WO2017158656A1 - Silica glass crucible and method for producing silica glass crucible - Google Patents

Silica glass crucible and method for producing silica glass crucible Download PDF

Info

Publication number
WO2017158656A1
WO2017158656A1 PCT/JP2016/001614 JP2016001614W WO2017158656A1 WO 2017158656 A1 WO2017158656 A1 WO 2017158656A1 JP 2016001614 W JP2016001614 W JP 2016001614W WO 2017158656 A1 WO2017158656 A1 WO 2017158656A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica glass
glass crucible
laser light
light
scattering
Prior art date
Application number
PCT/JP2016/001614
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 須藤
忠広 佐藤
賢 北原
修司 飛田
江梨子 北原
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to PCT/JP2016/001614 priority Critical patent/WO2017158656A1/en
Priority to TW106107891A priority patent/TW201738414A/en
Publication of WO2017158656A1 publication Critical patent/WO2017158656A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Definitions

  • the present invention relates to a silica glass crucible and a method for producing a silica glass crucible.
  • Silica glass crucible used for silicon single crystal pulling for example, by providing a transparent layer and a bubble-containing layer, etc., reduces the occurrence of brown ring during silicon single crystal pulling, and makes thermal control easier, The crystallinity of the silicon single crystal is improved.
  • the silica glass crucible is exposed to a high temperature of about 1410 ° C. or higher, which is the melting temperature of silicon.
  • a high temperature of about 1410 ° C. or higher, which is the melting temperature of silicon.
  • the bubble density in the bubble-containing layer is not uniform, for example, when the bubble-containing layer is composed of layers having a plurality of different bubble densities, the layers having different bubble densities have different coefficients of thermal expansion, so the silicon melting temperature is high.
  • the silica glass crucible may be deformed or damaged depending on the shape of the silica glass crucible, the mass of the silicon solution, the time of exposure to high temperature, and the like.
  • the silica glass crucible when the silica glass crucible is composed of a single layer in the thickness direction, the constituent atoms of the silica glass are connected to the thickness direction of the silica glass crucible in a network shape, and the same silica network is formed in the layer. It becomes a structure. Therefore, once a crack occurs in the silica glass crucible and the network-like bond is broken, the crack expands to a wide area of the crucible, and as a result, the silica glass crucible may break.
  • the silica glass crucible is composed of a plurality of transparent layers and bubble-containing layers in the thickness direction, or the silica glass crucible is composed of a plurality of transparent layers or bubble-containing layers in the thickness direction.
  • the expansion of cracks stops at the interface portion.
  • the layer structure in the thickness direction of the silica glass crucible has a great influence on the heat resistance and impact resistance, it is important to measure the layer structure.
  • silica glass is transparent, when the size of the bubbles is fine, these layer structures may not be sufficiently observed visually. Further, in the transparent layer, a defect such as a fine scratch may exist even if no abnormality is observed by visual inspection or the like.
  • silica glass crucible layer structures and defects such as fine scratches may cause defects in the silicon ingot when exposed to silicon melt during the pulling of the silicon single crystal. It is important in the design and quality control of silica glass crucibles to measure defects such as fine scratches.
  • silica glass crucibles for pulling silicon single crystals are generally manufactured by a rotational mold method, it is difficult to control characteristics such as shape and interior.
  • the manufactured silica glass crucible is subjected to the following measurement, but it is performed in a non-contact manner because it is necessary to keep the inner surface of the silica glass crucible clean.
  • the structure, defects, etc. of the layer in the thickness direction of the manufactured silica glass crucible have been confirmed by destructive inspection after extracting the manufactured silica glass crucible.
  • visual inspection uses transmitted light or the like as in the case of observing an object with an optical microscope or the like.
  • a silica glass crucible sliced on a line connecting a light source and an observation point is installed and irradiated with light, and the transmitted light of the silica glass crucible is visually or imaged to detect defects in the glass. .
  • Patent Document 3 ultraviolet light having a wavelength shorter than 365 nm is irradiated on the wall surface of the silica glass crucible, and the number of fluorescent spots of the generated light having a wavelength of 400 nm to 600 nm is measured.
  • the layer structure cannot be detected. Further, for example, when a defect or the like is very small, the intensity of diffracted light or the like by the defect is not sufficient, and the defect or the like may not be detected because it is hidden by transmitted light from a light source. Since the inspection methods described in Patent Documents 1 to 3 are methods for measuring the shape of the silica glass crucible and the state near the inner surface, the inside of the transparent layer or the bubble-containing layer in the thickness direction of the silica glass crucible that cannot be detected by visual inspection or the like A defect such as a further layer structure or a fine scratch in the transparent layer existing inside could not be detected.
  • An object of the present invention is to provide a technique for detecting a further layer structure or a defect or the like existing in a transparent layer or a bubble-containing layer that could not be detected conventionally, and the defect or the like is not detected.
  • the object of the present invention is to provide a silica glass crucible having appropriate heat resistance characteristics and / or impact resistance characteristics.
  • the inventor enters laser light on the upper surface of the silica glass crucible or the inner surface near the upper end of the silica glass crucible, and observes scattered light at each position in the thickness direction inside the side wall of the silica glass crucible.
  • the inventors have found that there are further layer structures, defects, etc. existing inside the transparent layer or bubble-containing layer that could not be detected by the conventional method, and invented a method that can be easily and non-destructively observed.
  • the layer structure and defects inside the transparent layer or the bubble-containing layer can be observed by a nondestructive and simple method.
  • the silica glass crucible having a certain type of defect can be identified, the defect or the like is not detected, and appropriate heat resistance characteristics or / Alternatively, a silica glass crucible having impact resistance characteristics can be obtained.
  • the silica glass crucible that has undergone the manufacturing process it is possible to reduce the occurrence of crystal defects in the silicon single crystal ingot due to the crucible defects.
  • the laser light scattering state refers to the state of spread and intensity of the laser scattered light.
  • the light transmission layer is a transparent layer and refers to a region where no defect such as a scratch exists.
  • a layer having defects such as scratches in the bubble-containing layer or the transparent layer is referred to as a light scattering layer.
  • the silica glass crucible in the present embodiment includes a cylindrical side wall portion (straight barrel portion) having an opening at the upper end, a curved bottom portion, a corner portion connecting the side wall portion and the bottom portion and having a larger curvature than the bottom portion. It has the shape provided with. Moreover, the upper end surface of the side wall part of the silica glass crucible is formed as an annular flat surface. Further, the silica glass crucible includes, for example, a transparent layer in which bubbles cannot be observed based on visual observation or image data, and a bubble-containing layer in which bubbles are observed, from the inner surface to the outer surface of the silica glass crucible. It is comprised with the layer of.
  • the silica glass crucible in the present embodiment is manufactured using, for example, a rotational mold method.
  • the rotational mold method is a method for producing a silica glass crucible by depositing silica powder in a rotating mold (made of carbon) and arc melting the deposited silica powder layer. Since the shape in the vicinity of the opening end of the silica glass crucible is likely to be uneven, the opening end of the silica glass crucible by the rotational molding method is cut with a predetermined width to align the shape of the opening end.
  • the silicon single crystal is produced, for example, by rotating the silica glass crucible, melting polycrystalline silicon inside, bringing the seed crystal into contact with the silicon melt, and pulling up the seed crystal after necking treatment. Is done.
  • the silica glass crucible is used every time the silicon single crystal is pulled. That is, the silica glass crucible needs to be prepared separately for each pulling of the silicon single crystal.
  • the ratio of the thickness of the bubble-containing layer to the thickness of the transparent layer is 0.7 in the middle portion between the upper end and the lower end of the portion formed in the vertical direction of the silica glass crucible.
  • the roundness of the inner surface of the crucible and the roundness of the outer surface of the crucible are both 0.4 or less with respect to the maximum thickness M at the same measurement height as the roundness.
  • a high crystallization rate can be realized during crystal pulling (Japanese Patent Laid-Open No. 2009-286651).
  • silica glass crucibles having various structures are known.
  • the silica glass crucible is provided with a transparent layer and a bubble-containing layer for the purpose of reducing the cause of the occurrence of brown rings and facilitating thermal control when pulling up the silicon single crystal.
  • the transparent layer there may be defects such as fine scratches that cannot be detected from visual observation or image data.
  • the bubble-containing layer that appears to be composed of one layer when visually observed may actually be composed of a plurality of layer structures.
  • Defects that cannot be detected by visual inspection, etc. may cause crystal defects such as transitions and damage to the silica glass crucible during ingot pulling of the silicon single crystal. It is desirable to determine in advance. However, as described above, visually, the silica glass crucible having defects and the silica glass crucible having no defects appear to be silica glass crucibles having a transparent layer and a bubble-containing layer in the same manner. could not be determined.
  • a method for producing a silica glass crucible according to one embodiment of the present invention is a method for producing a silica glass crucible produced by a rotational mold method, and includes a cylindrical straight body having an opening at the upper end, a curved bottom, An upper end surface of a silica glass crucible or a silica glass crucible having a corner portion connecting the side wall portion and the bottom portion and having a curvature larger than that of the bottom portion, and wherein the upper end of the straight body portion is formed flat.
  • a configuration is adopted in which there is a step of measuring the scattering state of each position in the thickness direction inside the side wall of the silica glass crucible of the laser light incident on the inner surface near the upper end.
  • a laser beam such as a semiconductor laser or a solid laser is emitted in the thickness direction from the inside or outside of the silica glass crucible near the upper end of the silica glass crucible.
  • the laser light incident on the silica glass crucible is transmitted or partially scattered depending on the structure of the layer in the thickness direction inside the side wall of the silica glass crucible.
  • the laser light incident on the side wall of the silica glass crucible is transmitted through the light transmission layer without being scattered or reflected.
  • the laser light is scattered in the light scattering layer.
  • the scattering state of the laser light entering the silica glass crucible is photographed using, for example, a camera, and the scattering state at each position in the thickness direction of the silica glass crucible is measured.
  • the laser light incident on the silica glass crucible causes various scattering situations such as transmission or partial scattering depending on the structure of the silica glass crucible (transparent layer, bubble-containing layer, presence or absence of defects, etc.). Therefore, image data corresponding to the layer structure in the thickness direction of the silica glass crucible can be acquired by photographing the end face of the silica glass crucible. By analyzing the image data, the layer structure in the thickness direction of the silica glass crucible can be continuously measured, and the layer structure in the thickness direction of the silica glass crucible can be measured easily and non-destructively.
  • the silica glass crucible through the above process, the structure of the layer in the thickness direction of the silica glass crucible is continuously measured to determine the silica glass crucible having a problem in the layer structure in the thickness direction.
  • a silica glass crucible having a desirable layer structure in the thickness direction can be produced.
  • the laser light when producing a silica glass crucible, the laser light is emitted near the upper end of the silica glass crucible to be measured, and the laser light incident on the silica glass crucible is silica. It has the process of measuring the scattering condition of each position of the thickness direction inside a glass crucible side wall part.
  • the silica glass crucible when the silica glass crucible is manufactured, the scattering state at each position in the thickness direction of the silica glass crucible generated according to the structure of the layer in the thickness direction of the silica glass crucible can be measured.
  • the layer structure in the thickness direction of the silica glass crucible can be measured easily and non-destructively, and the silica glass crucible having the desired layer structure in the thickness direction can be manufactured by discriminating the problematic silica glass crucible.
  • the laser light incident into the silica glass crucible is scattered by any defects such as scratches even in the transparent layer, so by measuring the scattering of the laser light, Defects in the transparent layer that cannot be detected can be detected. It is also possible to measure whether or not a light transmission layer having a sufficient thickness necessary for pulling up the silicon single crystal is formed on the innermost surface side of the silica glass crucible.
  • the layer structure of the thickness direction of a silica glass crucible such as the presence or absence of a light transmissive layer, and the thickness of a light transmissive layer, can be measured easily nondestructively. Therefore, a silica glass crucible having a desirable layer structure in the thickness direction, such as a silica glass crucible in which a sufficiently thick light transmission layer is formed, can be produced.
  • the incident laser light is scattered, and scattered light reflecting the layered structure is generated, so that the layer structure is known by measuring the scattered light.
  • the scattered light intensity of the laser light is uniform within a certain range, it can be seen that the light scattering layer is composed of one layer in the thickness direction of the crucible.
  • the bubble-containing layer When a plurality of layers are included in the bubble-containing layer, there may be a problem in the strength of the silica glass crucible due to the difference in the coefficient of thermal expansion of each layer. Therefore, by making the bubble-containing layer as a single layer, it is possible to reduce the risk of breakage of the silica glass crucible due to the difference in coefficient of thermal expansion. In order to reduce the breakage of the silica glass crucible due to the difference in thermal expansion coefficient or the like, it is desirable that the bubble-containing layer does not include a plurality of structures. That is, as described above, by measuring the layer structure of the light scattering layer or the bubble-containing layer, it is possible to determine a silica glass crucible with a low possibility of breakage due to a difference in coefficient of thermal expansion.
  • the thickness of the light scattering layer and the shape of the boundary between the light transmission layer and the light scattering layer can be measured, and a silica glass crucible or light transmission layer having a desirable light scattering layer thickness can be used.
  • a silica glass crucible having a desirable shape at the boundary interface with the light scattering layer can be identified. And it becomes possible to manufacture a silica glass crucible having a desirable layer structure in the thickness direction.
  • the silicon melt interface is adjusted to be at the same position with respect to the heater of the silicon pulling device, and the crucible is controlled to move upward as the crystal pulling proceeds.
  • the temperature of the silicon single crystal growth part that is, the boundary between the melt and the crystal where the silicon melt becomes the silicon single crystal is the melting point of silicon, and this boundary part is stabilized. In order to achieve this, very delicate temperature control is required.
  • the silica glass crucible is composed of only a transparent layer, when the silicon melt in the silica glass crucible is heated with a heater, the radiant heat from the heater passes through the silica glass crucible and is directly transmitted to the silicon melt interface. Therefore, temperature control may be difficult.
  • a bubble-containing layer is provided outside the transparent layer, and the bubble-containing layer has an appropriate thickness. Therefore, by measuring the thickness of the light scattering layer, it is possible to discriminate a silica glass crucible that can easily perform appropriate temperature control. And it becomes possible to manufacture a silica glass crucible having a desirable layer structure in the thickness direction.
  • the laser light incident in the silica glass crucible is scattered at the interface formed in the thickness direction of the silica glass crucible.
  • silica glass crucibles have the same silica network structure in the same layer. Therefore, once a crack occurs, the crack does not stop in the middle but expands in the layer, and the silica glass crucible may break. On the other hand, if there is an interface in the thickness direction, the structure of the silica network in each layer is different, so that the expansion of cracks stops at the interface portion, and cracking of the silica glass crucible due to the expansion of cracks can be prevented.
  • the silica glass crucible can be annealed at a temperature equal to or higher than the fictive temperature to form an adjustment layer with a desired layer structure. Therefore, by selecting the silica glass crucible according to the above invention and performing an annealing treatment, a new layer can be formed in the thickness direction, and a crucible that is difficult to break can be manufactured.
  • Layer structure in the thickness direction of the silica glass crucible by emitting laser light from the end face direction of the silica glass crucible to each position in the thickness direction of the silica glass crucible and measuring Raman scattering generated according to the emitted laser light Can be grasped. That is, as an alternative to the above process, the Raman scattering generated according to the incident laser beam may be measured.
  • the step of measuring the scattering state of the laser light is a measurement target by emitting laser light from the inside of the silica glass crucible toward the thickness direction of the silica glass crucible.
  • the scattering state of each position in the thickness direction inside the side wall of the silica glass crucible is measured from the annular end surface around the upper end opening of the portion where the laser light is incident. .
  • a laser light source is installed inside the silica glass crucible naturally cooled so as to emit laser light from the inside of the crucible toward the thickness direction of the silica glass crucible.
  • the present invention may be configured such that the state of scattering of the laser light incident into the silica glass crucible is photographed by using a camera or the like from the annular end surface direction around the upper end opening of the silica glass crucible.
  • Laser light is incident from the inside to the outside of the silica glass crucible, and various scattering situations occur in the silica glass crucible. Therefore, when the scattering state of the laser light incident on the silica glass crucible is photographed from the end face direction of the silica glass crucible, image data corresponding to the layer structure in the thickness direction of the silica glass crucible can be acquired.
  • the structure of the layer in the thickness direction of the silica glass crucible can be easily measured without destruction, and a silica glass crucible having a desired quality can be discriminated. And it becomes possible to manufacture a silica glass crucible having a desirable layer structure in the thickness direction.
  • Laser light is emitted from the inside of the silica glass crucible toward the thickness direction of the silica glass crucible, and the scattering state of the laser light inside the silica glass crucible side wall portion is measured from the end surface direction, whereby the layer in the thickness direction of the silica glass crucible
  • the thickness of the light transmission layer can be easily measured without breaking. Based on the measurement result, a silica glass crucible having a desirable layer structure in the thickness direction can be identified.
  • the step of measuring the scattering state of the laser light may be performed by irradiating the silica glass crucible with illumination light having a predetermined wavelength corresponding to the wavelength of the emitted laser light.
  • a configuration is adopted in which the scattering state of the laser beam is measured under irradiation.
  • the scattering state of the laser light can be made clearer.
  • the structure of the layer in the thickness direction of the silica glass crucible can be measured with high accuracy, and the silica glass crucible having a desirable layer structure in the thickness direction can be easily determined without destruction.
  • the step of measuring the state of scattering of the laser light is performed by emitting a horizontal laser to the silica glass crucible and entering the silica glass crucible of the horizontal laser incident on the silica glass crucible.
  • a configuration is adopted in which a step of measuring a scattering state at each position in the thickness direction is included.
  • a horizontal laser is a line laser that is horizontal to the ground. According to this configuration, a horizontal laser is incident on the silica glass crucible with the silica glass crucible, and various laser light scattering conditions corresponding to the structure of the silica glass crucible over a wide range are photographed using an optical camera or the like. The image data can be acquired.
  • the layer structure in the thickness direction of the silica glass crucible in a wide range where the laser beam in the horizontal direction as described above is incident can be efficiently formed at the same time.
  • the silica glass crucible having a desirable layered structure in the thickness direction can be measured more easily.
  • the silica glass crucible is manufactured by depositing silica powder on a rotating carbon mold and arc melting the deposited silica powder layer. Therefore, the layer structure of the transparent layer or the bubble-containing layer is symmetric with respect to the central axis of the crucible. On the other hand, since silica powder accumulates, the symmetry of the layer structure is not seen in the height direction of the silica glass crucible. Therefore, in order to grasp the characteristics of the silica glass crucible, it is more important to know the distribution of the layer structure in the height direction.
  • the layer structure in the crucible height direction and the layer structure in the bubble-containing layer can be known in detail.
  • the vertical laser refers to a vertical line laser (for example, a horizontal laser tilted by 90 degrees). Furthermore, by using a cross-line laser, it is possible to combine the advantages of a horizontal laser and a vertical laser.
  • the angle may be arbitrary), for example, it is possible to determine at which depth a defect exists. It will be possible.
  • the present invention can use various lasers.
  • the laser light in the step of measuring the scattering state of the laser light, is emitted from the end surface direction of the silica glass crucible to each position in the thickness direction of the silica glass crucible, and is emitted.
  • a configuration is adopted in which Raman scattering generated in response to laser light is measured at each position as the scattering state of the laser light.
  • scattered light from a silica glass crucible is removed through a Rayleigh light removal filter, and then dispersed through a spectroscope such as a diffraction grating and detected using a detector or the like. Thereafter, the information is converted into a Raman shift using an information processing apparatus or the like and displayed.
  • a plurality of peaks such as a peak attributed to a planar four-membered ring and a peak attributed to a planar three-membered ring are measured.
  • the structure of the silica network is different in each layer, and thus the wave number value of each peak of the Raman shift varies at each position in the thickness direction. . Therefore, the layer structure of each layer can be measured by measuring the Raman shift at each position in the thickness direction of the silica glass crucible.
  • the laser light is emitted over the entire circumference of the silica glass crucible at predetermined intervals, and the emitted laser light is emitted.
  • the laser light scattering state corresponding to each is measured.
  • the laser light source when laser light is emitted from the inside of the silica glass crucible in the thickness direction of the silica glass crucible, the laser light source is rotated in a state where the laser light is emitted, so that the entire circumference of the silica glass crucible is obtained. Laser light can be incident.
  • the structure in the thickness direction of the entire circumference of the silica glass crucible can be easily measured, and it becomes possible to determine a silica glass crucible in which no defect is detected over the entire circumference of the silica glass crucible.
  • a silica glass crucible having a desirable layer structure in the thickness direction over the entire circumference can be produced.
  • FIGS. 1 A crucible measuring device, a crucible measuring method, a crucible manufacturing method, and a silica glass crucible according to a first embodiment of the present invention will be described with reference to FIGS.
  • the figure shows an example of the configuration of the crucible measuring apparatus.
  • 2 to 4 are diagrams illustrating an example of a state where laser light is incident on a silica glass crucible when measured from the end surface direction.
  • FIG. 5 is a flowchart showing an example of the flow of the crucible measurement method.
  • 6 to 9 are diagrams illustrating examples of actual measurement images.
  • FIG. 10 is a diagram showing the internal residual stress of the silica glass crucible shown in FIG.
  • FIG. 11 is a diagram showing the internal residual stress of the silica glass crucible shown in FIG. 12 and 13 are diagrams illustrating an example of a scattering situation when a crossline laser is used.
  • a crucible measuring apparatus that measures the scattering state of laser light at each position in the thickness direction inside the side wall of the silica glass crucible 1 having a transparent layer and a bubble-containing layer will be described.
  • a crucible measurement method performed using the crucible measurement apparatus will be described.
  • the manufacturing method of the silica glass crucible manufactured through the method of measuring the said crucible is demonstrated.
  • the silica glass crucible 1 manufactured through the said crucible measurement is demonstrated.
  • the crucible measuring apparatus according to the present embodiment is configured to emit laser light from the inside of the silica glass crucible 1 toward the thickness direction near the upper end of the silica glass crucible 1 as described later.
  • the crucible measuring device measures the scattering state of the laser light at each position in the thickness direction inside the side wall of the silica glass crucible 1 by photographing the silica glass crucible 1 from the end surface direction. Thereby, as will be described later, the structure in the thickness direction of the silica glass crucible 1 can be grasped. That is, by using the crucible measuring apparatus and the crucible measuring method described in this embodiment, a light transmission layer (a transparent layer that is free from defects such as scratches, that is, a layer that transmits laser light without scattering). And a light scattering layer (a region containing a defect such as a flaw even in a bubble-containing layer or a transparent layer; a layer that scatters laser light).
  • a light transmission layer a transparent layer that is free from defects such as scratches, that is, a layer that transmits laser light without scattering.
  • a light scattering layer a region containing a defect such as a flaw even in a bubble-containing layer or a transparent
  • the thickness of the light transmission layer and the light scattering layer can be measured. Further, by measuring the layer structure in the thickness direction of the silica glass crucible as described above when producing the silica glass crucible, the silica glass crucible 1 that reduces the possibility of problems when pulling up the silicon single crystal, It becomes possible to manufacture the silica glass crucible 1 which is not easily broken.
  • the light detector such as eyes, photodiodes, photomultiplier tubes, etc.
  • light cannot be sensed.
