purity
JPH07277752A (en) Synthetic quartz glass for ultraviolet light laser and method for producing the same
JP2780799B2 (en) Manufacturing method of quartz glass
JP4159852B2 (en) Synthetic quartz glass material for optical components

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13