  • the laser beam is scattered by reflection or refraction by dust or particles in the air, the laser beam is visually recognized because the light enters the eyes or the like due to the scattering.
  • the intensity is the sum of the secondary wave intensity from each atom, and generally does not become zero. This is the case of light scattering.
  • the atoms constituting the silica glass are dense and the density is uniform, the secondary waves from each atom interfere with each other, and the intensity becomes zero except in a specific direction. Secondary waves that do not disappear as a result of interference become reflected or refracted waves.
  • Light scattering is generally caused by non-uniform substances.
  • laser light is scattered due to the presence of voids, bubbles, defects, etc. in non-uniform silica glass, the light becomes visible. Therefore, the presence of voids, bubbles, defects, layer boundaries, and the like can be known by scattering the laser light.
  • a silica glass crucible 1 that is a measurement target in the present embodiment connects a cylindrical side wall (straight barrel) having an opening at the upper end, a curved bottom, a side wall and a bottom, and has a curvature that is greater than that of the bottom. Has a large corner portion. Moreover, the upper end surface of the side wall part of the silica glass crucible 1 is formed as an annular flat surface.
  • the silica glass crucible 1 in the present embodiment is a method for producing a silica glass crucible by, for example, depositing silica powder in a rotating mold (made of carbon) and arc melting the deposited silica powder layer. It is manufactured by the rotational mold method.
  • the opening end part of the silica glass crucible 1 by a rotational molding method is cut with a predetermined width to align the shape of the opening end part.
  • FIG. 1 is an example of the configuration of the crucible measuring apparatus according to the first embodiment of the present invention.
  • the crucible measuring apparatus photographs a laser light source 2 (light emitting portion) that emits laser light to the silica glass crucible 1 and a scattering state of the incident laser light in the silica glass crucible 1 from the end face direction of the silica glass crucible 1.
  • a camera unit 3 scattering state measuring unit).
  • the laser light source 2 is, for example, a solid laser source or a semiconductor laser source, and is arranged so that laser light is incident in the thickness direction of the silica glass crucible 1.
  • Examples of the laser light source 2 include an AlGaInP (aluminum gallium indium phosphorus) based portable laser light source (output wavelength around 630 nm).
  • a reflecting mirror or an optical fiber for laser transmission can be used for the light irradiation unit.
  • the laser light source 2 in the present embodiment is installed inside the silica glass crucible 1 so as to emit laser light from the inside of the silica glass crucible 1 toward the thickness direction of the silica glass crucible 1.
  • The By installing the laser light source 2 in this manner, laser light is incident on the silica glass crucible 1 from the inside to the outside of the silica glass crucible 1.
  • the laser light source 2 emits laser light in the thickness direction of the silica glass crucible 1
  • the laser light source 2 is not only perpendicular to the normal direction of the side wall of the silica glass crucible 1 but also in an oblique direction. You may install so that light may be radiate
  • the laser light source 2 is preferably installed so that the laser light is incident and transmitted near the end face of the silica glass crucible 1 (for example, near the upper end of the silica glass crucible such as up to a depth of 2 cm from the end face). .
  • the laser light emitted from the laser light source 2 enters the silica glass crucible 1 after passing through the air, for example, and transmits or partially scatters depending on the structure of the silica glass crucible 1. Various scattering situations are shown at each position.
  • silica glass is amorphous, there is basically no crystal grain boundary that causes light scattering.
  • Silica glass appears transparent to the human eye in the visible wavelength range of about 400 to 800 nm. Being transparent in the visible wavelength region of silica glass means that light in this wavelength region is not absorbed or scattered.
  • Light absorption occurs with light having a wavelength of about 400 nm or less due to the energy gap of silica glass, but light with a wavelength exceeding that wavelength is not absorbed, and light oscillation due to plasma oscillation of free electrons in silica glass.
  • scattering occurs with light having a wavelength of about 780 nm or more, light having a wavelength shorter than that wavelength is not scattered.
  • the wavelength range in which the light transmittance of silica glass is relatively high varies depending on the production method, raw materials, and the like, but is about 200 nm to 4000 nm.
  • the laser light emitted by the laser light source 2 (emits 630 nm laser light) is transmitted without being absorbed or scattered (straightly traveling). To do).
  • the laser light is scattered at the boundary between the bubbles and the silica glass. Therefore, when the laser beam emitted from the laser light source 2 enters the bubble-containing layer, a part of the laser beam is scattered. Further, even in a region that is visually determined to be transparent (a transparent layer), if a defect such as a scratch exists in the region, a part of the laser light is scattered by the defect.
  • the laser light source 2 emit a visible light laser (in the range of about 400 to 800 nm).
  • the laser light source 2 used in this embodiment include a red wavelength laser (for example, about 635 nm and about 650 nm), a green wavelength laser (for example, about 532 nm), and a blue wavelength laser (for example, about 410 nm). ) Etc. are used.
  • a laser other than visible light such as a deep ultraviolet laser (for example, 230 to 350 nm) may be used as the laser light source 2.
  • the above-mentioned interaction between silica glass and light in the infrared region is caused by excitation of vibration between ions constituting the glass. Since ions constituting the glass are derived from impurities in the silica glass, the smaller the impurities, the less light is absorbed. Moreover, the light absorption characteristics also change depending on the structure of the silica network depending on the state during glass production. On the other hand, the interaction between silica glass and light in the ultraviolet region is caused by electronic excitation, so that it is different from the interaction with light in the infrared region. Electron excitation depends on the band gap between the valence band and the conduction band of silica glass. By introducing impurities such as alkali metal, the band gap is reduced, and the absorption edge may extend to the visible region.
  • the laser light source 2 having a laser diameter of about 5 to 20 mm measured at a distance of 3 m and an output of about 0.2 mw to 500 mw is used.
  • the exit diameter of the laser light source 2 is, for example, about 0.8 to 5.5 mm.
  • the laser diameter, output, and exit aperture of the laser light source 2 may be other than those exemplified above.
  • the camera unit 3 is a general camera having an imaging element (not shown) such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor, a lens unit, and the like.
  • the camera unit 3 in the present embodiment is installed at a position where the end face of the silica glass crucible 1 to be measured can be photographed (that is, in the end face direction), and the laser light incident on the silica glass crucible 1 by the laser light source 2.
  • the scattering state of the light in the thickness direction inside the side wall of the silica glass crucible 1 is configured to be measured from the direction of the annular end face around the upper end opening of the portion where the laser light is incident.
  • the camera unit 3 is installed on the lower side of the silica glass crucible 1 so that the lens unit faces upward. Is done.
  • the laser light incident on the silica glass crucible 1 shows various scattering states according to the structure of the silica glass crucible 1 at each position in the thickness direction of the silica glass crucible 1. Therefore, the camera unit 3 acquires image data indicating the scattering state of laser light at each position in the thickness direction inside the side wall of the silica glass crucible 1 by photographing the end surface of the silica glass crucible 1. Thereafter, the camera unit 3 displays the acquired image data on a display unit (not shown), for example.
  • the observation device such as the camera unit 3 generally has a silica glass crucible 1 at a position where the reflected light or the transmitted light can be observed, that is, in the vicinity of the laser light source 2 that is the light emitting unit. It is installed in the position on the opposite side across the side wall portion.
  • the camera unit 3 is installed at a position in the vertical direction (that is, the end surface direction) as viewed from the incident direction of the laser beam, where the end surface of the silica glass crucible 1 can be photographed.
  • image data indicating the scattering state at each position in the thickness direction of the silica glass crucible 1 can be simply and nondestructively. Can be obtained, and the structure of the layer in the thickness direction can be measured.
  • FIGS. 2 to 4 are schematic diagrams of image data acquired by the camera unit 3 as a scattering state of laser light incident on the silica glass crucible 1.
  • the state of laser light scattering is indicated by two lines, and the intensity of laser light scattering is expressed by the interval between the two lines.
  • the region where the laser light scattering is large is expressed with a wide interval between the two lines, and the region where the laser light scattering is small is expressed with a small interval between the two lines. .
  • the region other than between the two lines indicates that the laser beam is not incident or transmitted, that is, the laser beam is not scattered. If the frequency of scattering increases, the intensity of the scattered light increases. Conversely, if the frequency of scattering decreases, the intensity of the scattered light decreases.
  • FIG. 2 shows that laser light is incident from the inner surface of the silica glass crucible 1, and the incident laser light is transmitted without being scattered in the transparent layer on the inner surface side, but is scattered in the bubble-containing layer.
  • FIG. 3 shows that there is a transparent layer on the inner surface side of the silica glass crucible 1 as in FIG. 2, and there are regions where the intensity of the scattered laser light is different in the bubble-containing layer.
  • the intensity of the scattered laser light is strong in the bubble-containing layer near the transparent layer and near the outside, and the scattering intensity is weak in the region between them. This is because the bubble-containing layer, which is a light scattering layer, is composed of a plurality of layers.
  • FIG. 4 shows that the incident laser light is scattered by the bubble-containing layer and further scattered by the transparent layer region as in FIG. This indicates that there are defects such as scratches that become scattering centers that cannot be visually confirmed in the transparent layer region. By measuring the laser scattered light, defects in the transparent layer that cannot be detected visually are discovered. I can do it.
  • the camera unit 3 shows the state of the laser light incident on the silica glass crucible 1 that shows various scattering states such as transmission or partial scattering according to the layer structure in the thickness direction of the silica glass crucible 1.
  • the image data indicating is acquired.
  • the layer structure in the thickness direction of the silica glass crucible 1 can be easily discriminated without destruction.
  • FIG. 5 is a flowchart showing an example of the flow of the crucible measurement method according to the first embodiment.
  • laser light is emitted from the inside of the silica glass crucible 1 toward the thickness direction of the silica glass crucible 1 using the laser light source 2 (step S101). Thereby, the laser light is incident on the silica glass crucible 1. Thereafter, the laser light incident on the silica glass crucible 1 exhibits various scattering states such as transmission or partial scattering depending on the structure of the silica glass crucible 1.
  • the end surface inside the side wall portion of the silica glass crucible 1 is photographed by the camera unit 3 to obtain image data indicating the scattering state of the laser light at each position in the thickness direction of the silica glass crucible 1 (step S102). . Thereafter, the camera unit 3 displays the acquired image data on the display device, for example.
  • the crucible measuring apparatus in this embodiment analyzes the image data acquired by the camera unit 3, and the structure of the silica glass crucible 1 in the thickness direction such as a light transmission layer or a light scattering layer (light transmission layer, light An image analysis unit (not shown) for determining the thickness of the scattering layer and the light transmission layer can be provided.
  • the crucible measurement method can be configured to analyze the image data and determine the structure of the layer in the thickness direction of the silica glass crucible 1 (light transmission layer, light scattering layer, light transmission layer thickness, etc.).
  • the image analysis unit is a general information processing device including, for example, an arithmetic device and a storage device, and a function of analyzing image data acquired by the camera unit 3 when the arithmetic device executes a program stored in the storage device. Will be realized. That is, the image analysis unit determines the layer structure in the thickness direction of the silica glass crucible 1 based on the image data. This makes it possible to automatically determine the layer structure in the thickness direction of the silica glass crucible 1.
  • the laser beam when the laser beam is incident on the silica glass crucible 1, the laser beam may be incident so that the incident angle becomes a Brewster angle.
  • the laser light source 2 may be configured to emit a p-polarized laser. Note that p-polarized light refers to polarized light whose direction of vibration of the electric field is parallel to the incident surface.
  • the laser light emitted from the laser light source 2 can be incident without being reflected at the interface between the air and the silica glass crucible 1, so that all can be used for observation of the layer structure and the like.
  • the state of the silica glass crucible 1 can be observed.
  • reflection does not occur at the interface between air and the silica glass crucible 1, and therefore, for example, the detection of the structure and defects of layers near the interface is affected by the reflected light. Can be done without.
  • the laser light emitted from the laser light source 2 can be incident without being reflected at the interface between the air and the silica glass crucible 1, so that all can be used for observation of the layer structure and the like.
  • the state of the silica glass crucible 1 can be observed.
  • reflection does not occur at the interface between air and the silica glass crucible 1, and therefore, for example, the detection of the structure and defects of layers near the interface is affected by the reflected light. Can be done without.
  • the incident angle does not necessarily have to be exactly the Brewster angle.
  • the Brewster angle By emitting laser light so as to approach the Brewster angle, a certain degree of effect can be obtained even if the angle is not accurate.
  • the silica glass crucible 1 Since the vicinity of the upper end portion of the silica glass crucible 1 where the laser light is incident from the laser light source 2 is a side wall portion having a cylindrical shape, the laser light is incident on the curved surface, and the position of the laser light source 2 is shifted. In some cases, the incident angle changes and the Brewster angle is not reached. Furthermore, as described above, since the silica glass crucible 1 is made by, for example, the rotational molding method, the shape of the manufactured silica glass crucible 1 may be deviated from the design drawing. Therefore, it is necessary to accurately determine the emission position and the incident angle of the laser beam so that the incident angle becomes the Brewster angle at the determined position, and to make the laser beam incident.
  • a 32 inch silica glass crucible has an inner diameter of about 81.3 cm and a mass of 50 kg to 60 kg
  • a 40 inch silica glass crucible has an inner diameter of about 101.6 cm and a mass of 90 kg to 100 kg. Is a large heavy object.
  • the installation position and the installation angle are accurately adjusted by moving the silica glass crucible 1 itself. It is difficult to do.
  • the three-dimensional shape (three-dimensional coordinates) of the inner surface of the silica glass crucible 1 is measured in advance, and the position and angle at which the laser beam is emitted with respect to the measurement position are calculated. Since it can measure for every measurement point, changing the position and angle of a laser light source, the installation position adjustment of the silica glass crucible 1 itself becomes unnecessary.
  • the three-dimensional shape measurement of the inner surface of the silica glass crucible 1 is performed, for example, by providing an internal distance measuring unit such as a laser displacement meter at the tip of the robot arm and contacting the inner distance measuring unit along the inner surface of the crucible. Measure by moving with. Specifically, silica glass is emitted by emitting laser light obliquely with respect to the inner surface of the silica glass crucible 1 at a plurality of measurement points on the movement path of the internal distance measuring unit, and detecting the reflected light. The three-dimensional shape of the inner surface of the crucible 1 can be measured. Then, by utilizing the measurement result, laser light can be easily emitted so that the incident angle becomes the Brewster angle with respect to the silica glass crucible 1.
  • an internal distance measuring unit such as a laser displacement meter
  • the thickness of the light transmission layer and the light scattering layer can be measured.
  • the incident angle is deviated from the normal direction of the incident surface (that is, the laser light is incident on the silica glass crucible 1 in an oblique direction rather than a vertical direction. ) And the error becomes large, and accurate measurement cannot be performed. Therefore, it is desirable that the incident angle ⁇ (angle from the normal direction of the incident surface) of the laser light emitted from the laser light source 2 is emitted so as to satisfy the following formula.
  • the thickness of the silica glass crucible 1 (the thickness of the light transmission layer and the light scattering layer) is represented by T
  • the allowable error is represented by ⁇ T.
  • the relationship among the thickness T, the tolerance ⁇ T, and the incident angle ⁇ of the silica glass crucible 1 is shown in Table 1.
  • Table 1 For example, when the thickness of the crucible is 10 mm, the allowable incident angle of the laser beam when the tolerance is 0.1 mm is within 8.0 °.
  • the thickness of the silica glass crucible 1 is within an allowable error range. (For example, the thickness of the light transmission layer or the light scattering layer) can be measured.
  • the laser diameter B of the laser light (the laser diameter of the portion that is in contact with the silica glass crucible 1) satisfies the following formula. It is desirable to be controlled.
  • an allowable error is represented by ⁇ T
  • a thickness of the silica glass crucible 1 is represented by T
  • a laser diameter is represented by B.
  • the relationship among the thickness T, tolerance ⁇ T, and laser diameter B of the silica glass crucible 1 is shown in Table 2.
  • the allowable laser diameter when the tolerance is 0.1 mm is 1.4 mm.
  • the silica glass crucible 1 is within the allowable error range. Can be measured (for example, the thickness of the light transmission layer or the light scattering layer).
  • the place where the laser beam is incident is not limited to the inside of the silica glass crucible 1.
  • Laser light may be incident from the outside toward the inside in the thickness direction of the silica glass crucible 1. Further, laser light may be incident from the end face direction of the silica glass crucible 1 and the scattering state of the laser light may be measured from the inside of the silica glass crucible 1. In this case, the scattering state is measured while moving the position of the emitted laser light in the thickness direction of the silica glass crucible 1. By doing in this way, it can grasp
  • the laser light source 2 is set at a predetermined interval (for example, every 2 to 3 degrees, 5 degrees, and 10 degrees, any angle) with the laser light emitted from the inside of the silica glass crucible. It is possible to make the laser light incident on the entire circumference of the silica glass crucible 1. At this time, by moving the camera unit 3 in accordance with the rotation of the laser light source 2, it is possible to measure the scattering state of the laser light at each position over the entire circumference of the silica glass crucible 1. As a result, it is possible to measure the structure in the thickness direction of the silica glass crucible 1 over the entire circumference of the silica glass crucible 1 by an easy method.
  • a predetermined interval for example, every 2 to 3 degrees, 5 degrees, and 10 degrees, any angle
  • the thickness distribution and roundness of each layer when there are a plurality of concentric layers at the upper end of the silica glass crucible can be measured.
  • the roundness of the boundary between the transparent layer and the bubble-containing layer can also be measured. Since the roundness of the inner surface of the silica glass crucible 1 can also be measured, the silicon single crystal is pulled by using the roundness of the inner surface of the silica glass crucible 1 and the roundness of the boundary between the transparent layer and the bubble-containing layer. It is possible to calculate whether a transparent layer having a necessary thickness is formed.
  • the heat transfer is not uniform and the temperature distribution of the silicon melt can be uneven. As a result, it becomes difficult to keep the position of the contact interface between the silicon single crystal and the silicon melt constant, and inconveniences such as dislocation may occur.
  • the silica glass crucible 1 By measuring the silica glass crucible 1 using the crucible measuring apparatus and the crucible measuring method of the present embodiment, it is possible to determine the silica glass crucible in which a problem such as the occurrence of dislocation occurs.
  • the laser light source 2 that is a unidirectional laser such as a laser pointer is used as the light emitting portion.
  • the laser light source 2 can be configured to emit at a wide angle (for example, the laser beam 2 is emitted with a predetermined angle (eg, 2 to 4 times) larger than the incident angle of the incident laser light. Realized by passing the lens through).
  • a line laser horizontal laser, vertical laser
  • a cross line laser may be used as the light emitting portion.
  • the cross line laser emits laser light in the horizontal direction and the vertical direction by transmitting the emitted laser light through a collimating lens and then through a cylindrical rod lens.
  • a wide range of scattering conditions can be measured at once.
  • a surface laser and a horizontal line laser horizontal laser
  • the layer structure inside the side wall of the silica glass crucible 1 can be measured at once over a wide range.
  • the measurement of the layer structure can be performed without omission over the entire range.
  • a vertical line laser vertical laser: for example, a horizontal laser tilted by 90 degrees
  • a cross line laser it is possible to more clearly determine the layer structure in the bubble-containing layer and the layer structure in the depth direction. It becomes possible to make a judgment.
  • the oblique direction is oblique to the depth direction of the silica glass crucible 1. The depth at which the defect is located can be determined by emitting the laser at any angle.
  • the laser light source 2 When a cross-line laser or the like is used as the laser light source 2 in the present embodiment, for example, when the line width is about 2 mm within a distance of 5 m and the light is incident on a flat incident object with a distance from the laser light source 2 to the incident object.
  • the ratio to the line length of the laser beam it is preferable to use, for example, a ratio of about 1: 0.3 to 2.
  • the manufacturing method of the silica glass crucible of this embodiment discriminate
  • the silica glass crucible forming step is performed by (1) rotating a mold having a bowl-shaped inner surface that defines the outer shape of the silica glass crucible, and crystalline or amorphous silica on the inner surface (bottom and side surfaces) of the mold. By depositing the powder to a predetermined thickness, a silica powder layer for the silica glass layer is formed. (2) The silica powder layer is heated to 2000 to 2600 ° C. by arc discharge to melt and solidify to form glass. And (3) cutting the opening end with a predetermined width and aligning the shape of the opening end.
  • the silica glass crucible inspection step includes the step of measuring the scattering state of each position in the thickness direction of the silica glass crucible described above, and is performed on the silica glass crucible that has undergone the silica glass crucible formation step. By selecting a good silica glass crucible in this inspection step, a silica glass crucible having the above-mentioned advantages can be manufactured.
  • the silica glass crucible 1 when the silica glass crucible 1 is manufactured, by measuring the scattering state of each position in the thickness direction of the silica glass crucible 1, the structure in the thickness direction of the manufactured silica glass crucible 1 (transmission layer, Light scattering layer). Therefore, it is possible to easily determine whether the layer structure in the thickness direction of the manufactured silica glass crucible 1 is desirable by performing the above-described steps when manufacturing the silica glass crucible 1. . As a result, the silica glass crucible 1 having a desirable layer structure in the thickness direction can be identified and manufactured.
  • a silica glass crucible 1 in which a light transmission layer is formed on the innermost surface side, and the light transmission layer has a sufficient thickness necessary for pulling up a silicon single crystal a silica glass crucible 1 in which a light transmission layer is formed on the innermost surface side, and the light transmission layer has a sufficient thickness necessary for pulling up a silicon single crystal.
  • the silica glass crucible 1, the silica glass crucible 1 in which a light scattering layer is formed outside the light transmission layer, and the light scattering layer are composed of one layer (that is, in the region where the laser light is scattered, Silica glass that is uniform according to preset criteria such as no difference in intensity of scattering, or slight difference in intensity (for example, a light transmission layer is not formed in the light scattering layer).
  • Silica glass crucible 1 Silica glass crucible 1, silica glass crucible 1 having a single bubble-containing layer, silica glass crucible 1 having a desired light scattering layer thickness, interface at the boundary between the light transmission layer and the light scattering layer
  • Silica glass crucible 1 is preferable shape (so that, for example, silica glass crucible 1 has no unevenness in the distribution of the light transmitting layer) can be manufactured like.
  • the silica glass crucible 1 in which the light transmission layer is formed over the entire inner surface of the opening end of the silica glass crucible 1, or the light transmission layer has a thickness within a predetermined range over the entire circumference of the silica glass crucible 1.
  • a value obtained by dividing the roundness of the shape of the boundary between the light transmission layer and the light scattering layer by the diameter of the crucible is predetermined.
  • a silica glass crucible 1 configured to be smaller than a numerical value (for example, 0.01, 0.005, or 0.002) can be manufactured.
  • Silica glass crucibles are used to manufacture silicon single crystals by the Czochralski method.
  • a silica glass crucible is filled with polysilicon and heated to melt high-purity polysilicon to obtain a silicon melt.
  • a silicon single crystal is produced by rotating the susceptor holding the silica glass crucible while immersing the end of the seed crystal in the silicon melt and rotating the susceptor. At that time, by using the silica glass crucible according to the present embodiment and the like, it is possible to reduce the occurrence of crystal defects in the silicon single crystal ingot caused by the crucible defects.
  • FIGS. 6 to 9 are images taken using the camera unit 3 of the scattering state of the laser light when the laser light is actually incident on the silica glass crucible 1 from the inside.
  • FIG. 6 shows a state in which the laser light incident on the silica glass crucible 1 is partially scattered after being transmitted from the inside of the silica glass crucible 1 to a predetermined position.
  • the silica glass crucible 1 includes a light transmission layer (transparent layer having no defects) that is a region through which laser light is transmitted, and light scattering that is located outside the light transmission layer and is a region in which laser light is scattered. It has a layer (such as a bubble-containing layer), and it can be seen that the light scattering layer has a single structure.
  • FIG. 7 shows a state where the incident laser light is strongly scattered once after being transmitted from the inside of the silica glass crucible 1 to a predetermined position, and then the scattering is weakened and then strongly scattered again.
  • the silica glass crucible 1 has a light transmission layer and a light scattering layer outside the light transmission layer, and the light scattering layer is composed of a plurality of layers.
  • FIG. 8 shows that after the incident laser light is transmitted from the inside of the silica glass crucible 1 to a predetermined position, it is strongly scattered once, and once the scattering is interrupted, the laser light is scattered again.
  • the silica glass crucible 1 has a light-transmitting layer and a light-scattering layer outside the light-transmitting layer, and it can be seen that the light-scattering layer is composed of a plurality of layers.
  • FIG. 9 shows that the incident laser light is scattered from the beginning, then once transmitted, and then scattered again.
  • the silica glass crucible 1 has a light transmissive layer and a light scattering layer outside the light transmissive layer, and has a defect in an inner portion of the silica glass crucible 1 that is considered to be in the transparent layer (light It can be seen that a scattering layer is formed).
  • FIGS. 10 and 11 show the strain (internal residual stress) of the silica glass crucible 1 of FIGS.
  • FIG. 10 in the silica glass crucible 1 of FIG. 6 (silica glass crucible having a light transmission layer and a light scattering layer, and it is determined that the light scattering layer has a single structure)
  • the internal residual stress changes gently in the other portions.
  • silica glass has birefringence, if there is an abrupt change in internal residual stress, the refractive index changes abruptly and contrast is seen.
  • the silica glass crucible 1 of FIG. 7 (silica glass crucible having a light transmission layer and a light scattering layer, and it is determined that the light scattering layer includes a plurality of layers). It can also be seen that there is a boundary (rapid change) of internal residual stress even inside the light scattering layer.
  • the strain inspection is generally a destructive inspection and is performed by breaking the silica glass crucible 1. Therefore, the non-destructive and simple measurement of the laser light scattering state according to the present invention is performed instead of the distortion inspection, whereby the distortion inspection can be easily performed. Further, the scattering state of the laser light can be measured, and annealing treatment or the like can be performed according to the result of the measurement (if necessary).
  • the polycrystalline silicon is incorporated into the silica glass crucible 1 in order to produce a silicon single crystal
  • the strain in the silica glass crucible 1 is large, the silica glass crucible 1 may be cracked due to the indentation.
  • the crack may not be generated immediately after the indentation is formed. Accordingly, the single crystal silicon pulling process may break, and in particular, when the silica glass crucible 1 is broken during the melting of the silicon, the pulling apparatus is damaged and the silicon raw material is discarded, which is economical. Loss.
  • the measuring method of the present invention it becomes possible to substitute for the strain measurement of the silica glass crucible 1 by a non-destructive and easy method, and it is possible to prevent the above damage from occurring in advance.
  • FIG. 12 and 13 are diagrams showing a scattering state when a cross-line laser is used.
  • FIG. 12 is a photograph of the scattering state in the thickness direction of the silica glass crucible 1 when laser light is emitted using a cross-line laser. All images photographed by the camera unit 3 are obtained using a cross-line laser. It can be seen that the light transmission layer and the light scattering layer can be discriminated in the range.
  • FIG. 13 shows that the incident crossline laser light is also scattered in the transparent layer region.
  • FIG. 14 shows an example of the configuration of the crucible measuring apparatus according to this embodiment.
  • FIG. 15 is a flowchart illustrating an example of the flow of the crucible measurement method according to the second embodiment.
  • FIG. 16 is a diagram illustrating the influence of the distance between the inner surface of the crucible and the illumination unit on the measurement of the scattering state.
  • a crucible measuring device that measures the scattering state of laser light incident on the silica glass crucible 1 under irradiation with light of a predetermined wavelength
  • a crucible measurement method performed using the crucible measurement apparatus will be described.
  • the manufacturing method of the silica glass crucible manufactured through the measurement of a crucible is demonstrated.
  • the silica glass crucible 1 manufactured through the measurement of the crucible will be described.
  • the crucible measuring apparatus includes a laser light source 2, a camera unit 3, and an illumination unit 4.
  • the configurations of the laser light source 2 and the camera unit 3 are the same as those described in the first embodiment. Therefore, the overlapping description is omitted.
  • the illumination unit 4 is configured by, for example, an LED (Light emitting diode), and is configured to irradiate light having a wavelength corresponding to the wavelength of the laser light emitted from the laser light source 2. Specifically, for example, when the laser light source 2 emits red laser light, the illumination unit 4 is configured to emit light having a blue wavelength.
  • LED Light emitting diode
  • the light (illumination) emitted by the illumination unit 4 is desirably avoided because illumination with a hue close to that of the laser light makes the laser light scattering inconspicuous. That is, it is desirable that the illumination unit 4 irradiates light that does not include a wavelength near the wavelength of the laser light emitted from the laser light source 2. As an example, when the wavelength of light emitted from the laser light source 2 is 630 nm, it is desirable to use illumination of light having a blue wavelength that does not include a wavelength near 630 nm. When white light is applied to an object and the reflected light looks red, it is because the object reflects light having a wavelength in a region where the human eye looks red and absorbs light of other wavelengths. Therefore, even if the light of only the wavelength of the region that looks blue with human eyes is applied, the object does not look red.
  • the illumination unit 4 emits light adjusted according to the wavelength of the laser light
  • the camera unit 3 is the end surface of the silica glass crucible 1.
  • step S101 laser light is emitted from the inside of the silica glass crucible 1 toward the thickness direction using the laser light source 2 (step S101).
  • the laser light is incident on the silica glass crucible 1.
  • the laser light incident on the silica glass crucible 1 shows various scattering states such as transmission or partial scattering depending on the structure of the silica glass crucible 1.
  • the illumination unit 4 is used to irradiate illumination light corresponding to the laser beam (S201). Thereby, the laser light is incident on the silica glass crucible 1 under illumination by the illumination unit 4.
  • the camera unit 3 measures the scattering state of the laser beam at each position in the thickness direction of the silica glass crucible 1 under illumination by the illumination part 4. That is, image data indicating the scattering state of the laser light is acquired by photographing the end face of the silica glass crucible 1 with the camera unit 3 (step S102). Thereafter, the camera unit 3 displays the acquired image data on the display device, for example.
  • the crucible measurement method in this embodiment measures the scattering state of each position in the thickness direction of the silica glass crucible 1 under irradiation with illumination light. As a result, the structure of the layer in the thickness direction of the silica glass crucible 1 can be grasped based on the measurement result.
  • FIG. 16 shows the relationship of ease of measurement of the scattering state of the laser light depending on the distance between the inner surface (or end face) of the silica glass crucible 1 and the illumination unit 4.
  • FIG. 16A shows a case where the distance between the inner surface of the silica glass crucible 1 and the illumination unit 4 is 100 mm
  • FIG. 16B shows the inner surface of the silica glass crucible 1.
  • the case where the distance with the illumination part 4 is 300 mm is shown.
  • FIG. 16C shows a case where the distance between the inner surface of the silica glass crucible 1 and the illumination unit 4 is 500 mm.
  • the illumination unit 4 is preferably adjusted so that the distance from the inner surface of the silica glass crucible 1 is a predetermined distance (for example, 500 mm).
  • the suitable distance between the silica glass crucible 1 and the illumination part 4 changes according to the intensity of the irradiation light which the illumination part 4 irradiates, etc., for example. Therefore, it is assumed that the predetermined distance is a distance that can be adjusted as necessary.
  • the crucible measuring apparatus and measuring method in the present embodiment can employ various other configurations as in the case described in the first embodiment.
  • it is also effective to combine the illumination unit 4 with the above-described line laser or cross line laser (light emitting unit).
  • the illumination unit 4 by emitting red laser light under illumination of blue illumination light by the illumination unit 4, the scattered portion can be measured as purple, and the scattering state can be measured more clearly. Become.
  • the silica glass crucible 1 When manufacturing the silica glass crucible 1 using the rotating mold method, it is more easily desirable through the step of measuring the scattering state of each position in the thickness direction of the silica glass crucible 1 under illumination with the illumination light described above.
  • the silica glass crucible 1 can be manufactured and realized.
  • FIG. 17 is an example of the configuration of the crucible measuring apparatus according to the present embodiment.
  • FIG. 18 is a diagram illustrating an example of a position where the crucible measurement apparatus according to the present embodiment measures a Raman spectrum.
  • FIG. 19 is a flowchart illustrating an example of the flow of the crucible measurement method according to the third embodiment. 20 and 21 are examples of Raman spectra actually measured.
  • a crucible measuring apparatus that measures the scattering state of laser light in the thickness direction of the silica glass crucible 1 by measuring a Raman spectrum (measuring Raman scattering) will be described. Moreover, the crucible measuring method performed using the said apparatus is demonstrated. Moreover, the silica glass crucible 1 manufactured through the measurement of the crucible will be described.
  • the crucible measuring apparatus includes, for example, a laser unit 21 (light emitting unit) and a Raman spectroscopic measuring unit 31 (scattering state measuring unit).
  • the Raman spectroscopic measurement unit 31 includes, for example, a Rayleigh light removal filter 311, a spectroscope 312, and a detector 313.
  • the laser unit 21 is, for example, a semiconductor laser or a solid-state laser, and is monochromatic laser light at each position in the thickness direction of the silica glass crucible 1 from the end surface direction of the silica glass crucible 1 toward the end surface of the silica glass crucible 1. (For example, 520 nm green laser light) is emitted. That is, as shown in FIG. 17, the laser unit 21 emits laser light to the end surface of the silica glass crucible 1 while moving the emission position in the thickness direction of the silica glass crucible 1. Thereby, as will be described later, the Raman spectrum at each position in the thickness direction of the silica glass crucible 1 is measured.
  • the Raman spectroscopic measurement unit 31 includes the Rayleigh light removal filter 311, the spectroscope 312, and the detector 313.
  • the Rayleigh light removal filter 311 is a filter for removing Rayleigh scattering that is included in the scattered light and has the same wavelength as the emitted laser light.
  • the laser light emitted from the laser unit 21 enters the end surface of the silica glass crucible 1 and then generates scattered light.
  • This scattered light includes Rayleigh scattered light in addition to Raman scattered light to be measured (Stokes, anti-Stokes, or either). Therefore, the Rayleigh light removal filter 311 is used to remove Rayleigh scattered light.
  • the crucible measuring apparatus in the present embodiment measures the scattering state at each position in the thickness direction of the silica glass crucible 1. Further, the detector 313 is connected to, for example, an information processing device (not shown), and the information processing device can calculate a Raman shift value corresponding to the detected light. Thereby, the Raman spectrum is measured. That is, Raman scattering is measured.
  • the configuration for measuring the Raman spectrum is merely an example. You may comprise so that the Raman spectrum of each position of the thickness direction of the silica glass crucible 1 may be measured using things other than the said structure.
  • the crucible measuring apparatus includes the laser unit 21 and the Raman spectroscopic measuring unit 31.
  • the Raman spectrum of each position in the thickness direction of the silica glass crucible 1 on the end surface of the silica glass crucible 1 is acquired. That is, as shown in FIG. 18, the position of the laser unit 21 is adjusted so as to hit each position in the thickness direction of the silica glass crucible 1, and a Raman spectrum at each position in the thickness direction of the silica glass crucible 1 is acquired.
  • the Raman spectrum at each position in the thickness direction of the end surface of the silica glass crucible 1 similarly includes a plurality of peaks including a peak attributed to a planar four-membered ring and a peak attributed to a planar three-membered ring. have.
  • the measurement is actually performed, there may be a deviation in the Raman shift value of each peak at each position in the thickness direction of the silica glass crucible 1.
  • a plurality of structures may be included in the thickness direction of the silica glass crucible 1, and the plurality of structures are obtained by performing Raman measurement at each position in the thickness direction of the silica glass crucible 1 as described above. Can be measured.
  • the Raman shift is different at each position in the thickness direction of the silica glass crucible 1 when the Raman spectrum is measured, the structure in the thickness direction of the silica glass crucible 1 is different. Deformation is likely to occur when pulling up the silicon single crystal using. Conversely, a Raman spectrum is measured at each position in the thickness direction of the silica glass crucible 1, and the silica glass crucible 1 having the same Raman shift (small difference) at each position in the thickness direction of the silica glass crucible 1 is obtained. By determining, it is possible to determine the silica glass crucible 1 that is not easily broken (not broken).
  • the measurement of the Raman spectrum can also be used as one of methods for discriminating the silica glass crucible 1 that is difficult to break.
  • the Raman shift is the same in the light transmission layer or the light scattering layer (may be in the transparent layer or the bubble-containing layer). It is confirmed whether or not there is, or whether or not the Raman shift in the entire thickness direction is the same.
  • the measurement of the laser light scattering state described in the first and second embodiments and the measurement of the Raman spectrum described in this embodiment are performed simultaneously (or based on the measurement result of the laser light scattering state). It may be configured to perform measurement of a Raman spectrum (Raman scattering). Specifically, for example, the scattering state of laser light emitted from the inside of the silica glass crucible 1 is measured, and laser light is applied to each layer determined to have a different structure based on the measurement of the scattering state of the laser light. A laser beam for Raman excitation is applied under the measurement of the scattering state of the laser beam.
  • the laser beam for scattering measurement is stopped (when illumination light is irradiated by the illumination unit 4, the irradiation of illumination light is also stopped), and Raman measurement is performed.
  • the light transmission layer and the light scattering layer are grasped based on the measurement result of the scattering state of the laser light, and the boundary between the light transmission layer, the light scattering layer, and the light transmission layer and the light scattering layer is determined based on the grasp result. Measure the Raman spectrum in the vicinity.
  • the structure of the layer in the thickness direction of the silica glass crucible 1 can be grasped easily and with higher accuracy.
  • it is desirable to use lasers of different wavelengths for the laser for scattering measurement (laser light emitted from the laser light source 2) and the laser for Raman measurement (laser light emitted by the laser unit 21).
  • the laser unit 21 emits laser light from the end surface direction of the silica glass crucible 1 toward the end surface of the silica glass crucible 1 (S301).
  • the laser light emitted from the laser unit 21 enters the end surface of the silica glass crucible 1 and then generates scattered light. Therefore, after the Rayleigh light is removed, the light is split and the split light is detected for each wavelength. For example, Raman scattering is measured by such a method (S302).
  • the laser light emission point is shifted in the thickness direction of the silica glass crucible 1 (S303).
  • shifting the laser light emission point is shifted in the thickness direction of the silica glass crucible 1 and then Raman scattering is measured again (Yes in S303).
  • Raman scattering measurement is finished (S303, No).
  • the crucible measurement method in the present embodiment performs Raman scattering measurement for each position in the thickness direction of the silica glass crucible 1.
  • the structure of the layer in the thickness direction of the silica glass crucible 1 can be grasped based on the measurement result.
  • a desirable silica glass crucible can be manufactured and realized also through the process of performing the Raman measurement mentioned above.
  • a silica glass crucible manufactured through a manufacturing process of a silica glass crucible having a configuration in which measurement of laser light in the thickness direction and Raman measurement is performed can have the same advantageous effects.
  • FIGS. 20 and 21 show the results of actually measuring the Raman spectrum at each position in the thickness direction of the silica glass crucible 1.
  • FIG. 20 shows the result of measuring the Raman spectrum of each position in the thickness direction of the silica glass crucible 1 on the same end face of the silica glass crucible 1 as in FIGS. 6 and 10.
  • FIG. 21 shows the result of measuring the Raman spectrum of each position in the thickness direction of the silica glass crucible 1 on the same end face of the silica glass crucible 1 as in FIGS. 7 and 11.
  • the Raman spectra of the inner surface side in order from the bottom, the Raman spectra of the inner surface side (transparent layer), the boundary between the inner surface and the middle, the middle, the boundary between the middle and the outer surface side, and the position of the outer surface side are measured. Show. For easy viewing, the results of the Raman spectra of FIGS. 20 and 21 are corrected so that the results do not overlap. Therefore, in the following, it is assumed that only the value of the Raman shift is a problem and the intensity is not seen.
  • the silica glass crucible 1 measured in FIG. 20 has a light transmission layer and a light scattering layer, and the light scattering layer is determined to have a single structure. Layer. From the above, it can be considered that the result of Raman measurement and the measurement result of the scattering state in the thickness direction of the silica glass crucible 1 have a certain correlation.
  • the measurement result of the inner surface side and the boundary between the inner surface and the middle indicates the light transmission layer
  • the measurement result of the middle, the boundary between the middle and the outer surface, and the measurement result on the outer surface side indicates the light scattering layer.
  • each boundary (inner surface) of a peak attributed to a plane four-membered ring (peak near 488 cm ⁇ 1 ) and a peak attributed to a plane three-membered ring (peak near 602 cm ⁇ 1 ) are shown. It can be seen that there is a shift in the value of the Raman shift at the boundary between the center and the middle, the boundary between the middle and the outer surface).
  • the silica glass crucible 1 measured in FIG. 21 has a light transmission layer and a light scattering layer, and the light scattering layer is determined to be composed of a plurality of layers. Yes. This also shows that there is a certain correlation between the Raman measurement result and the measurement result of the scattering state in the thickness direction of the silica glass crucible 1.
  • the silica glass crucible 1 described above As shown in Table 3, it can be seen that the respective structures are different on the inner surface side, the intermediate surface, and the outer surface side with the interfaces (interface 1 and interface 2) as boundaries. That is, it can be seen that the silica glass crucible 1 described above has a plurality of layer structures in the thickness direction with each interface as a boundary, and it is understood that the silica glass crucible 1 does not easily crack and does not break.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A method for producing a silica glass crucible to be produced using a rotational molding process, the method having a step for measuring the state of scattering at each location in the thickness direction of the silica glass crucible of a laser beam that is emitted into the silica glass crucible, which has a straight cylindrical body section having an opening at the upper end thereof, and also has a floor section formed at the lower end of the straight cylindrical body section. The silica glass crucible has a light-transmitting layer through which a laser beam emitted at the silica glass crucible is transmitted from the inner surface of the silica glass crucible to the outer surface thereof, and also has a light-scattering layer positioned on the outside of the light-transmitting layer. The thickness of the light-transmitting layer when measured on the basis of the state of scattering of the laser beam emitted at the silica glass crucible falls within a prescribed range around the entire circumference of the silica glass crucible at the edge thereof.

Description

シリカガラスルツボ、シリカガラスルツボの製造方法Silica glass crucible and method for producing silica glass crucible
 本発明は、シリカガラスルツボ、シリカガラスルツボの製造方法に関する。 The present invention relates to a silica glass crucible and a method for producing a silica glass crucible.
 シリコン単結晶引き上げに用いられるシリカガラスルツボは、例えば、透明層と気泡含有層等を設けることにより、シリコン単結晶引き上げの際のブラウンリングの発生を減らし、そして、熱制御をよりし易くし、シリコン単結晶の結晶性等を向上させている。 Silica glass crucible used for silicon single crystal pulling, for example, by providing a transparent layer and a bubble-containing layer, etc., reduces the occurrence of brown ring during silicon single crystal pulling, and makes thermal control easier, The crystallinity of the silicon single crystal is improved.
 シリコン単結晶引き上げの際にシリカガラスルツボはシリコンの溶融温度の1410℃程度以上の高温にさらされる。気泡含有層中の気泡密度が一様でない場合、例えば、気泡含有層が複数の異なる気泡密度を有する層からなる場合、気泡密度が異なる層は熱膨張率が異なるので、シリコンの溶融温度の高温状態において、異なる気泡密度を有する層が受ける力はそれぞれ異なる。そのために、シリカガラスルツボの形状、シリコン溶液の質量、高温にさらされる時間等により、シリカガラスルツボは変形または破損する可能性がある。 During the pulling of the silicon single crystal, the silica glass crucible is exposed to a high temperature of about 1410 ° C. or higher, which is the melting temperature of silicon. When the bubble density in the bubble-containing layer is not uniform, for example, when the bubble-containing layer is composed of layers having a plurality of different bubble densities, the layers having different bubble densities have different coefficients of thermal expansion, so the silicon melting temperature is high. In the state, the forces experienced by the layers having different cell densities are different. Therefore, the silica glass crucible may be deformed or damaged depending on the shape of the silica glass crucible, the mass of the silicon solution, the time of exposure to high temperature, and the like.
 一方、例えば、シリカガラスルツボが厚み方向に単一の層から構成されている場合は、シリカガラスの構成原子がネットワーク状にシリカガラスルツボの厚み方向にも繋がり、その層内は同じシリカネットワークの構造となる。そのため、一度シリカガラスルツボにヒビが生じ、ネットワーク状の結合が分断されると当該ヒビがルツボの広範な領域に拡大し、その結果、シリカガラスルツボが割れる場合もある。他方、シリカガラスルツボが厚み方向に透明層および気泡含有層の複数の層から構成されている場合、あるいは、シリカガラスルツボが厚み方向に透明層または気泡含有層が複数の層から構成されている場合は、厚み方向に複数の界面があり、当該界面部を境として、シリカネットワークの構造が異なるため、当該界面部分でヒビの拡大が止まる。 On the other hand, for example, when the silica glass crucible is composed of a single layer in the thickness direction, the constituent atoms of the silica glass are connected to the thickness direction of the silica glass crucible in a network shape, and the same silica network is formed in the layer. It becomes a structure. Therefore, once a crack occurs in the silica glass crucible and the network-like bond is broken, the crack expands to a wide area of the crucible, and as a result, the silica glass crucible may break. On the other hand, when the silica glass crucible is composed of a plurality of transparent layers and bubble-containing layers in the thickness direction, or the silica glass crucible is composed of a plurality of transparent layers or bubble-containing layers in the thickness direction. In this case, since there are a plurality of interfaces in the thickness direction and the structure of the silica network is different from the boundary portion, the expansion of cracks stops at the interface portion.
 上述した通り、シリカガラスルツボの厚み方向の層構造は耐熱特性および耐衝撃特性等に多大な影響を与えるため、当該層構造測定することは重要である。しかし、シリカガラスが透明であるので、気泡の大きさが微細な時は、これらの層構造は目視では十分に観察することが出来ない場合がある。また、透明層中には、目視検査等により異常が見られなくても、微細な傷等の欠陥が存在する場合もある。 As described above, since the layer structure in the thickness direction of the silica glass crucible has a great influence on the heat resistance and impact resistance, it is important to measure the layer structure. However, since silica glass is transparent, when the size of the bubbles is fine, these layer structures may not be sufficiently observed visually. Further, in the transparent layer, a defect such as a fine scratch may exist even if no abnormality is observed by visual inspection or the like.
 これらのシリカガラスルツボの層構造や微細な傷等の欠陥は、シリコン単結晶引き上げの際に、シリコン融液にさらされるとシリコンインゴットに欠陥を誘発する可能性があり、シリカガラスルツボの層構造や微細な傷等の欠陥を測定することがシリカガラスルツボの設計、品質管理等において重要である。 These silica glass crucible layer structures and defects such as fine scratches may cause defects in the silicon ingot when exposed to silicon melt during the pulling of the silicon single crystal. It is important in the design and quality control of silica glass crucibles to measure defects such as fine scratches.
 シリコン単結晶引き上げ用のシリカガラスルツボは、一般に回転モールド法により製造されているため、形状、内部等の特性等を制御するのが難しい。製造されたシリカガラスルツボは以下の測定が行われるが、シリカガラスルツボの内表面を清浄に保つ必要があるため、非接触で行われる。 Since silica glass crucibles for pulling silicon single crystals are generally manufactured by a rotational mold method, it is difficult to control characteristics such as shape and interior. The manufactured silica glass crucible is subjected to the following measurement, but it is performed in a non-contact manner because it is necessary to keep the inner surface of the silica glass crucible clean.
 製造されたシリカガラスルツボの厚み方向の層の構造や欠陥等は、製造されたシリカガラスルツボを抜き取り、破壊検査で確認されている。一般に目視検査は光学顕微鏡等で対象を観察する場合と同様に透過光等を利用する。例えば、光源と観測地点とを結ぶ線上にスライスしたシリカガラスルツボを設置し光を照射して、シリカガラスルツボの透過光を目視であるいは画像化して、ガラス中の欠陥等の検出を行っている。 The structure, defects, etc. of the layer in the thickness direction of the manufactured silica glass crucible have been confirmed by destructive inspection after extracting the manufactured silica glass crucible. In general, visual inspection uses transmitted light or the like as in the case of observing an object with an optical microscope or the like. For example, a silica glass crucible sliced on a line connecting a light source and an observation point is installed and irradiated with light, and the transmitted light of the silica glass crucible is visually or imaged to detect defects in the glass. .
 また、シリカガラスルツボの検査方法としては、特許文献1記載の光学カメラの焦点深度を変えながらシリカガラスルツボの深さ方向で画像を取得して、シリカガラスルツボ中の気泡を非破壊的に検査し気泡含有率を測定する手法が知られている。 Further, as a method for inspecting the silica glass crucible, an image is acquired in the depth direction of the silica glass crucible while changing the depth of focus of the optical camera described in Patent Document 1, and air bubbles in the silica glass crucible are inspected nondestructively. A technique for measuring the bubble content is known.
 さらに、特許文献2記載のシリカガラスルツボの内表面の三次元座標を求め、複数の測定点においてシリカガラスルツボの内表面のラマンスペクトルを測定することによって、内表面のラマンスペクトルの三次元分布を決定する方法も知られている。 Furthermore, by obtaining the three-dimensional coordinates of the inner surface of the silica glass crucible described in Patent Document 2, and measuring the Raman spectrum of the inner surface of the silica glass crucible at a plurality of measurement points, the three-dimensional distribution of the Raman spectrum of the inner surface is obtained. Methods for determining are also known.
 さらにまた、特許文献3記載の、例えば、365nmよりも短い波長の紫外光をシリカガラスルツボの壁面に照射し、発生する波長400nmから600nmの光の蛍光斑点の数を測定することにより、シリコン単結晶引上げの際に生じる結晶欠損などの発生原因となるシリカガラスルツボ中に局在する不純物の検出方法、および特許文献4記載のレーザー光を入射し、入射によって生じる蛍光の波長と強度から不純物成分を特定し、かつ不純物成分の含有量を算出することにより、シリカガラスルツボ内表面の極表層に含まれる不純物成分を検出する方法が知られている。 Furthermore, as disclosed in Patent Document 3, for example, ultraviolet light having a wavelength shorter than 365 nm is irradiated on the wall surface of the silica glass crucible, and the number of fluorescent spots of the generated light having a wavelength of 400 nm to 600 nm is measured. A method for detecting impurities localized in a silica glass crucible that causes generation of crystal defects or the like that occur during crystal pulling, and a laser beam described in Patent Document 4, and the impurity component from the wavelength and intensity of fluorescence generated by the incidence. And a method for detecting the impurity component contained in the extreme surface layer of the inner surface of the silica glass crucible by calculating the content of the impurity component.
 しかしながら、目視検査では、光の透過面全体に光の透過方向に層状の構造が形成されている場合、当該層構造を検出できない。また、例えば欠陥等が微小な場合、当該欠陥による回折光等の強度が十分でなく、光源からの透過光に隠れてしまい、欠陥等が検出できない場合もある。特許文献1乃至3記載の検査方法はシリカガラスルツボの形状や内表面付近の状態を測定する方法であるので、目視検査等により検出できない前記シリカガラスルツボの厚み方向の透明層内部もしくは気泡含有層内部に存在する、さらなる層構造もしくは透明層内の微細な傷等の欠陥を検出できなかった。 However, in the visual inspection, when a layered structure is formed in the light transmission direction on the entire light transmission surface, the layer structure cannot be detected. Further, for example, when a defect or the like is very small, the intensity of diffracted light or the like by the defect is not sufficient, and the defect or the like may not be detected because it is hidden by transmitted light from a light source. Since the inspection methods described in Patent Documents 1 to 3 are methods for measuring the shape of the silica glass crucible and the state near the inner surface, the inside of the transparent layer or the bubble-containing layer in the thickness direction of the silica glass crucible that cannot be detected by visual inspection or the like A defect such as a further layer structure or a fine scratch in the transparent layer existing inside could not be detected.
特開2012-116713号公報JP 2012-116713 A 特開2013-133227号公報JP 2013-133227 A 特開平3-146496号公報Japanese Patent Laid-Open No. 3-146396 特開2012-17243号公報JP 2012-17243 A
 本発明の課題は、従来、検出することが出来なかった透明層もしくは気泡含有層の内部に存在する、さらなる層構造もしくは欠陥等を検出する技術を提供し、当該欠陥等が検出されず、また、適切な耐熱特性あるいは/または、耐衝撃特性を備えたシリカガラスルツボを提供することである。 An object of the present invention is to provide a technique for detecting a further layer structure or a defect or the like existing in a transparent layer or a bubble-containing layer that could not be detected conventionally, and the defect or the like is not detected. The object of the present invention is to provide a silica glass crucible having appropriate heat resistance characteristics and / or impact resistance characteristics.
 本発明者はシリカガラスルツボの上端面あるいはシリカガラスルツボの上端部近傍の内側表面にレーザー光を入射し、当該シリカガラスルツボ側壁部内部の厚み方向の各位置での散乱光を観察することにより、従来方法では検出出来なかった透明層もしくは気泡含有層の内部に存在する、さらなる層構造もしくは欠陥等が存在することを見出し、それらを非破壊かつ簡便に観察できる方法を発明した。 The inventor enters laser light on the upper surface of the silica glass crucible or the inner surface near the upper end of the silica glass crucible, and observes scattered light at each position in the thickness direction inside the side wall of the silica glass crucible. The inventors have found that there are further layer structures, defects, etc. existing inside the transparent layer or bubble-containing layer that could not be detected by the conventional method, and invented a method that can be easily and non-destructively observed.
 本方法発明によれば、非破壊かつ簡便な方法で透明層あるいは気泡含有層内部の層構造および欠陥等が観察できる。また、シリカガラスルツボの製造工程において、本発明による検査を行うことにより、ある種の欠陥等を有するシリカガラスルツボの判別が出来、当該欠陥等が検出されず、また、適切な耐熱特性あるいは/または、耐衝撃特性を備えたシリカガラスルツボを得ることができる。さらに、当該製造工程を経たシリカガラスルツボを使用することによって、ルツボの欠陥に起因するシリコン単結晶のインゴットの結晶欠陥の発生を低減することができる。 According to the present invention, the layer structure and defects inside the transparent layer or the bubble-containing layer can be observed by a nondestructive and simple method. In addition, in the production process of the silica glass crucible, by performing the inspection according to the present invention, the silica glass crucible having a certain type of defect can be identified, the defect or the like is not detected, and appropriate heat resistance characteristics or / Alternatively, a silica glass crucible having impact resistance characteristics can be obtained. Furthermore, by using the silica glass crucible that has undergone the manufacturing process, it is possible to reduce the occurrence of crystal defects in the silicon single crystal ingot due to the crucible defects.
本発明の第1の実施形態にかかるルツボ測定装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the crucible measuring apparatus concerning the 1st Embodiment of this invention. シリカガラスルツボにレーザー光を入射した際の様子を端面方向から測定した際の一例を示す図である。It is a figure which shows an example at the time of measuring the mode at the time of entering a laser beam into a silica glass crucible from an end surface direction. シリカガラスルツボにレーザー光を入射した際の様子を端面方向から測定した際の一例を示す図である。It is a figure which shows an example at the time of measuring the mode at the time of entering a laser beam into a silica glass crucible from an end surface direction. シリカガラスルツボにレーザー光を入射した際の様子を端面方向から測定した際の一例を示す図である。It is a figure which shows an example at the time of measuring the mode at the time of entering a laser beam into a silica glass crucible from an end surface direction. 第1の実施形態にかかるルツボ測定方法の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the crucible measuring method concerning 1st Embodiment. 実際の測定画像の一例を示す図である。It is a figure which shows an example of an actual measurement image. 実際の測定画像の一例を示す図である。It is a figure which shows an example of an actual measurement image. 実際の測定画像の一例を示す図である。It is a figure which shows an example of an actual measurement image. 実際の測定画像の一例を示す図である。It is a figure which shows an example of an actual measurement image. 図6で示すシリカガラスルツボの内部残留応力を示す図である。It is a figure which shows the internal residual stress of the silica glass crucible shown in FIG. 図7で示すシリカガラスルツボの内部残留応力を示す図である。It is a figure which shows the internal residual stress of the silica glass crucible shown in FIG. クロスラインレーザーを用いた際の散乱状況の一例を示す図である。It is a figure which shows an example of the scattering condition at the time of using a cross line laser. クロスラインレーザーを用いた際の散乱状況の一例を示す図である。It is a figure which shows an example of the scattering condition at the time of using a cross line laser. 第2の実施形態にかかるルツボ測定装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the crucible measuring apparatus concerning 2nd Embodiment. 第2の実施形態にかかるルツボ測定方法の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the crucible measuring method concerning 2nd Embodiment. ルツボの内表面と照明部との距離が散乱状況の測定に与える影響を示す図である。It is a figure which shows the influence which the distance of the inner surface of a crucible and an illumination part has on the measurement of a scattering condition. 第3の実施形態におけるルツボ測定装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the crucible measuring apparatus in 3rd Embodiment. 第3の実施形態におけるルツボ測定装置がラマンスペクトルの測定を行う位置の一例を示す図である。It is a figure which shows an example of the position where the crucible measuring apparatus in 3rd Embodiment measures a Raman spectrum. 第3の実施形態にかかるルツボ測定方法の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the crucible measuring method concerning 3rd Embodiment. 実際に測定したラマンスペクトルの一例である。It is an example of the Raman spectrum actually measured. 実際に測定したラマンスペクトルの一例である。It is an example of the Raman spectrum actually measured.
 本明細書中にあるレーザー光の散乱状況とは、レーザー散乱光の広がりや強度の状態をいうものとする。また、光透過層とは、透明層であってかつ傷等の欠陥等が存在しない領域をいうものとする。気泡含有層内あるいは透明層内に傷などの欠陥が存在する層を光散乱層というものとする。 In this specification, the laser light scattering state refers to the state of spread and intensity of the laser scattered light. The light transmission layer is a transparent layer and refers to a region where no defect such as a scratch exists. A layer having defects such as scratches in the bubble-containing layer or the transparent layer is referred to as a light scattering layer.
 本実施形態におけるシリカガラスルツボは、上端に開口部を有する円筒状の側壁部(直胴部)と、湾曲した底部と、側壁部と底部とを連結し且つ底部よりも曲率が大きいコーナー部と、を備えた形状を有している。また、シリカガラスルツボの側壁部の上端面は、円環状の平坦な面として形成されている。また、シリカガラスルツボは、例えば、当該シリカガラスルツボの内面から外面に向かって、目視や画像データなどに基づいて気泡が観察できない透明層と気泡が観察される気泡含有層とを備えるなど、複数の層を備えて構成されている。 The silica glass crucible in the present embodiment includes a cylindrical side wall portion (straight barrel portion) having an opening at the upper end, a curved bottom portion, a corner portion connecting the side wall portion and the bottom portion and having a larger curvature than the bottom portion. It has the shape provided with. Moreover, the upper end surface of the side wall part of the silica glass crucible is formed as an annular flat surface. Further, the silica glass crucible includes, for example, a transparent layer in which bubbles cannot be observed based on visual observation or image data, and a bubble-containing layer in which bubbles are observed, from the inner surface to the outer surface of the silica glass crucible. It is comprised with the layer of.
 本実施形態におけるシリカガラスルツボは、例えば、回転モールド法を用いて製造される。回転モールド法は、回転している(カーボン製の)モールドの中にシリカ粉を堆積させ、堆積させたシリカ粉層をアーク溶融することによりシリカガラスルツボを製造する方法である。シリカガラスルツボの開口端部付近の形状は不揃いになりやすいため、回転モールド法によるシリカガラスルツボの開口端部を所定幅で切断し、開口端部の形状を揃えている。 The silica glass crucible in the present embodiment is manufactured using, for example, a rotational mold method. The rotational mold method is a method for producing a silica glass crucible by depositing silica powder in a rotating mold (made of carbon) and arc melting the deposited silica powder layer. Since the shape in the vicinity of the opening end of the silica glass crucible is likely to be uneven, the opening end of the silica glass crucible by the rotational molding method is cut with a predetermined width to align the shape of the opening end.
 シリコン単結晶の製造は、例えば、上記シリカガラスルツボを回転させながら、その内側で多結晶シリコンを融解させて、そのシリコンの融液に種結晶を接触させ、ネッキング処理の後、種結晶を引き上げることで行われる。なお、一般に、シリカガラスルツボは、シリコン単結晶の引き上げごとに用いられる。つまり、シリカガラスルツボは、シリコン単結晶の引き上げごとに別途用意することが必要となる。 The silicon single crystal is produced, for example, by rotating the silica glass crucible, melting polycrystalline silicon inside, bringing the seed crystal into contact with the silicon melt, and pulling up the seed crystal after necking treatment. Is done. In general, the silica glass crucible is used every time the silicon single crystal is pulled. That is, the silica glass crucible needs to be prepared separately for each pulling of the silicon single crystal.
 上記シリカガラスルツボの例としては、シリカガラスルツボのうちの鉛直方向に形成されている部分の上端と下端の中間部分において、透明層の厚さに対する気泡含有層の厚さの比が0.7~1.4である構成により、加熱による体積膨張を最小限に抑えられ、シリカガラスルツボの変形、熔損を低減できる(特開2012-116713号公報)。 As an example of the silica glass crucible, the ratio of the thickness of the bubble-containing layer to the thickness of the transparent layer is 0.7 in the middle portion between the upper end and the lower end of the portion formed in the vertical direction of the silica glass crucible. With the configuration of ~ 1.4, volume expansion due to heating can be minimized, and deformation and melting of the silica glass crucible can be reduced (Japanese Patent Laid-Open No. 2012-116713).
 また、シリカガラスルツボの内面から外面に向かって、厚み方向に合成シリカガラス層、天然シリカガラス層、不純物含有シリカガラス層及び天然シリカガラス層とすることで、シリカガラスルツボの変形、熔損を低減できる(特開2012-6804号公報)。 Moreover, by making a synthetic silica glass layer, a natural silica glass layer, an impurity-containing silica glass layer and a natural silica glass layer in the thickness direction from the inner surface to the outer surface of the silica glass crucible, the deformation and melting of the silica glass crucible can be prevented. It can be reduced (Japanese Patent Laid-Open No. 2012-6804).
 さらに、ルツボ内表面の真円度とルツボ外表面の真円度とが、真円度と同一測定高さにおける最大肉厚Mに対して、何れも0.4以下とすることにより、シリコン単結晶引き上げの際に高い結晶化率を実現できる(特開2009-286651号公報)。 Furthermore, the roundness of the inner surface of the crucible and the roundness of the outer surface of the crucible are both 0.4 or less with respect to the maximum thickness M at the same measurement height as the roundness. A high crystallization rate can be realized during crystal pulling (Japanese Patent Laid-Open No. 2009-286651).
 上記文献のように、様々な構造を有するシリカガラスルツボが知られている。シリカガラスルツボには、シリコン単結晶の引き上げの際、ブラウンリングの発生の要因などを減らし、熱制御を容易とすること等を目的として、透明層と気泡含有層とが設けられている。透明層中には、目視や画像データ等から検出できない微細な傷などの欠陥が存在する場合がある。あるいは、目視においては1層で構成されているように見える気泡含有層が実際には複数の層構造により構成されていることがある。このように、シリカガラスルツボの厚み方向の層構造中には、目視検査等において検出することが難しい欠陥が等が存在する場合がある。 As in the above document, silica glass crucibles having various structures are known. The silica glass crucible is provided with a transparent layer and a bubble-containing layer for the purpose of reducing the cause of the occurrence of brown rings and facilitating thermal control when pulling up the silicon single crystal. In the transparent layer, there may be defects such as fine scratches that cannot be detected from visual observation or image data. Alternatively, the bubble-containing layer that appears to be composed of one layer when visually observed may actually be composed of a plurality of layer structures. Thus, in the layer structure in the thickness direction of the silica glass crucible, there may be a defect that is difficult to detect by visual inspection or the like.
 目視検査等で検出できない欠陥は、シリコン単結晶引き上げの際に、インゴット中に転移等の結晶欠陥の原因やシリカガラスルツボ破損の原因になるおそれがあるため、このような欠陥を持つシリカガラスルツボは事前に判別することが望ましい。しかしながら、上記のように、目視等においては、欠陥の存在するシリカガラスルツボも欠陥の存在しないシリカガラスルツボも、同様に透明層と気泡含有層を有するシリカガラスルツボに見え、それらのシリカガラスルツボを判別できなかった。 Defects that cannot be detected by visual inspection, etc., may cause crystal defects such as transitions and damage to the silica glass crucible during ingot pulling of the silicon single crystal. It is desirable to determine in advance. However, as described above, visually, the silica glass crucible having defects and the silica glass crucible having no defects appear to be silica glass crucibles having a transparent layer and a bubble-containing layer in the same manner. Could not be determined.
 本発明の一形態であるシリカガラスルツボの製造方法は、 回転モールド法により製造されるシリカガラスルツボの製造方法であって、上端に開口部を有する円筒状の直胴部と、湾曲した底部と、前記側壁部と前記底部とを連結し且つ底部よりも曲率が大きいコーナー部と、を有し、前記直胴部の上端が平坦に形成されているシリカガラスルツボの上端面あるいはシリカガラスルツボの上端部近傍の内側表面に入射されたレーザー光の、当該シリカガラスルツボ側壁部内部の厚み方向の各位置の散乱状況を測定する工程を有するという構成を採る。 A method for producing a silica glass crucible according to one embodiment of the present invention is a method for producing a silica glass crucible produced by a rotational mold method, and includes a cylindrical straight body having an opening at the upper end, a curved bottom, An upper end surface of a silica glass crucible or a silica glass crucible having a corner portion connecting the side wall portion and the bottom portion and having a curvature larger than that of the bottom portion, and wherein the upper end of the straight body portion is formed flat. A configuration is adopted in which there is a step of measuring the scattering state of each position in the thickness direction inside the side wall of the silica glass crucible of the laser light incident on the inner surface near the upper end.
 上記発明によると、まず、シリカガラスルツボの上端部近傍に半導体レーザーや固体レーザー等のをレーザー光を、シリカガラスルツボの内側、又は、外側から厚み方向に出射する。そして、シリカガラスルツボに入射したレーザー光は、シリカガラスルツボ側壁部内部の厚み方向の層の構造に応じて、透過し、あるいは、一部散乱する。 According to the above invention, first, a laser beam such as a semiconductor laser or a solid laser is emitted in the thickness direction from the inside or outside of the silica glass crucible near the upper end of the silica glass crucible. The laser light incident on the silica glass crucible is transmitted or partially scattered depending on the structure of the layer in the thickness direction inside the side wall of the silica glass crucible.
 具体的には、シリカガラスルツボ側壁部内部に入射したレーザー光は、光透過層においては、散乱、反射せずに透過する。一方、レーザー光は、光散乱層において、散乱する。 Specifically, the laser light incident on the side wall of the silica glass crucible is transmitted through the light transmission layer without being scattered or reflected. On the other hand, the laser light is scattered in the light scattering layer.
 シリカガラスルツボ内に入射したレーザー光の散乱状況を、例えば、カメラなどを用いて撮影し、シリカガラスルツボの厚み方向の各位置の散乱状況を測定する。 The scattering state of the laser light entering the silica glass crucible is photographed using, for example, a camera, and the scattering state at each position in the thickness direction of the silica glass crucible is measured.
 シリカガラスルツボに入射したレーザー光は、当該シリカガラスルツボの構造(透明層や気泡含有層、欠陥の有無など)に応じて、透過する、一部散乱する、など様々な散乱状況を起す。そのため、シリカガラスルツボの端面を撮影することにより、シリカガラスルツボの厚み方向の層の構造に応じた画像データを取得出来る。当該画像データを解析することで、シリカガラスルツボの厚み方向の層の構造を連続的に測定でき、非破壊で簡便にシリカガラスルツボの厚み方向の層構造を測定することが出来る。また、シリカガラスルツボを製造する際に上記過程を経ることで、シリカガラスルツボの厚み方向の層の構造を連続的に測定して、厚み方向の層構造において問題のあるシリカガラスルツボを判別し、望ましい厚み方向の層構造を有するシリカガラスルツボを製造できる。 The laser light incident on the silica glass crucible causes various scattering situations such as transmission or partial scattering depending on the structure of the silica glass crucible (transparent layer, bubble-containing layer, presence or absence of defects, etc.). Therefore, image data corresponding to the layer structure in the thickness direction of the silica glass crucible can be acquired by photographing the end face of the silica glass crucible. By analyzing the image data, the layer structure in the thickness direction of the silica glass crucible can be continuously measured, and the layer structure in the thickness direction of the silica glass crucible can be measured easily and non-destructively. In addition, by manufacturing the silica glass crucible through the above process, the structure of the layer in the thickness direction of the silica glass crucible is continuously measured to determine the silica glass crucible having a problem in the layer structure in the thickness direction. A silica glass crucible having a desirable layer structure in the thickness direction can be produced.
 このように、上記発明によると、シリカガラスルツボを製造する際に、測定の対象となるシリカガラスルツボの上端部近傍にレーザー光を出射し、シリカガラスルツボ内に入射されたレーザー光の、シリカガラスルツボ側壁部内部の厚み方向の各位置の散乱状況を測定する、という工程を有する。上記構成により、シリカガラスルツボを製造する際に、シリカガラスルツボの厚み方向の層の構造に応じて生じる、当該シリカガラスルツボの厚み方向の各位置の散乱状況を測定することが出来る。その結果、簡便に非破壊でシリカガラスルツボの厚み方向の層構造を測定でき、問題のあるシリカガラスルツボを判別して、望ましい厚み方向の層構造を有するシリカガラスルツボを製造できる。 Thus, according to the above invention, when producing a silica glass crucible, the laser light is emitted near the upper end of the silica glass crucible to be measured, and the laser light incident on the silica glass crucible is silica. It has the process of measuring the scattering condition of each position of the thickness direction inside a glass crucible side wall part. With the above configuration, when the silica glass crucible is manufactured, the scattering state at each position in the thickness direction of the silica glass crucible generated according to the structure of the layer in the thickness direction of the silica glass crucible can be measured. As a result, the layer structure in the thickness direction of the silica glass crucible can be measured easily and non-destructively, and the silica glass crucible having the desired layer structure in the thickness direction can be manufactured by discriminating the problematic silica glass crucible.
 上記発明によると、シリカガラスルツボ内に入射したレーザー光は、透明層であっても傷などの欠陥等があればそれにより散乱されるので、当該レーザー光の散乱を測定することで、目視では検出できない透明層中の欠陥等を検出出来る。また、シリカガラスルツボの最も内面側にシリコン単結晶の引き上げを行う際に必要となるだけの十分な厚さの光透過層が形成されているか否か等を測定できる。上記発明によると、光透過層の有無や光透過層の厚みなどのシリカガラスルツボの厚み方向の層構造を非破壊で容易に測定できる。よって、十分な厚さの光透過層が形成されているシリカガラスルツボ等、望ましい厚み方向の層構造を有するシリカガラスルツボを製造できる。 According to the above invention, the laser light incident into the silica glass crucible is scattered by any defects such as scratches even in the transparent layer, so by measuring the scattering of the laser light, Defects in the transparent layer that cannot be detected can be detected. It is also possible to measure whether or not a light transmission layer having a sufficient thickness necessary for pulling up the silicon single crystal is formed on the innermost surface side of the silica glass crucible. According to the said invention, the layer structure of the thickness direction of a silica glass crucible, such as the presence or absence of a light transmissive layer, and the thickness of a light transmissive layer, can be measured easily nondestructively. Therefore, a silica glass crucible having a desirable layer structure in the thickness direction, such as a silica glass crucible in which a sufficiently thick light transmission layer is formed, can be produced.
 シリカガラスルツボの内面側に薄い厚みの光透過層または光散乱層が形成されている場合、シリコン単結晶を製造する際に、当該光透過層が溶解等して、気泡含有層や傷等の欠陥を含んだ光散乱層がシリコン融液にさらされる。シリカガラスルツボの光散乱層に含まれる気泡や傷等の欠陥による凹凸部分がシリコン融液とシリカガラスルツボとの接触面に現れ、いわゆるブラウンリングが当該接触面に集中的に生じる。そのため、引き上げたシリコン単結晶の結晶欠陥等の不具合となる場合がある。従って、シリカガラスルツボの内面側にはある程度の厚みの光透過層が形成されていることが望ましく、シリカガラスルツボの厚み方向の層構造を測定することが重要となる。 When a thin light transmission layer or light scattering layer is formed on the inner surface side of the silica glass crucible, when the silicon single crystal is produced, the light transmission layer is dissolved, etc. The light scattering layer containing defects is exposed to the silicon melt. Irregularities due to defects such as bubbles and scratches contained in the light scattering layer of the silica glass crucible appear on the contact surface between the silicon melt and the silica glass crucible, and so-called brown rings are concentrated on the contact surface. Therefore, there may be a problem such as a crystal defect of the pulled silicon single crystal. Therefore, it is desirable that a light transmission layer with a certain thickness is formed on the inner surface side of the silica glass crucible, and it is important to measure the layer structure in the thickness direction of the silica glass crucible.
 さらに、上記発明によると、光散乱層中に層構造があれば、入射レーザー光は散乱され、層状の構造を反映した散乱光が生じるため、散乱光を測定することによって当該層構造を知ることができる。例えば、レーザー光の散乱光強度がある範囲内で均一であれば、光散乱層がルツボの厚み方向に1層で構成されていることがわかる。 Further, according to the above invention, if there is a layer structure in the light scattering layer, the incident laser light is scattered, and scattered light reflecting the layered structure is generated, so that the layer structure is known by measuring the scattered light. Can do. For example, if the scattered light intensity of the laser light is uniform within a certain range, it can be seen that the light scattering layer is composed of one layer in the thickness direction of the crucible.
 気泡含有層に複数の層が含まれている場合、各層の熱膨張率の違いなどから、シリカガラスルツボの強度等に問題が生じるおそれがある。そこで、気泡含有層を単一層とすることで、熱膨張率の違いなどに起因するシリカガラスルツボの破損の恐れを低減出来る。熱膨張率の違いなどに起因するシリカガラスルツボの破損を低減するためには、気泡含有層には複数の構造が含まれないことが望ましい。つまり、上記のように、光散乱層や気泡含有層の層構造を測定することで、熱膨張率の違いなどに起因する破損の可能性が低いシリカガラスルツボを判別できる。 When a plurality of layers are included in the bubble-containing layer, there may be a problem in the strength of the silica glass crucible due to the difference in the coefficient of thermal expansion of each layer. Therefore, by making the bubble-containing layer as a single layer, it is possible to reduce the risk of breakage of the silica glass crucible due to the difference in coefficient of thermal expansion. In order to reduce the breakage of the silica glass crucible due to the difference in thermal expansion coefficient or the like, it is desirable that the bubble-containing layer does not include a plurality of structures. That is, as described above, by measuring the layer structure of the light scattering layer or the bubble-containing layer, it is possible to determine a silica glass crucible with a low possibility of breakage due to a difference in coefficient of thermal expansion.
 さらにまた、上記発明によると、例えば、光散乱層の厚さや光透過層と光散乱層との境界の形状などを測定でき、望ましい光散乱層の厚さを有するシリカガラスルツボや光透過層と光散乱層との境界の界面が望ましい形状であるシリカガラスルツボの判別ができる。そして、望ましい厚み方向の層構造を有するシリカガラスルツボを製造することが可能となる。 Furthermore, according to the above invention, for example, the thickness of the light scattering layer and the shape of the boundary between the light transmission layer and the light scattering layer can be measured, and a silica glass crucible or light transmission layer having a desirable light scattering layer thickness can be used. A silica glass crucible having a desirable shape at the boundary interface with the light scattering layer can be identified. And it becomes possible to manufacture a silica glass crucible having a desirable layer structure in the thickness direction.
 結晶引き上げの工程では、シリコン融液界面はシリコン引き上げ装置のヒーターに対して同じ位置にあるように調整され、結晶引き上げが進むにつれ、ルツボは上方に移動するよう制御される。そして、シリコン単結晶引き上げにおいて、シリコン単結晶の成長部分すなわちシリコン融液がシリコン単結晶へとなっていく融液と結晶の境界部分の温度はシリコンの融点になっており、この境界部分を安定化させるためには、非常に繊細な温度制御が必要である。 In the crystal pulling step, the silicon melt interface is adjusted to be at the same position with respect to the heater of the silicon pulling device, and the crucible is controlled to move upward as the crystal pulling proceeds. In the pulling of the silicon single crystal, the temperature of the silicon single crystal growth part, that is, the boundary between the melt and the crystal where the silicon melt becomes the silicon single crystal is the melting point of silicon, and this boundary part is stabilized. In order to achieve this, very delicate temperature control is required.
 仮にシリカガラスルツボが透明層のみから構成されている場合、シリカガラスルツボ内のシリコン融液をヒーターで加熱する際、ヒーターからの輻射熱がシリカガラスルツボを透過して直接シリコン融液界面にも伝わるため、温度制御が困難となる場合がある。シリコン単結晶引き上げの際に適切な温度コントロールを行うためには、透明層の外側に気泡含有層が設けられ、当該気泡含有層は適切な厚さを有していることが望ましい。従って、光散乱層の厚みを測定することで、適切な温度コントロールを容易に行うことが可能なシリカガラスルツボを判別することが可能となる。そして、望ましい厚み方向の層構造を有するシリカガラスルツボを製造することが可能となる。 If the silica glass crucible is composed of only a transparent layer, when the silicon melt in the silica glass crucible is heated with a heater, the radiant heat from the heater passes through the silica glass crucible and is directly transmitted to the silicon melt interface. Therefore, temperature control may be difficult. In order to perform appropriate temperature control when pulling up the silicon single crystal, it is desirable that a bubble-containing layer is provided outside the transparent layer, and the bubble-containing layer has an appropriate thickness. Therefore, by measuring the thickness of the light scattering layer, it is possible to discriminate a silica glass crucible that can easily perform appropriate temperature control. And it becomes possible to manufacture a silica glass crucible having a desirable layer structure in the thickness direction.
 そしてまた、上記発明によると、シリカガラスルツボ内に入射されたレーザー光は、シリカガラスルツボの厚み方向に形成されている界面で散乱するため、当該レーザー光の散乱を測定することで、当該界面を測定出来る。例えば、シリカガラスルツボにレーザー光を入射した際に、当該レーザー光の散乱光が点々と観察される場合は当該シリカガラスルツボには複数の界面が形成されていることがわかる。 In addition, according to the invention, the laser light incident in the silica glass crucible is scattered at the interface formed in the thickness direction of the silica glass crucible. Can be measured. For example, when laser light is incident on a silica glass crucible, if scattered light of the laser light is observed in various places, it can be understood that a plurality of interfaces are formed in the silica glass crucible.
 一般に、シリカガラスルツボは、同一層内ではシリカネットワークの構造は同じ状態にある。そのため、一度ヒビが生じると当該ヒビが途中で止まらずに層内に拡大し、シリカガラスルツボが割れる場合もある。一方、厚み方向に界面があると、各層内でのシリカネットワークの構造はが異なるため、当該界面部分でヒビの拡大が止まり、ヒビの拡大によるシリカガラスルツボの割れを防ぐことができる。 Generally, silica glass crucibles have the same silica network structure in the same layer. Therefore, once a crack occurs, the crack does not stop in the middle but expands in the layer, and the silica glass crucible may break. On the other hand, if there is an interface in the thickness direction, the structure of the silica network in each layer is different, so that the expansion of cracks stops at the interface portion, and cracking of the silica glass crucible due to the expansion of cracks can be prevented.
 例えば、シリカガラスルツボに仮想温度以上の温度でアニール処理を行うことで、望ましい層構造に調整層することができる。従って、上記発明によりシリカガラスルツボを選別し、アニール処理を行うことにより厚み方向に新たな層作成し、割れにくいルツボを製造できる。 For example, the silica glass crucible can be annealed at a temperature equal to or higher than the fictive temperature to form an adjustment layer with a desired layer structure. Therefore, by selecting the silica glass crucible according to the above invention and performing an annealing treatment, a new layer can be formed in the thickness direction, and a crucible that is difficult to break can be manufactured.
 シリカガラスルツボの端面方向から当該シリカガラスルツボの厚み方向の各位置にレーザー光を出射し、当該出射したレーザー光に応じて生じるラマン散乱を測定することによって、シリカガラスルツボの厚み方向の層構造を把握することが出来る。つまり、上記工程の代わりとして、入射したレーザー光に応じて生じるラマン散乱を測定するよう構成してもよい。 Layer structure in the thickness direction of the silica glass crucible by emitting laser light from the end face direction of the silica glass crucible to each position in the thickness direction of the silica glass crucible and measuring Raman scattering generated according to the emitted laser light Can be grasped. That is, as an alternative to the above process, the Raman scattering generated according to the incident laser beam may be measured.
 また、上記シリカガラスルツボの製造方法は、前記レーザー光の散乱状況を測定する工程は、シリカガラスルツボの内側から当該シリカガラスルツボの厚み方向に向かってレーザー光を出射し、測定の対象となるシリカガラスルツボのうちのレーザー光を入射される部分の上端開口部周辺の円環状の端面方向からレーザー光のシリカガラスルツボ側壁部内部の厚み方向の各位置の散乱状況を測定するという構成を採る。 Further, in the method for producing the silica glass crucible, the step of measuring the scattering state of the laser light is a measurement target by emitting laser light from the inside of the silica glass crucible toward the thickness direction of the silica glass crucible. In the silica glass crucible, the scattering state of each position in the thickness direction inside the side wall of the silica glass crucible is measured from the annular end surface around the upper end opening of the portion where the laser light is incident. .
 本構成において、シリカガラスルツボを測定する工程として、ルツボ内側から当該シリカガラスルツボの厚み方向に向かって、レーザー光を出射するように自然冷却されたシリカガラスルツボの内側にレーザー光源を設置する。 In this configuration, as a step of measuring the silica glass crucible, a laser light source is installed inside the silica glass crucible naturally cooled so as to emit laser light from the inside of the crucible toward the thickness direction of the silica glass crucible.
 本発明は、シリカガラスルツボ内に入射されたレーザー光の散乱状況を、例えば、当該シリカガラスルツボの上端開口部周辺の円環状の端面方向からカメラなどを用いて撮影するという構成としてもよい。シリカガラスルツボの内側から外側に向かって、レーザー光が入射され、そして、シリカガラスルツボには、様々な散乱状況を生る。そこで、シリカガラスルツボ内に入射されたレーザー光の散乱状況を、シリカガラスルツボの端面方向から撮影すると、シリカガラスルツボの厚み方向の層の構造に応じた画像データを取得出来る。当該画像データを解析することで、非破壊で容易にシリカガラスルツボの厚み方向の層の構造を測定出来、望ましい品質を有するシリカガラスルツボを判別することができる。そして、望ましい厚み方向の層構造を有するシリカガラスルツボを製造することが可能となる。 The present invention may be configured such that the state of scattering of the laser light incident into the silica glass crucible is photographed by using a camera or the like from the annular end surface direction around the upper end opening of the silica glass crucible. Laser light is incident from the inside to the outside of the silica glass crucible, and various scattering situations occur in the silica glass crucible. Therefore, when the scattering state of the laser light incident on the silica glass crucible is photographed from the end face direction of the silica glass crucible, image data corresponding to the layer structure in the thickness direction of the silica glass crucible can be acquired. By analyzing the image data, the structure of the layer in the thickness direction of the silica glass crucible can be easily measured without destruction, and a silica glass crucible having a desired quality can be discriminated. And it becomes possible to manufacture a silica glass crucible having a desirable layer structure in the thickness direction.
 シリカガラスルツボの内側からシリカガラスルツボの厚み方向に向かってレーザー光を出射し、端面方向からレーザー光のシリカガラスルツボ側壁部内部の散乱状況を測定することにより、シリカガラスルツボの厚み方向の層構造に加えて、当該層構造中に存在する目視で確認できない欠陥を非破壊で容易に判別できる。また、光透過層の厚さ等も非破壊で容易に測定できる。当該測定結果により、望ましい厚み方向の層構造を有するシリカガラスルツボを判別ができる。 Laser light is emitted from the inside of the silica glass crucible toward the thickness direction of the silica glass crucible, and the scattering state of the laser light inside the silica glass crucible side wall portion is measured from the end surface direction, whereby the layer in the thickness direction of the silica glass crucible In addition to the structure, it is possible to easily determine non-destructive defects that cannot be visually confirmed in the layer structure. Further, the thickness of the light transmission layer can be easily measured without breaking. Based on the measurement result, a silica glass crucible having a desirable layer structure in the thickness direction can be identified.
 また、上記シリカガラスルツボの製造方法は、前記レーザー光の散乱状況を測定する工程は、出射するレーザー光の波長に応じた所定の波長の照明光をシリカガラスルツボに照射し、前記照明光の照射下で前記レーザー光の散乱状況を測定するという構成を採る。 Further, in the method for producing the silica glass crucible, the step of measuring the scattering state of the laser light may be performed by irradiating the silica glass crucible with illumination light having a predetermined wavelength corresponding to the wavelength of the emitted laser light. A configuration is adopted in which the scattering state of the laser beam is measured under irradiation.
 本構成によると、例えば、シリカガラスルツボに対して赤色のレーザー光を出射する際には、青色の照明光を照射する。この場合、レーザー光の色に近い色相の橙色の照明などはレーザー光の散乱を目立たなくなるため避けた方がよい。 According to this configuration, for example, when emitting red laser light to a silica glass crucible, blue illumination light is irradiated. In this case, it is better to avoid orange illumination having a hue close to the color of the laser light because the scattering of the laser light becomes inconspicuous.
 このように、レーザー光の波長に応じて調整される照明光下でのレーザー光の散乱状況の測定により、当該レーザー光の散乱状況をより明確に出来る。そして、高精度でシリカガラスルツボの厚み方向の層の構造を測定出来、非破壊で容易に望ましい厚み方向の層構造を有するシリカガラスルツボの判別が出来る。 Thus, by measuring the scattering state of laser light under illumination light adjusted according to the wavelength of the laser light, the scattering state of the laser light can be made clearer. And the structure of the layer in the thickness direction of the silica glass crucible can be measured with high accuracy, and the silica glass crucible having a desirable layer structure in the thickness direction can be easily determined without destruction.
 また、上記シリカガラスルツボの製造方法は、前記レーザー光の散乱状況を測定する工程は、シリカガラスルツボに水平レーザーを出射し、シリカガラスルツボ内に入射された前記水平レーザーの、シリカガラスルツボの厚み方向の各位置の散乱状況を測定する工程を有するという構成を採る。 Further, in the method for producing the silica glass crucible, the step of measuring the state of scattering of the laser light is performed by emitting a horizontal laser to the silica glass crucible and entering the silica glass crucible of the horizontal laser incident on the silica glass crucible. A configuration is adopted in which a step of measuring a scattering state at each position in the thickness direction is included.
 一般的に水平レーザーとは、地面と水平方向のラインレーザーを言う。本構成によると、シリカガラスルツボに対して、水平レーザーをシリカガラスルツボに入射し、広範囲に亘るシリカガラスルツボの構造に応じた様々なレーザー光の散乱状況を光学式カメラ等を用いて撮影し、その画像データが取得できる。 Generally speaking, a horizontal laser is a line laser that is horizontal to the ground. According to this configuration, a horizontal laser is incident on the silica glass crucible with the silica glass crucible, and various laser light scattering conditions corresponding to the structure of the silica glass crucible over a wide range are photographed using an optical camera or the like. The image data can be acquired.
 このように構成することで、上記のような水平方向のレーザー光が入射する広範囲のシリカガラスルツボの厚み方向の層の構造を一度に、効率的にシリカガラスルツボの厚み方向の層の構造を測定でき、望ましい厚み方向の層構造を有するシリカガラスルツボをより容易に判別できる。 By configuring in this way, the layer structure in the thickness direction of the silica glass crucible in a wide range where the laser beam in the horizontal direction as described above is incident can be efficiently formed at the same time. The silica glass crucible having a desirable layered structure in the thickness direction can be measured more easily.
 シリカガラスルツボは、回転しているカーボン製モールドにシリカ粉を堆積させ、堆積させたシリカ粉層をアーク溶融することにより製造される。従って、透明層あるいは気泡含有層の層構造はルツボの中心軸に対して対称である。一方、シリカ粉が堆積していくので、シリカガラスルツボの高さ方向には層構造の対称性は見られない。従って、シリカガラスルツボの特性を把握するのに、高さ方向の層構造の分布を知ることがより重要である。 The silica glass crucible is manufactured by depositing silica powder on a rotating carbon mold and arc melting the deposited silica powder layer. Therefore, the layer structure of the transparent layer or the bubble-containing layer is symmetric with respect to the central axis of the crucible. On the other hand, since silica powder accumulates, the symmetry of the layer structure is not seen in the height direction of the silica glass crucible. Therefore, in order to grasp the characteristics of the silica glass crucible, it is more important to know the distribution of the layer structure in the height direction.
 ここで、入射レーザー光として垂直レーザーを用いると、ルツボ高さ方向の層構造および気泡含有層内の層構造等を詳細に知ること下できる。垂直レーザーとは、垂直方向のラインレーザー(例えば、水平レーザーを90度傾けたもの)をいう。さらに、クロスラインレーザーを用いることで、水平レーザーと垂直レーザーの利点を併せ持つことも出来る。 Here, when a vertical laser is used as the incident laser beam, the layer structure in the crucible height direction and the layer structure in the bubble-containing layer can be known in detail. The vertical laser refers to a vertical line laser (for example, a horizontal laser tilted by 90 degrees). Furthermore, by using a cross-line laser, it is possible to combine the advantages of a horizontal laser and a vertical laser.
 また、レーザー光を斜め方向(シリカガラスルツボの深さ方向に向かって斜め方向。角度は任意で構わない)に出射することで、例えば、欠陥がどの深さに存在するのかを判別することも出来ることになる。 In addition, by emitting laser light in an oblique direction (oblique direction toward the depth direction of the silica glass crucible, the angle may be arbitrary), for example, it is possible to determine at which depth a defect exists. It will be possible.
 このように、本発明は、様々にレーザーを用いることが出来る。 Thus, the present invention can use various lasers.
 また、上記シリカガラスルツボの製造方法は、前記レーザー光の散乱状況を測定する工程は、シリカガラスルツボの端面方向から当該シリカガラスルツボの厚み方向の各位置にレーザー光を出射し、前記出射したレーザー光に応じて生じるラマン散乱を前記レーザー光の散乱状況として前記各位置で測定するという構成を採る。 Further, in the method for producing the silica glass crucible, in the step of measuring the scattering state of the laser light, the laser light is emitted from the end surface direction of the silica glass crucible to each position in the thickness direction of the silica glass crucible, and is emitted. A configuration is adopted in which Raman scattering generated in response to laser light is measured at each position as the scattering state of the laser light.
 本構成によると、例えば、シリカガラスルツボからの散乱光を、レイリー光除去フィルタを通してレイリー光を除去した上で、回折格子などの分光器を通して分光し、検出器などを用いて検出する。その後、情報処理装置などを用いてラマンシフトに変換して表示する。 According to this configuration, for example, scattered light from a silica glass crucible is removed through a Rayleigh light removal filter, and then dispersed through a spectroscope such as a diffraction grating and detected using a detector or the like. Thereafter, the information is converted into a Raman shift using an information processing apparatus or the like and displayed.
 一般に、シリカガラスに対してラマン測定をする場合、平面4員環に帰属されるピーク、平面3員環に帰属されるピーク、等の複数のピークが測定されることが知られている。しかしながら、シリカガラスルツボの厚み方向に複数の層構造が含まれている場合は、各層でシリカネットワークの構造が異なるため、厚み方向の各位置でラマンシフトの各ピークの波数の値にずれが生じる。従って、シリカガラスルツボの厚み方向の各位置でラマンシフトの測定を行うことで、各層の層構造が測定できる。 Generally, when performing Raman measurement on silica glass, it is known that a plurality of peaks such as a peak attributed to a planar four-membered ring and a peak attributed to a planar three-membered ring are measured. However, when a plurality of layer structures are included in the thickness direction of the silica glass crucible, the structure of the silica network is different in each layer, and thus the wave number value of each peak of the Raman shift varies at each position in the thickness direction. . Therefore, the layer structure of each layer can be measured by measuring the Raman shift at each position in the thickness direction of the silica glass crucible.
 上記構成によれば、透明層に見える部分でも、層構造が異なれば、その旨検出できる。また、気泡含有層が複数の層構造を有していても、その旨検出できる。その結果、シリコン単結晶の引き上げの際に変形が起こりやすいシリカガラスルツボ等を判別できる。 According to the above configuration, even a portion that looks like a transparent layer can be detected if the layer structure is different. Further, even if the bubble-containing layer has a plurality of layer structures, this can be detected. As a result, a silica glass crucible or the like that is likely to be deformed when the silicon single crystal is pulled can be identified.
 また、上記シリカガラスルツボの製造方法は、前記レーザー光の散乱状況を測定する工程は、予め定められた所定の間隔でシリカガラスルツボの全周に亘ってレーザー光を出射し、出射したレーザー光に応じた前記レーザー光の散乱状況をそれぞれ測定するという構成を採る。 Further, in the method for producing a silica glass crucible, in the step of measuring the scattering state of the laser light, the laser light is emitted over the entire circumference of the silica glass crucible at predetermined intervals, and the emitted laser light is emitted. The laser light scattering state corresponding to each is measured.
 例えば、シリカガラスルツボの内側から、シリカガラスルツボの厚み方向に対してレーザー光を出射する場合、レーザー光を出射した状態で、レーザー光源を回転させることで、シリカガラスルツボの全周に亘って、レーザー光を入射できる。 For example, when laser light is emitted from the inside of the silica glass crucible in the thickness direction of the silica glass crucible, the laser light source is rotated in a state where the laser light is emitted, so that the entire circumference of the silica glass crucible is obtained. Laser light can be incident.
 そして、散乱状況を撮影するカメラをレーザー光源の回転に合わせて移動させることにより、レーザー光源の回転によりシリカガラスルツボの全周に亘って生じるレーザー光の散乱状況を撮影できる。 Then, by moving the camera that captures the scattering state in accordance with the rotation of the laser light source, it is possible to capture the scattering state of the laser light generated over the entire circumference of the silica glass crucible by the rotation of the laser light source.
 本構成により、シリカガラスルツボの全周の厚み方向の構造を容易に測定することができ、シリカガラスルツボの全周にわたって欠陥が検出されないシリカガラスルツボを判別することが可能となり、シリカガラスルツボの全周にわたって望ましい厚み方向の層構造を有するシリカガラスルツボを製造できる。 With this configuration, the structure in the thickness direction of the entire circumference of the silica glass crucible can be easily measured, and it becomes possible to determine a silica glass crucible in which no defect is detected over the entire circumference of the silica glass crucible. A silica glass crucible having a desirable layer structure in the thickness direction over the entire circumference can be produced.
 以下、図面を参照しながら本発明の好ましい実施の形態について詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. *
 (実施例)
 [実施形態1]
 本発明の第1の実施形態におけるルツボ測定装置、ルツボ測定方法、ルツボの製造方法、シリカガラスルツボを図1乃至図13を参照して説明する。図は、ルツボ測定装置の構成の一例を示す図である。図2乃至図4は、シリカガラスルツボにレーザー光を入射した際の様子を端面方向から測定した際の一例を示す図である。図5は、ルツボ測定方法の流れの一例を示すフローチャートである。図6乃至図9は、実際の測定画像の一例を示す図である。図10は、図6で示すシリカガラスルツボの内部残留応力を示す図である。図11は、図7で示すシリカガラスルツボの内部残留応力を示す図である。図12、図13は、クロスラインレーザーを用いた際の散乱状況の一例を示す図である。
(Example)
[Embodiment 1]
A crucible measuring device, a crucible measuring method, a crucible manufacturing method, and a silica glass crucible according to a first embodiment of the present invention will be described with reference to FIGS. The figure shows an example of the configuration of the crucible measuring apparatus. 2 to 4 are diagrams illustrating an example of a state where laser light is incident on a silica glass crucible when measured from the end surface direction. FIG. 5 is a flowchart showing an example of the flow of the crucible measurement method. 6 to 9 are diagrams illustrating examples of actual measurement images. FIG. 10 is a diagram showing the internal residual stress of the silica glass crucible shown in FIG. FIG. 11 is a diagram showing the internal residual stress of the silica glass crucible shown in FIG. 12 and 13 are diagrams illustrating an example of a scattering situation when a crossline laser is used.
 本実施形態では、透明層と気泡含有層とを有するシリカガラスルツボ1の側壁部内部の厚み方向の各位置のレーザー光の散乱状況を測定するルツボ測定装置について説明する。また、上記ルツボ測定装置を用いて行われるルツボ測定方法について説明する。また、上記ルツボを測定する方法を経て製造されるシリカガラスルツボの製造方法について説明する。また、上記ルツボ測定を経て製造されるシリカガラスルツボ1について説明する。本実施形態におけるルツボ測定装置は、後述するように、シリカガラスルツボ1の内側から当該シリカガラスルツボ1の上端部近傍の厚み方向に向かってレーザー光を出射するよう構成されている。そして、ルツボ測定装置は、シリカガラスルツボ1を端面方向から撮影することで、シリカガラスルツボ1の側壁部内部の厚み方向の各位置のレーザー光の散乱状況を測定する。これにより、後述するように、シリカガラスルツボ1の厚み方向の構造を把握することが出来るようになる。つまり、本実施形態で説明するルツボ測定装置やルツボ測定方法を用いることで、光透過層(透明層であって傷などの欠陥のない領域。つまり、レーザー光を散乱せずに透過する層)と光散乱層(気泡含有層や透明層であっても傷などの欠陥のある領域。レーザー光を散乱する層)とを測定することが出来る。その結果、透明層中に存在する傷などの欠陥を容易に発見することが可能となる。また、光透過層や光散乱層の厚さなどを測定することが可能となる。また、シリカガラスルツボを製造する際に上記のようにシリカガラスルツボの厚み方向の層構造を測定することで、シリコン単結晶引き上げの際に問題が生じる可能性を低減させたシリカガラスルツボ1や割れにくいシリカガラスルツボ1を製造することが可能となる。 In this embodiment, a crucible measuring apparatus that measures the scattering state of laser light at each position in the thickness direction inside the side wall of the silica glass crucible 1 having a transparent layer and a bubble-containing layer will be described. In addition, a crucible measurement method performed using the crucible measurement apparatus will be described. Moreover, the manufacturing method of the silica glass crucible manufactured through the method of measuring the said crucible is demonstrated. Moreover, the silica glass crucible 1 manufactured through the said crucible measurement is demonstrated. The crucible measuring apparatus according to the present embodiment is configured to emit laser light from the inside of the silica glass crucible 1 toward the thickness direction near the upper end of the silica glass crucible 1 as described later. Then, the crucible measuring device measures the scattering state of the laser light at each position in the thickness direction inside the side wall of the silica glass crucible 1 by photographing the silica glass crucible 1 from the end surface direction. Thereby, as will be described later, the structure in the thickness direction of the silica glass crucible 1 can be grasped. That is, by using the crucible measuring apparatus and the crucible measuring method described in this embodiment, a light transmission layer (a transparent layer that is free from defects such as scratches, that is, a layer that transmits laser light without scattering). And a light scattering layer (a region containing a defect such as a flaw even in a bubble-containing layer or a transparent layer; a layer that scatters laser light). As a result, defects such as scratches existing in the transparent layer can be easily found. In addition, the thickness of the light transmission layer and the light scattering layer can be measured. Further, by measuring the layer structure in the thickness direction of the silica glass crucible as described above when producing the silica glass crucible, the silica glass crucible 1 that reduces the possibility of problems when pulling up the silicon single crystal, It becomes possible to manufacture the silica glass crucible 1 which is not easily broken.
 目、フォトダイオード、光電子増倍管など光検出器に光が入らないと光を感知できず、例えば、可視領域の波長のレーザー光を光の進行方向と垂直な方向から目視しても光は視認できない。しかしこの場合、空気中のごみや粒子などによる反射・屈折によりレーザー光が散乱されれば、当該散乱により目等に光が入るのでレーザー光は視認される。 If light does not enter the light detector such as eyes, photodiodes, photomultiplier tubes, etc., light cannot be sensed.For example, even if laser light having a wavelength in the visible region is viewed from a direction perpendicular to the light traveling direction, the light is not Cannot be seen. However, in this case, if the laser beam is scattered by reflection or refraction by dust or particles in the air, the laser beam is visually recognized because the light enters the eyes or the like due to the scattering.
 可視領域の波長のレーザー光は、空気中同様、シリカガラス中でもほとんど散乱しないので、光の進行方向と垂直な方向からは視認できない。シリカガラスを構成する原子にレーザー光の光子が相互作用すると、当該原子が形成する電気双極子の振動が励起され、それから光子が放出される。放出された光子が2次波となる。 Since laser light having a wavelength in the visible region hardly scatters in silica glass as in air, it cannot be seen from a direction perpendicular to the traveling direction of light. When the photon of the laser beam interacts with the atoms constituting the silica glass, the vibration of the electric dipole formed by the atom is excited, and then the photon is emitted. The emitted photon becomes the secondary wave.
 多くの原子が、まばらかつランダムに分布する場合、これらの2次波を任意の方向で観測すると、その強度は各原子からの2次波の強度の和になり、一般に0とはならない。これが光散乱の場合である。これに対してシリカガラスを構成する原子が密にあり、その密度が一様であるときには、各原子からの2次波は互いに干渉して特定の方向以外では強度が0となる。干渉の結果で消えない2次波は反射波または屈折波となる。 When many atoms are sparsely and randomly distributed, when these secondary waves are observed in an arbitrary direction, the intensity is the sum of the secondary wave intensity from each atom, and generally does not become zero. This is the case of light scattering. On the other hand, when the atoms constituting the silica glass are dense and the density is uniform, the secondary waves from each atom interfere with each other, and the intensity becomes zero except in a specific direction. Secondary waves that do not disappear as a result of interference become reflected or refracted waves.
 光散乱は一般に物質が均一でないことに起因するものであり、不均一なシリカガラス中の空隙・気泡・欠陥等の存在によってレーザー光が散乱されると、光が視認できるようになる。したがってレーザー光が散乱されることによって、空隙、気泡、欠陥、および層の境界等の存在を知ることができる。 Light scattering is generally caused by non-uniform substances. When laser light is scattered due to the presence of voids, bubbles, defects, etc. in non-uniform silica glass, the light becomes visible. Therefore, the presence of voids, bubbles, defects, layer boundaries, and the like can be known by scattering the laser light.
 本実施形態における測定対象であるシリカガラスルツボ1は、上端に開口部を有する円筒状の側壁部(直胴部)と、湾曲した底部と、側壁部と底部とを連結し且つ底部よりも曲率が大きいコーナー部と、を備えた形状を有する。また、シリカガラスルツボ1の側壁部の上端面は、円環状の平坦な面として形成されている。本実施形態におけるシリカガラスルツボ1は、例えば、回転している(カーボン製の)モールドの中にシリカ粉を堆積させ、堆積させたシリカ粉層をアーク溶融することによりシリカガラスルツボを製造するほうほうである回転モールド法で製造される。また、シリカガラスルツボ1の開口端部付近の形状は不揃いになりやすいため、回転モールド法によるシリカガラスルツボ1の開口端部を所定幅で切断し、開口端部の形状を揃える。 A silica glass crucible 1 that is a measurement target in the present embodiment connects a cylindrical side wall (straight barrel) having an opening at the upper end, a curved bottom, a side wall and a bottom, and has a curvature that is greater than that of the bottom. Has a large corner portion. Moreover, the upper end surface of the side wall part of the silica glass crucible 1 is formed as an annular flat surface. The silica glass crucible 1 in the present embodiment is a method for producing a silica glass crucible by, for example, depositing silica powder in a rotating mold (made of carbon) and arc melting the deposited silica powder layer. It is manufactured by the rotational mold method. Moreover, since the shape near the opening end part of the silica glass crucible 1 is likely to be uneven, the opening end part of the silica glass crucible 1 by a rotational molding method is cut with a predetermined width to align the shape of the opening end part.
 図1は本発明の第1の実施形態にかかるルツボ測定装置の構成の一例である。当該ルツボ測定装置は、シリカガラスルツボ1にレーザー光を出射するレーザー光源2(光出射部)と、入射レーザー光のシリカガラスルツボ1内での散乱状態を、シリカガラスルツボ1の端面方向から撮影するカメラ部3(散乱状況測定部)を有する。 FIG. 1 is an example of the configuration of the crucible measuring apparatus according to the first embodiment of the present invention. The crucible measuring apparatus photographs a laser light source 2 (light emitting portion) that emits laser light to the silica glass crucible 1 and a scattering state of the incident laser light in the silica glass crucible 1 from the end face direction of the silica glass crucible 1. A camera unit 3 (scattering state measuring unit).
 レーザー光源2は、例えば、固体レーザー源や半導体レーザー源等であり、シリカガラスルツボ1の厚み方向にレーザー光を入射するよう配置される。レーザー光源2の例としては、AlGaInP(アルミニウム ガリウム インジウム リン)系可搬型レーザー光源(出力波長630nm近辺)等を挙げられる。なお、光照射部には、レーザー光源に加えて反射鏡やレーザー伝送用光ファイバを用いることもできる。 The laser light source 2 is, for example, a solid laser source or a semiconductor laser source, and is arranged so that laser light is incident in the thickness direction of the silica glass crucible 1. Examples of the laser light source 2 include an AlGaInP (aluminum gallium indium phosphorus) based portable laser light source (output wavelength around 630 nm). In addition to the laser light source, a reflecting mirror or an optical fiber for laser transmission can be used for the light irradiation unit.
 図1で示すように、本実施形態におけるレーザー光源2は、シリカガラスルツボ1の内部から、当該シリカガラスルツボ1の厚み方向に向かってレーザー光を出射するようシリカガラスルツボ1の内部に設置される。このようにレーザー光源2を設置することで、当該シリカガラスルツボ1の内側から外側に向かって、シリカガラスルツボ1にレーザー光が入射される。 As shown in FIG. 1, the laser light source 2 in the present embodiment is installed inside the silica glass crucible 1 so as to emit laser light from the inside of the silica glass crucible 1 toward the thickness direction of the silica glass crucible 1. The By installing the laser light source 2 in this manner, laser light is incident on the silica glass crucible 1 from the inside to the outside of the silica glass crucible 1.
 なお、レーザー光源2は、シリカガラスルツボ1の厚み方向に向かってレーザー光を出射するのであれば、シリカガラスルツボ1の側壁の法線方向に対して垂直のみならず、斜め方向に向かってレーザー光を出射するように設置してもよい。また、レーザー光源2は、シリカガラスルツボ1の端面付近(例えば、端面から2cmの深さまでなどのシリカガラスルツボの上端部近傍)にレーザー光が入射して透過するように、設置することが望ましい。 If the laser light source 2 emits laser light in the thickness direction of the silica glass crucible 1, the laser light source 2 is not only perpendicular to the normal direction of the side wall of the silica glass crucible 1 but also in an oblique direction. You may install so that light may be radiate | emitted. The laser light source 2 is preferably installed so that the laser light is incident and transmitted near the end face of the silica glass crucible 1 (for example, near the upper end of the silica glass crucible such as up to a depth of 2 cm from the end face). .
 レーザー光源2が出射したレーザー光は、例えば空気中を通過した後、シリカガラスルツボ1に入射し、シリカガラスルツボ1の構造に応じて、透過し、あるいは、一部散乱することによって、厚み方向の各位置で様々な散乱状況を示す。 The laser light emitted from the laser light source 2 enters the silica glass crucible 1 after passing through the air, for example, and transmits or partially scatters depending on the structure of the silica glass crucible 1. Various scattering situations are shown at each position.
 シリカガラスは非晶体であるので、基本的には光の散乱の原因となる結晶粒界が存在しない。また、シリカガラスは、波長約400~800nmの範囲の可視波長域では人間の目で見て透明に見える。シリカガラスの可視波長域で透明であるということは、この波長領域の光は吸収・散乱されないということである。それは、シリカガラスのエネルギーギャップにより、光の吸収は約400nm以下の波長の光で発生するが、その波長を越える波長の光は吸収されず、また、シリカガラスの自由電子のプラズマ振動により光の散乱は約780nm以上の波長の光で発生するので、その波長未満の波長の光は散乱されないことに起因する。一般的にシリカガラスの光の透過率が比較的高い波長域はその製法・原料等によって異なるが、だいたい200nm~4000nm程度である。 Since silica glass is amorphous, there is basically no crystal grain boundary that causes light scattering. Silica glass appears transparent to the human eye in the visible wavelength range of about 400 to 800 nm. Being transparent in the visible wavelength region of silica glass means that light in this wavelength region is not absorbed or scattered. Light absorption occurs with light having a wavelength of about 400 nm or less due to the energy gap of silica glass, but light with a wavelength exceeding that wavelength is not absorbed, and light oscillation due to plasma oscillation of free electrons in silica glass. Since scattering occurs with light having a wavelength of about 780 nm or more, light having a wavelength shorter than that wavelength is not scattered. In general, the wavelength range in which the light transmittance of silica glass is relatively high varies depending on the production method, raw materials, and the like, but is about 200 nm to 4000 nm.
 従って、シリカガラスルツボ1の透明層であって傷等の欠陥が存在しない領域では、レーザー光源2(630nmのレーザー光を出射する)が出射したレーザー光は吸収または散乱されずに透過する(直進する)。 Therefore, in the transparent layer of the silica glass crucible 1 where there are no defects such as scratches, the laser light emitted by the laser light source 2 (emits 630 nm laser light) is transmitted without being absorbed or scattered (straightly traveling). To do).
 一方、シリカガラスルツボ1の気泡含有層においては、気泡とシリカガラスとの境界等において、レーザー光は散乱される。そのため、レーザー光源2が出射したレーザー光が気泡含有層に入射すると、レーザー光の一部は散乱される。また、目視において透明である(透明層である)と判断される領域であっても、当該領域に傷等の欠陥が存在する場合、当該欠陥でレーザー光の一部は散乱される。 On the other hand, in the bubble-containing layer of the silica glass crucible 1, the laser light is scattered at the boundary between the bubbles and the silica glass. Therefore, when the laser beam emitted from the laser light source 2 enters the bubble-containing layer, a part of the laser beam is scattered. Further, even in a region that is visually determined to be transparent (a transparent layer), if a defect such as a scratch exists in the region, a part of the laser light is scattered by the defect.
 シリカガラスは紫外線や赤外線と相互作用する性質があるため、レーザー光源2としては、可視光のレーザー(約400~800nmの範囲)を出射することが望ましい。本実施形態で用いるレーザー光源2としては、例えば、赤色の波長のレーザー(例えば、約635nm、約650nm)や緑色の波長のレーザー(例えば、約532nm)、青色の波長のレーザー(例えば、約410nm)などが用いられる。なお、本実施形態においては、レーザー光源2として、深紫外光レーザー(例えば、230~350nmなど)等の可視光以外のレーザーを用いてもよい。 Since silica glass has the property of interacting with ultraviolet rays and infrared rays, it is desirable that the laser light source 2 emit a visible light laser (in the range of about 400 to 800 nm). Examples of the laser light source 2 used in this embodiment include a red wavelength laser (for example, about 635 nm and about 650 nm), a green wavelength laser (for example, about 532 nm), and a blue wavelength laser (for example, about 410 nm). ) Etc. are used. In the present embodiment, a laser other than visible light such as a deep ultraviolet laser (for example, 230 to 350 nm) may be used as the laser light source 2.
 前述のシリカガラスと赤外領域の光との相互作用はガラスを構成するイオン間の振動の励起によっておこる。ガラスを構成するイオンはシリカガラス中の不純物に由来するため、不純物が少ないほど光の吸収が少なくなる。また、ガラス製造時の状態によるシリカネットワークの構造によっても光の吸収特性は変化する。一方、シリカガラスと紫外領域の光との相互作用は電子励起によって起こるので赤外領域の光との相互作用とは異なる。電子励起は、シリカガラスの価電子帯と伝導帯とのバンドギャップに依存し、アルカリ金属などの不純物を導入することによって、バンドギャップが小さくなり、吸収端は可視領域にまで広がることがある。 The above-mentioned interaction between silica glass and light in the infrared region is caused by excitation of vibration between ions constituting the glass. Since ions constituting the glass are derived from impurities in the silica glass, the smaller the impurities, the less light is absorbed. Moreover, the light absorption characteristics also change depending on the structure of the silica network depending on the state during glass production. On the other hand, the interaction between silica glass and light in the ultraviolet region is caused by electronic excitation, so that it is different from the interaction with light in the infrared region. Electron excitation depends on the band gap between the valence band and the conduction band of silica glass. By introducing impurities such as alkali metal, the band gap is reduced, and the absorption edge may extend to the visible region.
 本実施形態においては、例えば、距離3mで測定してレーザー径が5~20mm程度となり、約0.2mw~500mw程度の出力であるレーザー光源2を用いる。また、レーザー光源2の出射口径は、例えば、約0.8~5.5mm程度である。なお、レーザー光源2のレーザー径や出力、出射口径は、上記例示したもの以外であってもよい。 In the present embodiment, for example, the laser light source 2 having a laser diameter of about 5 to 20 mm measured at a distance of 3 m and an output of about 0.2 mw to 500 mw is used. The exit diameter of the laser light source 2 is, for example, about 0.8 to 5.5 mm. The laser diameter, output, and exit aperture of the laser light source 2 may be other than those exemplified above.
 カメラ部3は、図示しないCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの撮像素子と、レンズ部と、などを有する一般的なカメラである。本実施形態におけるカメラ部3は、測定対象となるシリカガラスルツボ1の端面を撮影可能な位置(つまり、端面方向)に設置されており、レーザー光源2によりシリカガラスルツボ1内に入射されたレーザー光のシリカガラスルツボ1側壁部内部の厚み方向の散乱状況を、レーザー光を入射される部分の上端開口部周辺の円環状の端面方向から測定するよう構成される。具体的には、例えば、図1を参照すると、シリカガラスルツボ1が下向きで設置される場合には、カメラ部3は、シリカガラスルツボ1の下側に、レンズ部が上を向く形で設置される。 The camera unit 3 is a general camera having an imaging element (not shown) such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor, a lens unit, and the like. The camera unit 3 in the present embodiment is installed at a position where the end face of the silica glass crucible 1 to be measured can be photographed (that is, in the end face direction), and the laser light incident on the silica glass crucible 1 by the laser light source 2. The scattering state of the light in the thickness direction inside the side wall of the silica glass crucible 1 is configured to be measured from the direction of the annular end face around the upper end opening of the portion where the laser light is incident. Specifically, for example, referring to FIG. 1, when the silica glass crucible 1 is installed downward, the camera unit 3 is installed on the lower side of the silica glass crucible 1 so that the lens unit faces upward. Is done.
 上述した通り、シリカガラスルツボ1に入射されたレーザー光は、当該シリカガラスルツボ1の厚み方向の各位置でシリカガラスルツボ1の構造に応じて様々な散乱状況を示す。そこで、カメラ部3は、シリカガラスルツボ1の端面を撮影することにより、シリカガラスルツボ1の側壁部内部の厚み方向の各位置のレーザー光の散乱状況を示す画像データを取得する。その後、カメラ部3は、例えば、図示しない表示部に取得した画像データを表示する。 As described above, the laser light incident on the silica glass crucible 1 shows various scattering states according to the structure of the silica glass crucible 1 at each position in the thickness direction of the silica glass crucible 1. Therefore, the camera unit 3 acquires image data indicating the scattering state of laser light at each position in the thickness direction inside the side wall of the silica glass crucible 1 by photographing the end surface of the silica glass crucible 1. Thereafter, the camera unit 3 displays the acquired image data on a display unit (not shown), for example.
 例えば、光学顕微鏡や金属顕微鏡で対象を観察する場合、透過光や反射光を利用している。レーザー光等を用いて対象を観察する場合にも、透過光か反射光を利用して対象を観察することが一般的である。そのため、カメラ部3などの観測装置は、一般的には、反射光や透過光を観測可能な位置、つまり、光出射部であるレーザー光源2の近傍か、レーザー光源2からみてシリカガラスルツボ1の側壁部を挟んだ反対側の位置に設置される。 For example, when observing an object with an optical microscope or a metal microscope, transmitted light or reflected light is used. When observing an object using laser light or the like, it is common to observe the object using transmitted light or reflected light. Therefore, the observation device such as the camera unit 3 generally has a silica glass crucible 1 at a position where the reflected light or the transmitted light can be observed, that is, in the vicinity of the laser light source 2 that is the light emitting unit. It is installed in the position on the opposite side across the side wall portion.
 一方で、本願発明は、上述したように、カメラ部3をシリカガラスルツボ1の端面が撮影可能な、レーザー光の入射方向からみて垂直方向位置(つまり、端面方向)に設置する。このように、本願発明では、一般的な位置とは異なる位置にカメラ部3を配置することで、非破壊で簡便にシリカガラスルツボ1の厚み方向の各位置での散乱状況を示す画像データを取得でき、厚み方向の層の構造を測定することができる。 On the other hand, in the present invention, as described above, the camera unit 3 is installed at a position in the vertical direction (that is, the end surface direction) as viewed from the incident direction of the laser beam, where the end surface of the silica glass crucible 1 can be photographed. As described above, in the present invention, by arranging the camera unit 3 at a position different from a general position, image data indicating the scattering state at each position in the thickness direction of the silica glass crucible 1 can be simply and nondestructively. Can be obtained, and the structure of the layer in the thickness direction can be measured.
 図2乃至図4は、シリカガラスルツボ1内に入射されたレーザー光の散乱状況としてカメラ部3が取得する画像データの模式図である。レーザー光の散乱の様子を2本の線で示し、2本の線の間隔でレーザー光の散乱の強弱を表わしている。図2乃至図4では、レーザー光の散乱が多く起こる領域は2本の線の間隔が広く表わされ、レーザー光の散乱が少ない領域は、2本の線の間隔が狭く表わされている。また、2本の線の間以外の領域は、レーザー光が入射されていない、あるいは透過している、すなわちレーザー光の散乱が見られないことを示す。そして、散乱の頻度が多くなれば散乱光の強度が強くなり、逆に、散乱の頻度が少なくなれば散乱光の強度は弱くなる。 2 to 4 are schematic diagrams of image data acquired by the camera unit 3 as a scattering state of laser light incident on the silica glass crucible 1. The state of laser light scattering is indicated by two lines, and the intensity of laser light scattering is expressed by the interval between the two lines. In FIGS. 2 to 4, the region where the laser light scattering is large is expressed with a wide interval between the two lines, and the region where the laser light scattering is small is expressed with a small interval between the two lines. . Further, the region other than between the two lines indicates that the laser beam is not incident or transmitted, that is, the laser beam is not scattered. If the frequency of scattering increases, the intensity of the scattered light increases. Conversely, if the frequency of scattering decreases, the intensity of the scattered light decreases.
 図2は、シリカガラスルツボ1の内表面からレーザー光が入射し、入射レーザー光は、内表面側の透明層では散乱せずに透過するが、気泡含有層では散乱されることを示す。 FIG. 2 shows that laser light is incident from the inner surface of the silica glass crucible 1, and the incident laser light is transmitted without being scattered in the transparent layer on the inner surface side, but is scattered in the bubble-containing layer.
 図3は、図2と同様にシリカガラスルツボ1の内表面側に透明層が存在し、気泡含有層では散乱レーザー光の強度が異なる領域が存在することを示す。散乱レーザー光の強度は透明層近くおよび外側近く気泡含有層では強く、その間の領域では散乱強度は弱くなっている。これは、光散乱層である気泡含有層が複数層から構成されているからである。 FIG. 3 shows that there is a transparent layer on the inner surface side of the silica glass crucible 1 as in FIG. 2, and there are regions where the intensity of the scattered laser light is different in the bubble-containing layer. The intensity of the scattered laser light is strong in the bubble-containing layer near the transparent layer and near the outside, and the scattering intensity is weak in the region between them. This is because the bubble-containing layer, which is a light scattering layer, is composed of a plurality of layers.
 図4は、図3と同様に入射レーザー光は、気泡含有層で散乱され、さらに透明層領域で散乱していることを示す。これは、透明層領域に目視で確認出来ない散乱中心となる傷等の欠陥が存在することを示し、レーザー散乱光を測定することで、目視では発見することのできない透明層中の欠陥を発見出来る。 FIG. 4 shows that the incident laser light is scattered by the bubble-containing layer and further scattered by the transparent layer region as in FIG. This indicates that there are defects such as scratches that become scattering centers that cannot be visually confirmed in the transparent layer region. By measuring the laser scattered light, defects in the transparent layer that cannot be detected visually are discovered. I can do it.
 このように、カメラ部3は、シリカガラスルツボ1の厚み方向の層構造に応じて、透過する、一部散乱する、など様々な散乱状況を示す、シリカガラスルツボ1に入射したレーザー光の様子を示す画像データを取得する。カメラ部3が取得した画像データを参照することで、シリカガラスルツボ1の厚み方向の層構造を非破壊で容易に判別出来る。 As described above, the camera unit 3 shows the state of the laser light incident on the silica glass crucible 1 that shows various scattering states such as transmission or partial scattering according to the layer structure in the thickness direction of the silica glass crucible 1. The image data indicating is acquired. By referring to the image data acquired by the camera unit 3, the layer structure in the thickness direction of the silica glass crucible 1 can be easily discriminated without destruction.
 図5は第1の実施形態にかかるルツボ測定方法の流れの一例を示すフローチャートである。 FIG. 5 is a flowchart showing an example of the flow of the crucible measurement method according to the first embodiment.
 図5に示すように、レーザー光源2を用いて、シリカガラスルツボ1の内側から当該シリカガラスルツボ1の厚み方向に向かってレーザー光を出射する(ステップS101)。これにより、シリカガラスルツボ1には、レーザー光が入射される。その後、シリカガラスルツボ1に入射されたレーザー光は、当該シリカガラスルツボ1の構造に応じて、透過する、一部散乱する、など様々な散乱状況を示す。 As shown in FIG. 5, laser light is emitted from the inside of the silica glass crucible 1 toward the thickness direction of the silica glass crucible 1 using the laser light source 2 (step S101). Thereby, the laser light is incident on the silica glass crucible 1. Thereafter, the laser light incident on the silica glass crucible 1 exhibits various scattering states such as transmission or partial scattering depending on the structure of the silica glass crucible 1.
 続いて、シリカガラスルツボ1の側壁部内部の端面をカメラ部3で撮影することにより、シリカガラスルツボ1の厚み方向の各位置のレーザー光の散乱状況を示す画像データを取得する(ステップS102)。その後、カメラ部3は、例えば、取得した画像データを表示装置に表示する。 Subsequently, the end surface inside the side wall portion of the silica glass crucible 1 is photographed by the camera unit 3 to obtain image data indicating the scattering state of the laser light at each position in the thickness direction of the silica glass crucible 1 (step S102). . Thereafter, the camera unit 3 displays the acquired image data on the display device, for example.
 なお、本実施形態におけるルツボ測定装置は、カメラ部3が取得した画像データを解析して、光透過層や光散乱層などのシリカガラスルツボ1の厚み方向の層の構造(光透過層、光散乱層、光透過層の厚みなど)を判定する、図示しない画像解析部を備えることが出来る。また、ルツボ測定方法は、画像データを解析してシリカガラスルツボ1の厚み方向の層の構造(光透過層、光散乱層、光透過層の厚みなど)を判定するよう構成することが出来る。 In addition, the crucible measuring apparatus in this embodiment analyzes the image data acquired by the camera unit 3, and the structure of the silica glass crucible 1 in the thickness direction such as a light transmission layer or a light scattering layer (light transmission layer, light An image analysis unit (not shown) for determining the thickness of the scattering layer and the light transmission layer can be provided. The crucible measurement method can be configured to analyze the image data and determine the structure of the layer in the thickness direction of the silica glass crucible 1 (light transmission layer, light scattering layer, light transmission layer thickness, etc.).
 画像解析部は、例えば演算装置と記憶装置とを備える一般的な情報処理装置であり、記憶装置が記憶するプログラムを演算装置が実行することで、カメラ部3が取得した画像データを解析する機能を実現することになる。つまり、画像解析部は、画像データに基づいてシリカガラスルツボ1の厚み方向の層の構造を判断する。これにより、自動でシリカガラスルツボ1の厚み方向の層の構造を判断することが可能となる。 The image analysis unit is a general information processing device including, for example, an arithmetic device and a storage device, and a function of analyzing image data acquired by the camera unit 3 when the arithmetic device executes a program stored in the storage device. Will be realized. That is, the image analysis unit determines the layer structure in the thickness direction of the silica glass crucible 1 based on the image data. This makes it possible to automatically determine the layer structure in the thickness direction of the silica glass crucible 1.
 また、本実施形態においては、シリカガラスルツボ1にレーザー光を入射する際に、入射角がブリュースター角となるようにレーザー光を入射してもよい。また、この際には、レーザー光源2がp偏光のレーザーを出射するよう構成してもよい。なお、p偏光とは、入射面に対して電場の振動方向が平行になる向きの偏光のことをいう。 In the present embodiment, when the laser beam is incident on the silica glass crucible 1, the laser beam may be incident so that the incident angle becomes a Brewster angle. In this case, the laser light source 2 may be configured to emit a p-polarized laser. Note that p-polarized light refers to polarized light whose direction of vibration of the electric field is parallel to the incident surface.
 このように構成することで、レーザー光源2が出射したレーザー光を空気とシリカガラスルツボ1との界面で反射させず入射させることができるため、すべて層構造等の観測に利用でき、効率的にシリカガラスルツボ1の状態を観察できる。また、レーザー光の散乱状況を観察する際に、空気とシリカガラスルツボ1との界面で反射が起こらなくなるため、例えば当該界面付近にある層の構造や欠陥等の検出が反射光の影響を受けず行うことができる。 With this configuration, the laser light emitted from the laser light source 2 can be incident without being reflected at the interface between the air and the silica glass crucible 1, so that all can be used for observation of the layer structure and the like. The state of the silica glass crucible 1 can be observed. In addition, when observing the scattering state of laser light, reflection does not occur at the interface between air and the silica glass crucible 1, and therefore, for example, the detection of the structure and defects of layers near the interface is affected by the reflected light. Can be done without.
 このように構成することで、レーザー光源2が出射したレーザー光を空気とシリカガラスルツボ1との界面で反射させず入射させることができるため、すべて層構造等の観測に利用でき、効率的にシリカガラスルツボ1の状態を観察できる。また、レーザー光の散乱状況を観察する際に、空気とシリカガラスルツボ1との界面で反射が起こらなくなるため、例えば当該界面付近にある層の構造や欠陥等の検出が反射光の影響を受けず行うことができる。 With this configuration, the laser light emitted from the laser light source 2 can be incident without being reflected at the interface between the air and the silica glass crucible 1, so that all can be used for observation of the layer structure and the like. The state of the silica glass crucible 1 can be observed. In addition, when observing the scattering state of laser light, reflection does not occur at the interface between air and the silica glass crucible 1, and therefore, for example, the detection of the structure and defects of layers near the interface is affected by the reflected light. Can be done without.
 尚、入射角は必ずしも正確にブリュースター角とならなくても構わない。ブリュースター角に近づくようにレーザー光を出射することで、正確な角度でなくてもある程度の効果を得ることは出来る。 Note that the incident angle does not necessarily have to be exactly the Brewster angle. By emitting laser light so as to approach the Brewster angle, a certain degree of effect can be obtained even if the angle is not accurate.
 レーザー光源2からレーザー光が入射するシリカガラスルツボ1の上端部近傍は、円筒状の形状を有する側壁部であるので、曲面にレーザー光を入射させることになり、レーザー光源2の位置がずれると入射角が変化し、ブリュースター角とならなくなる場合もある。さらに、上述したように、シリカガラスルツボ1は例えば回転モールド法により作られるため、製造されたシリカガラスルツボ1の形状は、設計図との間でずれが生じていることもある。従って、決められた位置に入射角がブリュースター角となるようにレーザー光の出射位置、入射角度を正確に決め、レーザー光を入射させる必要がある Since the vicinity of the upper end portion of the silica glass crucible 1 where the laser light is incident from the laser light source 2 is a side wall portion having a cylindrical shape, the laser light is incident on the curved surface, and the position of the laser light source 2 is shifted. In some cases, the incident angle changes and the Brewster angle is not reached. Furthermore, as described above, since the silica glass crucible 1 is made by, for example, the rotational molding method, the shape of the manufactured silica glass crucible 1 may be deviated from the design drawing. Therefore, it is necessary to accurately determine the emission position and the incident angle of the laser beam so that the incident angle becomes the Brewster angle at the determined position, and to make the laser beam incident.
 例えば、32インチのシリカガラスルツボは内径が約81.3cm、質量が50kgから60kgであり、40インチのシリカガラスルツボは内径が約101.6cm、質量が90kgから100kgであるので、シリカガラスルツボは大型の重量物である。このようなシリカガラスルツボのある測定位置に、レーザー光を必要な位置と角度で入射し、散乱光を観察するには、シリカガラスルツボ1自体を動かすことによって設置位置および設置角度を精度よく調整するのは困難である。 For example, a 32 inch silica glass crucible has an inner diameter of about 81.3 cm and a mass of 50 kg to 60 kg, and a 40 inch silica glass crucible has an inner diameter of about 101.6 cm and a mass of 90 kg to 100 kg. Is a large heavy object. In order to observe the scattered light by irradiating laser light at the required measurement position with such a silica glass crucible and observing the scattered light, the installation position and the installation angle are accurately adjusted by moving the silica glass crucible 1 itself. It is difficult to do.
 そこで、例えば、ロボットアーム等を用いて、シリカガラスルツボ1の内表面の3次元形状(3次元座標)を予め測定しておき、その測定位置に対するレーザー光を出射する位置、角度を算出し、測定点ごとに、レーザー光源の位置、角度を変更しながら測定できるため、シリカガラスルツボ1の自体の設置位置調整は不要になる。 Therefore, for example, using a robot arm or the like, the three-dimensional shape (three-dimensional coordinates) of the inner surface of the silica glass crucible 1 is measured in advance, and the position and angle at which the laser beam is emitted with respect to the measurement position are calculated. Since it can measure for every measurement point, changing the position and angle of a laser light source, the installation position adjustment of the silica glass crucible 1 itself becomes unnecessary.
 なお、シリカガラスルツボ1の内表面の3次元形状測定は、例えば、ロボットアームの先端にレーザー変位計などからなる内部測距部を設け、当該内部測距部をルツボ内表面に沿って非接触で移動させることで測定する。具体的には、内部測距部の移動経路上の複数の測定点で、シリカガラスルツボ1の内表面に対して斜め方向にレーザー光を出射し、その反射光を検出することで、シリカガラスルツボ1の内表面の3次元形状を測定出来る。そして、当該測定結果を活用することで、容易に、シリカガラスルツボ1に対して入射角がブリュースター角となるように、レーザー光を出射できる。 The three-dimensional shape measurement of the inner surface of the silica glass crucible 1 is performed, for example, by providing an internal distance measuring unit such as a laser displacement meter at the tip of the robot arm and contacting the inner distance measuring unit along the inner surface of the crucible. Measure by moving with. Specifically, silica glass is emitted by emitting laser light obliquely with respect to the inner surface of the silica glass crucible 1 at a plurality of measurement points on the movement path of the internal distance measuring unit, and detecting the reflected light. The three-dimensional shape of the inner surface of the crucible 1 can be measured. Then, by utilizing the measurement result, laser light can be easily emitted so that the incident angle becomes the Brewster angle with respect to the silica glass crucible 1.
 上述したように、本実施形態におけるルツボ測定装置、測定方法によると、光透過層や光散乱層の厚みを測定できる。光透過層や光散乱層の厚みを測定する場合、入射角が入射面の法線方向からずれている(つまり、シリカガラスルツボ1に対して垂直方向ではなく斜め方向にレーザー光が入射される)と誤差が大きくなり正確な測定を行うことが出来なくなる。そのため、レーザー光源2から出射されるレーザー光の入射角θ(入射面の法線方向からの角度)は、下記式を満たすよう出射されることが望ましい。なお、以下の式では、シリカガラスルツボ1の肉厚(光透過層、光散乱層の厚み)をT、許容される誤差をΔTで表す。
Figure JPOXMLDOC01-appb-M000001
As described above, according to the crucible measuring apparatus and the measuring method in the present embodiment, the thickness of the light transmission layer and the light scattering layer can be measured. When measuring the thickness of the light transmission layer or the light scattering layer, the incident angle is deviated from the normal direction of the incident surface (that is, the laser light is incident on the silica glass crucible 1 in an oblique direction rather than a vertical direction. ) And the error becomes large, and accurate measurement cannot be performed. Therefore, it is desirable that the incident angle θ (angle from the normal direction of the incident surface) of the laser light emitted from the laser light source 2 is emitted so as to satisfy the following formula. In the following equation, the thickness of the silica glass crucible 1 (the thickness of the light transmission layer and the light scattering layer) is represented by T, and the allowable error is represented by ΔT.
Figure JPOXMLDOC01-appb-M000001
 上記式より、シリカガラスルツボ1の肉厚Tと許容差ΔTと入射角θとの関係は、表1で示される。例えば、ルツボの肉厚が10mmのときに許容差0.1mmとした際の許容されるレーザー光の入射角は8.0°以内となる。このようにシリカガラスルツボ1の肉厚Tおよび許容可能なずれΔTに応じた入射角θとなるようレーザー光源2を制御することで、許容可能な誤差の範囲内でシリカガラスルツボ1の肉厚(例えば、光透過層や光散乱層の厚み)を測定することができる。なお、角度θの制御を行う際には、上述した内部測距部によるシリカガラスルツボ1の内表面の3次元形状の測定結果を用いることが望ましく、各点においてずれなく正確な角度θの制御を行うことができる。
Figure JPOXMLDOC01-appb-T000001
From the above formula, the relationship among the thickness T, the tolerance ΔT, and the incident angle θ of the silica glass crucible 1 is shown in Table 1. For example, when the thickness of the crucible is 10 mm, the allowable incident angle of the laser beam when the tolerance is 0.1 mm is within 8.0 °. Thus, by controlling the laser light source 2 so that the incident angle θ according to the thickness T of the silica glass crucible 1 and the allowable deviation ΔT, the thickness of the silica glass crucible 1 is within an allowable error range. (For example, the thickness of the light transmission layer or the light scattering layer) can be measured. When controlling the angle θ, it is desirable to use the measurement result of the three-dimensional shape of the inner surface of the silica glass crucible 1 by the internal distance measuring unit described above, and accurate control of the angle θ without deviation at each point. It can be performed.
Figure JPOXMLDOC01-appb-T000001
 また、光透過層や光散乱層の厚みを測定する際に、誤差を小さくするため、レーザー光のレーザー径B(シリカガラスルツボ1と当たっている部分のレーザー径)が下記式を満たすように制御されることが望ましい。なお、下記式では、許容される誤差をΔT、シリカガラスルツボ1の肉厚をT、レーザー径をBとして表す。
Figure JPOXMLDOC01-appb-M000002
Further, in order to reduce the error when measuring the thickness of the light transmission layer or the light scattering layer, the laser diameter B of the laser light (the laser diameter of the portion that is in contact with the silica glass crucible 1) satisfies the following formula. It is desirable to be controlled. In the following equation, an allowable error is represented by ΔT, a thickness of the silica glass crucible 1 is represented by T, and a laser diameter is represented by B.
Figure JPOXMLDOC01-appb-M000002
 上記式より、シリカガラスルツボ1の肉厚Tと許容差ΔTとレーザー径Bとの関係は、表2で示される。例えば、ルツボの肉厚が10mmのときに許容差0.1mmとした際の許容されるレーザー径は1.4mmとなる。表2で示すようなシリカガラスルツボ1の肉厚Tおよび許容可能なずれΔTに応じたレーザー径Bとなるようレーザー光源2を制御することで、許容可能な誤差の範囲内でシリカガラスルツボ1の肉厚(例えば、光透過層や光散乱層の厚み)を測定できる。
Figure JPOXMLDOC01-appb-T000002
From the above formula, the relationship among the thickness T, tolerance ΔT, and laser diameter B of the silica glass crucible 1 is shown in Table 2. For example, when the thickness of the crucible is 10 mm, the allowable laser diameter when the tolerance is 0.1 mm is 1.4 mm. By controlling the laser light source 2 so that the laser diameter B corresponds to the wall thickness T and the allowable deviation ΔT of the silica glass crucible 1 as shown in Table 2, the silica glass crucible 1 is within the allowable error range. Can be measured (for example, the thickness of the light transmission layer or the light scattering layer).
Figure JPOXMLDOC01-appb-T000002
 レーザー光が入射する場所は、シリカガラスルツボ1の内側に限定されない。レーザー光をシリカガラスルツボ1の厚み方向で、外側から内側に向かって入射してもよい。また、レーザー光をシリカガラスルツボ1の端面方向から入射して、レーザー光の散乱状況をシリカガラスルツボ1の内部から測定してもよい。この場合には、出射するレーザー光の位置をシリカガラスルツボ1の厚み方向に移動させつつ、散乱状況を測定することになる。このようにすることで、シリカガラスルツボ1の内部で透明層や気泡含有層に凹凸が形成されていることを把握することが出来る。 The place where the laser beam is incident is not limited to the inside of the silica glass crucible 1. Laser light may be incident from the outside toward the inside in the thickness direction of the silica glass crucible 1. Further, laser light may be incident from the end face direction of the silica glass crucible 1 and the scattering state of the laser light may be measured from the inside of the silica glass crucible 1. In this case, the scattering state is measured while moving the position of the emitted laser light in the thickness direction of the silica glass crucible 1. By doing in this way, it can grasp | ascertain that the unevenness | corrugation is formed in the transparent layer or the bubble containing layer inside the silica glass crucible 1.
 また、例えば、シリカガラスルツボの内側からレーザー光を出射した状態でレーザー光源2を予め定められた所定の間隔(例えば、2~3度や5度、10度ごと。任意の角度で構わない)で回転させることで、シリカガラスルツボ1の全周に亘って、レーザー光を入射させることが可能である。この際に、カメラ部3をレーザー光源2の回転に合わせて移動させることで、シリカガラスルツボ1の全周に亘るそれぞれの位置のレーザー光の散乱状況を測定できる。その結果、容易な方法でシリカガラスルツボ1の全周に亘る、当該シリカガラスルツボ1の厚み方向の構造を測定することが可能となる。 Further, for example, the laser light source 2 is set at a predetermined interval (for example, every 2 to 3 degrees, 5 degrees, and 10 degrees, any angle) with the laser light emitted from the inside of the silica glass crucible. It is possible to make the laser light incident on the entire circumference of the silica glass crucible 1. At this time, by moving the camera unit 3 in accordance with the rotation of the laser light source 2, it is possible to measure the scattering state of the laser light at each position over the entire circumference of the silica glass crucible 1. As a result, it is possible to measure the structure in the thickness direction of the silica glass crucible 1 over the entire circumference of the silica glass crucible 1 by an easy method.
 また、このようにシリカガラスルツボ1の全周に亘って測定することで、当該シリカガラスルツボ上端部において同心円状の複数の層があるときの各層の厚み分布と真円度が測定できる。また、透明層と気泡含有層との境界の真円度も測定できる。シリカガラスルツボ1の内表面の真円度も測定できるので、シリカガラスルツボ1の内表面の真円度と透明層と気泡含有層との境目の真円度を用いることで、シリコン単結晶引き上げに必要な厚さの透明層が形成されているかを算出できる。さらに、シリコン単結晶を引き上げの際に、シリカガラスルツボの層厚さの分布にむらがあると、熱の伝わり方が均一でなくなり、シリコンの融液の温度分布にむらができる。その結果、シリコン単結晶とシリコン融液との接触界面の位置を一定に保つことが困難になり、転位等の不具合が発生する場合がある。本実施形態のルツボ測定装置、ルツボ測定方法によりシリカガラスルツボ1を測定することで、転位発生等の問題が生じるシリカガラスルツボを判別することができる。なお、シリカガラスルツボ1の全周にわたって測定を行う際には、後述する水平レーザーとの組み合わせで実行することがさらに望ましい。 In addition, by measuring over the entire circumference of the silica glass crucible 1 in this way, the thickness distribution and roundness of each layer when there are a plurality of concentric layers at the upper end of the silica glass crucible can be measured. Moreover, the roundness of the boundary between the transparent layer and the bubble-containing layer can also be measured. Since the roundness of the inner surface of the silica glass crucible 1 can also be measured, the silicon single crystal is pulled by using the roundness of the inner surface of the silica glass crucible 1 and the roundness of the boundary between the transparent layer and the bubble-containing layer. It is possible to calculate whether a transparent layer having a necessary thickness is formed. Furthermore, if the distribution of the layer thickness of the silica glass crucible is uneven when pulling up the silicon single crystal, the heat transfer is not uniform and the temperature distribution of the silicon melt can be uneven. As a result, it becomes difficult to keep the position of the contact interface between the silicon single crystal and the silicon melt constant, and inconveniences such as dislocation may occur. By measuring the silica glass crucible 1 using the crucible measuring apparatus and the crucible measuring method of the present embodiment, it is possible to determine the silica glass crucible in which a problem such as the occurrence of dislocation occurs. In addition, when measuring over the perimeter of the silica glass crucible 1, it is more desirable to carry out by the combination with the horizontal laser mentioned later.
 本実施形態で光出射部としてレーザーポインタなど単方向レーザーであるレーザー光源2を用いる場合を説明したが、単方向レーザー以外の光出射部を用いてもよい。例えば、レーザー光源2は、広角に出射するよう構成することが出来る(例えば、入射してくるレーザー光の入射角度に対して、所定角度(例えば、2~4倍)角度を拡大して出射するレンズを通過させることで実現される)。あるいは、光出射部としてラインレーザー(水平レーザー、垂直レーザー)やクロスラインレーザーを用いてもよい。クロスラインレーザーは、出射したレーザー光を、コリメートレンズを透過させた後に円柱状のロッドレンズに透過させることにより、水平方向および垂直方向のレーザー光を出射する。 In the present embodiment, the case where the laser light source 2 that is a unidirectional laser such as a laser pointer is used as the light emitting portion has been described. For example, the laser light source 2 can be configured to emit at a wide angle (for example, the laser beam 2 is emitted with a predetermined angle (eg, 2 to 4 times) larger than the incident angle of the incident laser light. Realized by passing the lens through). Alternatively, a line laser (horizontal laser, vertical laser) or a cross line laser may be used as the light emitting portion. The cross line laser emits laser light in the horizontal direction and the vertical direction by transmitting the emitted laser light through a collimating lens and then through a cylindrical rod lens.
 このように、光出射部としてラインレーザーやクロスラインレーザーを用いることで、広範囲の散乱状況を一度に測定できる。例えば、地表と水平方向のラインレーザー(水平レーザー)を用いることで、シリカガラスルツボ1側壁部内部の層構造を広範囲にわたって一度に測定できる。それにより、層構造の測定を範囲全体に対して漏れなく行うことが出来る。また、垂直方向のラインレーザー(垂直レーザー:例えば、水平レーザーを90度傾けたもの)やクロスラインレーザーを用いることで、より明確な気泡含有層内の層構造の判断や深さ方向の層構造の判断を行うことが可能となる。また、斜め方向シリカガラスルツボ1の深さ方向に向かって斜め方向。角度は任意で構わない)にレーザーを出射することで、欠陥の位置する深さを判別きる。 Thus, by using a line laser or a cross line laser as the light emitting part, a wide range of scattering conditions can be measured at once. For example, by using a surface laser and a horizontal line laser (horizontal laser), the layer structure inside the side wall of the silica glass crucible 1 can be measured at once over a wide range. Thereby, the measurement of the layer structure can be performed without omission over the entire range. In addition, by using a vertical line laser (vertical laser: for example, a horizontal laser tilted by 90 degrees) or a cross line laser, it is possible to more clearly determine the layer structure in the bubble-containing layer and the layer structure in the depth direction. It becomes possible to make a judgment. Further, the oblique direction is oblique to the depth direction of the silica glass crucible 1. The depth at which the defect is located can be determined by emitting the laser at any angle.
 なお、本実施形態におけるレーザー光源2としてクロスラインレーザーなどを用いる場合、例えば、距離5m以内で線幅が2mm程度となり、レーザー光源2から入射対象までの距離と平らな入射対象に入射された際のレーザー光の線長との比について限定はないが、例えば、1:0.3~2程度となるものを用いることが好ましい。 When a cross-line laser or the like is used as the laser light source 2 in the present embodiment, for example, when the line width is about 2 mm within a distance of 5 m and the light is incident on a flat incident object with a distance from the laser light source 2 to the incident object. Although there is no limitation on the ratio to the line length of the laser beam, it is preferable to use, for example, a ratio of about 1: 0.3 to 2.
 本実施形態のシリカガラスルツボの製造方法は、上述したシリカガラスルツボ1の厚み方向の各位置の散乱状況を測定する工程を経ることで、上述した各有利な点を有するシリカガラスルツボ1を判別して製造することが出来る。 The manufacturing method of the silica glass crucible of this embodiment discriminate | determines the silica glass crucible 1 which has each advantageous point mentioned above through the process of measuring the scattering condition of each position of the thickness direction of the silica glass crucible 1 mentioned above. Can be manufactured.
 シリカガラスルツボ形成工程は、(1)石英ガラスルツボの外形を規定する碗状の内表面を有するモールドを回転させながら、その内部の内面(底部及び側面)上に結晶質又は非晶質のシリカ粉を所定厚さに堆積させることによって、シリカガラス層用のシリカ粉層を形成し、(2)このシリカ粉層をアーク放電によって2000~2600℃に加熱して溶融させて固化することによってガラス化すると共に直ちに冷却し、(3)開口端部を所定幅で切断し、開口端部の形状を揃える工程を含有する。 The silica glass crucible forming step is performed by (1) rotating a mold having a bowl-shaped inner surface that defines the outer shape of the silica glass crucible, and crystalline or amorphous silica on the inner surface (bottom and side surfaces) of the mold. By depositing the powder to a predetermined thickness, a silica powder layer for the silica glass layer is formed. (2) The silica powder layer is heated to 2000 to 2600 ° C. by arc discharge to melt and solidify to form glass. And (3) cutting the opening end with a predetermined width and aligning the shape of the opening end.
 シリカガラスルツボ検査工程は、上述したシリカガラスルツボの厚み方向の各位置の散乱状況を測定する工程を含有し、上記シリカガラスルツボ成工程を経たシリカガラスルツボに実施する。本検査工程で良品のシリカガラスルツボを選別することにより、上述した各有利な点を有するシリカガラスルツボを製造することが出来る。 The silica glass crucible inspection step includes the step of measuring the scattering state of each position in the thickness direction of the silica glass crucible described above, and is performed on the silica glass crucible that has undergone the silica glass crucible formation step. By selecting a good silica glass crucible in this inspection step, a silica glass crucible having the above-mentioned advantages can be manufactured.
 上述したように、シリカガラスルツボ1の製造する際に当該シリカガラスルツボ1の厚み方向の各位置の散乱状況を測定することで、製造されたシリカガラスルツボ1の厚み方向の構造(透過層、光散乱層)を把握することが出来る。そのため、シリカガラスルツボ1を製造する際に上述した工程を経ることで、製造されたシリカガラスルツボ1の厚み方向の層構造が望ましいものであるかを容易な方法で判断することが可能となる。その結果、望ましい厚み方向の層構造を持つシリカガラスルツボ1を判別して製造することが出来る。具体的には、例えば、最も内面側に光透過層が形成されているシリカガラスルツボ1、当該光透過層がシリコン単結晶の引き上げを行う際に必要となるだけの十分な厚みを有しているシリカガラスルツボ1、光透過層の外側に光散乱層が形成されているシリカガラスルツボ1、光散乱層が1層で構成されている(つまり、レーザー光が散乱する領域において、レーザー光の散乱の強さに強弱の差がない、又は、強弱の差が微弱である(例えば、光散乱層内に光透過層が形成されていないなど)など予め設定された基準において均一であるシリカガラスルツボ1)シリカガラスルツボ1、気泡含有層が1層で構成されているシリカガラスルツボ1、望ましい光散乱層の厚さを有するシリカガラスルツボ1、光透過層と光散乱層との境界の界面が望ましい形状であるシリカガラスルツボ1(その結果、例えば、光透過層の分布にむらがないシリカガラスルツボ1)などを製造することが出来る。また、光透過層がシリカガラスルツボ1の開口端部の内面全周にわたって形成されているシリカガラスルツボ1や、光透過層の厚さがシリカガラスルツボ1の全周に亘って所定の範囲内であるシリカガラスルツボ1(例えば、予め定められた値から誤差±1mm程度)、光透過層と光散乱層との境目の形状の真円度をルツボの直径で割った値が予め定められた数値(例えば、0.01、または0.005、または0.002)よりも小さくなるよう構成されているシリカガラスルツボ1、などを製造することが出来る。 As described above, when the silica glass crucible 1 is manufactured, by measuring the scattering state of each position in the thickness direction of the silica glass crucible 1, the structure in the thickness direction of the manufactured silica glass crucible 1 (transmission layer, Light scattering layer). Therefore, it is possible to easily determine whether the layer structure in the thickness direction of the manufactured silica glass crucible 1 is desirable by performing the above-described steps when manufacturing the silica glass crucible 1. . As a result, the silica glass crucible 1 having a desirable layer structure in the thickness direction can be identified and manufactured. Specifically, for example, a silica glass crucible 1 in which a light transmission layer is formed on the innermost surface side, and the light transmission layer has a sufficient thickness necessary for pulling up a silicon single crystal. The silica glass crucible 1, the silica glass crucible 1 in which a light scattering layer is formed outside the light transmission layer, and the light scattering layer are composed of one layer (that is, in the region where the laser light is scattered, Silica glass that is uniform according to preset criteria such as no difference in intensity of scattering, or slight difference in intensity (for example, a light transmission layer is not formed in the light scattering layer). Crucible 1) Silica glass crucible 1, silica glass crucible 1 having a single bubble-containing layer, silica glass crucible 1 having a desired light scattering layer thickness, interface at the boundary between the light transmission layer and the light scattering layer But Silica glass crucible 1 is preferable shape (so that, for example, silica glass crucible 1 has no unevenness in the distribution of the light transmitting layer) can be manufactured like. Further, the silica glass crucible 1 in which the light transmission layer is formed over the entire inner surface of the opening end of the silica glass crucible 1, or the light transmission layer has a thickness within a predetermined range over the entire circumference of the silica glass crucible 1. A value obtained by dividing the roundness of the shape of the boundary between the light transmission layer and the light scattering layer by the diameter of the crucible is predetermined. A silica glass crucible 1 configured to be smaller than a numerical value (for example, 0.01, 0.005, or 0.002) can be manufactured.
 チョクラルスキー法によるシリコン単結晶の製造には、シリカガラスルツボを用いて製造される。シリカガラスルツボにポリシリコンを充填して加熱し、高純度のポリシリコンを熔融させてシリコン融液を得る。シリカガラスルツボを保持するサセプターを回転させながら、このシリコン融液に種結晶の端部を浸けて回転させながら引上げることによって、シリコン単結晶は製造される。その際、本実施形態等に係るシリカガラスルツボを用いることで、ルツボの欠陥に起因するシリコン単結晶のインゴットの結晶欠陥の発生を低減することができる。 シ リ カ Silica glass crucibles are used to manufacture silicon single crystals by the Czochralski method. A silica glass crucible is filled with polysilicon and heated to melt high-purity polysilicon to obtain a silicon melt. A silicon single crystal is produced by rotating the susceptor holding the silica glass crucible while immersing the end of the seed crystal in the silicon melt and rotating the susceptor. At that time, by using the silica glass crucible according to the present embodiment and the like, it is possible to reduce the occurrence of crystal defects in the silicon single crystal ingot caused by the crucible defects.
 図6乃至図9は、実際にシリカガラスルツボ1に内側からレーザー光を入射した際の、レーザー光の散乱状況を、カメラ部3を用いて撮影した画像である。 FIGS. 6 to 9 are images taken using the camera unit 3 of the scattering state of the laser light when the laser light is actually incident on the silica glass crucible 1 from the inside.
 図6は、シリカガラスルツボ1に入射されたレーザー光は、当該シリカガラスルツボ1の内側から所定位置まで透過した後、一部散乱している状態が示されている。当該シリカガラスルツボ1は、レーザー光が透過する領域である光透過層(透明層であって欠陥のない層)と、光透過層の外側に位置し、レーザー光が散乱する領域である光散乱層(気泡含有層など)を有し、当該光散乱層は単一の構造をしていることが判る。 FIG. 6 shows a state in which the laser light incident on the silica glass crucible 1 is partially scattered after being transmitted from the inside of the silica glass crucible 1 to a predetermined position. The silica glass crucible 1 includes a light transmission layer (transparent layer having no defects) that is a region through which laser light is transmitted, and light scattering that is located outside the light transmission layer and is a region in which laser light is scattered. It has a layer (such as a bubble-containing layer), and it can be seen that the light scattering layer has a single structure.
 図7は、入射されたレーザー光はシリカガラスルツボ1の内側から所定位置まで透過した後、一度強く散乱し、その後散乱が弱くなり、再度強く散乱している状態が示されている。当該シリカガラスルツボ1は、光透過層と光透過層の外側に光散乱層を有し、当該光散乱層は複数の層により構成されていることが判る。 FIG. 7 shows a state where the incident laser light is strongly scattered once after being transmitted from the inside of the silica glass crucible 1 to a predetermined position, and then the scattering is weakened and then strongly scattered again. It can be seen that the silica glass crucible 1 has a light transmission layer and a light scattering layer outside the light transmission layer, and the light scattering layer is composed of a plurality of layers.
 図8は、入射レーザー光がシリカガラスルツボ1の内側から所定位置まで透過した後、一度強く散乱し、一旦散乱が途切れた後、またレーザー光が散乱していることを示す。当該シリカガラスルツボ1は、光透過層と光透過層の外側に光散乱層を有し、光散乱層は複数の層により構成されていることが判る。 FIG. 8 shows that after the incident laser light is transmitted from the inside of the silica glass crucible 1 to a predetermined position, it is strongly scattered once, and once the scattering is interrupted, the laser light is scattered again. The silica glass crucible 1 has a light-transmitting layer and a light-scattering layer outside the light-transmitting layer, and it can be seen that the light-scattering layer is composed of a plurality of layers.
 図9は、入射レーザー光は最初から散乱した後、一旦透過した後、また散乱していることを示す。当該シリカガラスルツボ1は、光透過層と光透過層の外側に光散乱層を有しており、透明層内であると考えられるシリカガラスルツボ1の内側部分に欠陥を有している(光散乱層が形成されている)ことが判る。 FIG. 9 shows that the incident laser light is scattered from the beginning, then once transmitted, and then scattered again. The silica glass crucible 1 has a light transmissive layer and a light scattering layer outside the light transmissive layer, and has a defect in an inner portion of the silica glass crucible 1 that is considered to be in the transparent layer (light It can be seen that a scattering layer is formed).
 図10、11は、図6、7のシリカガラスルツボ1の歪み(内部残留応力)を示す。図10に示すように、図6のシリカガラスルツボ1(光透過層と光散乱層とを有し、光散乱層が単一の構造で構成されていると判断されるシリカガラスルツボ)では、光透過層と光散乱層との間に内部残留応力の境界があるものの、その他の部分においては、内部残留応力は緩やかな変化をしていることが判る。なお、シリカガラスは複屈折性を持っているため内部残留応力の急激な変化があると屈折率が急激に変化し、コントラストが見られる FIGS. 10 and 11 show the strain (internal residual stress) of the silica glass crucible 1 of FIGS. As shown in FIG. 10, in the silica glass crucible 1 of FIG. 6 (silica glass crucible having a light transmission layer and a light scattering layer, and it is determined that the light scattering layer has a single structure) Although there is a boundary of internal residual stress between the light transmission layer and the light scattering layer, it can be seen that the internal residual stress changes gently in the other portions. In addition, since silica glass has birefringence, if there is an abrupt change in internal residual stress, the refractive index changes abruptly and contrast is seen.
 図11に示すように、図7のシリカガラスルツボ1(光透過層と光散乱層とを有し、光散乱層が複数の層を含んで構成されていると判断されるシリカガラスルツボ)では、光散乱層の内部においても、内部残留応力の境界(急激な変化)があることが判る。 As shown in FIG. 11, in the silica glass crucible 1 of FIG. 7 (silica glass crucible having a light transmission layer and a light scattering layer, and it is determined that the light scattering layer includes a plurality of layers). It can also be seen that there is a boundary (rapid change) of internal residual stress even inside the light scattering layer.
 このように、シリカガラスルツボ1のレーザー光の散乱状況と歪みとの間には、対応関係が見られる。歪みは、シリカガラスが原子レベルで圧縮や引っ張りの状態にありSi-O-Siの結合の距離(原子の密度)が不均一であることと同じであるので、当該歪みにより入射レーザー光の散乱を起こしているものと考えられる。 Thus, there is a correspondence between the laser light scattering state of the silica glass crucible 1 and the distortion. The strain is the same as the silica glass is compressed or pulled at the atomic level and the Si—O—Si bond distance (atomic density) is non-uniform. It is thought that has caused.
 歪み検査は、一般的には、破壊検査でありシリカガラスルツボ1を破壊して行われる。そこで、非破壊で簡便な本発明によるレーザー光の散乱状況の測定を歪みの検査の代わりに行うことにより、歪みの検査を簡便に行うことができる。また、レーザー光の散乱状況を測定して、当該測定の結果に応じて(必要に応じて)、アニール処理などを行うことも出来る。 The strain inspection is generally a destructive inspection and is performed by breaking the silica glass crucible 1. Therefore, the non-destructive and simple measurement of the laser light scattering state according to the present invention is performed instead of the distortion inspection, whereby the distortion inspection can be easily performed. Further, the scattering state of the laser light can be measured, and annealing treatment or the like can be performed according to the result of the measurement (if necessary).
 シリコン単結晶を製造するために多結晶シリコンをシリカガラスルツボ1内部に組み込む際、多結晶シリコンによりシリカガラスルツボ1の内部に圧痕が付く場合がある。このような場合に、仮にシリカガラスルツボ1内の歪みが大きいとすると、圧痕を原因としてシリカガラスルツボ1が割れることがあるが、圧痕が付いた後、直ちに割れ生じない場合もある。従って、単結晶シリコン引き上げ工程で割れる場合もあり、特にシリコンを融解している最中にシリカガラスルツボ1が割れた場合は、引き上げ装置は破損し、またシリコン原料は廃棄されることとなり経済的な損失が生じる。本発明の測定方法によれば、非破壊で容易な方法でシリカガラスルツボ1の歪み測定の代用が可能となり、上記損害が生じることを事前に防ぐことができる。 When the polycrystalline silicon is incorporated into the silica glass crucible 1 in order to produce a silicon single crystal, there is a case where an indentation is formed inside the silica glass crucible 1 due to the polycrystalline silicon. In such a case, if the strain in the silica glass crucible 1 is large, the silica glass crucible 1 may be cracked due to the indentation. However, the crack may not be generated immediately after the indentation is formed. Accordingly, the single crystal silicon pulling process may break, and in particular, when the silica glass crucible 1 is broken during the melting of the silicon, the pulling apparatus is damaged and the silicon raw material is discarded, which is economical. Loss. According to the measuring method of the present invention, it becomes possible to substitute for the strain measurement of the silica glass crucible 1 by a non-destructive and easy method, and it is possible to prevent the above damage from occurring in advance.
 図12、図13は、クロスラインレーザーを用いた際の散乱状況を示す図である。図12は、クロスラインレーザーを用いてレーザー光を出射した際の、シリカガラスルツボ1の厚み方向の散乱状況を撮影した図であり、クロスラインレーザーを用いることで、カメラ部3が撮影した全ての範囲において、光透過層と光散乱層とを判別できることが分かる。 12 and 13 are diagrams showing a scattering state when a cross-line laser is used. FIG. 12 is a photograph of the scattering state in the thickness direction of the silica glass crucible 1 when laser light is emitted using a cross-line laser. All images photographed by the camera unit 3 are obtained using a cross-line laser. It can be seen that the light transmission layer and the light scattering layer can be discriminated in the range.
 クロスラインレーザーを用いると、広範囲の散乱状況を測定可能となり、、光透過層と光散乱層の構造以外でも、例えば、リム端の加工跡が判別出来る場合もある。図13において、透明層の領域でも、入射クロスラインレーザー光が散乱していることが示される。 When a cross-line laser is used, it is possible to measure a wide range of scattering conditions, and it may be possible to determine, for example, a rim end processing trace other than the structure of the light transmission layer and the light scattering layer. FIG. 13 shows that the incident crossline laser light is also scattered in the transparent layer region.
 [実施形態2]
 本発明の第2の実施形態について、図14乃至図16を参照して説明する。図14は、本実施形態におけるルツボ測定装置の構成の一例を示している。図15は、第2の実施形態にかかるルツボ測定方法の流れの一例を示すフローチャートである。図16は、ルツボの内表面と照明部との距離が散乱状況の測定に与える影響を示す図である。
[Embodiment 2]
A second embodiment of the present invention will be described with reference to FIGS. FIG. 14 shows an example of the configuration of the crucible measuring apparatus according to this embodiment. FIG. 15 is a flowchart illustrating an example of the flow of the crucible measurement method according to the second embodiment. FIG. 16 is a diagram illustrating the influence of the distance between the inner surface of the crucible and the illumination unit on the measurement of the scattering state.
 本実施形態においては、シリカガラスルツボ1に入射したレーザー光の散乱状況を、所定の波長の光の照射下で測定するルツボ測定装置について説明する。また、上記ルツボ測定装置を用いて行われるルツボ測定方法について説明する。また、ルツボの測定を経て製造されるシリカガラスルツボの製造方法について説明する。また、上記ルツボの測定を経て製造されるシリカガラスルツボ1について説明する。 In the present embodiment, a crucible measuring device that measures the scattering state of laser light incident on the silica glass crucible 1 under irradiation with light of a predetermined wavelength will be described. In addition, a crucible measurement method performed using the crucible measurement apparatus will be described. Moreover, the manufacturing method of the silica glass crucible manufactured through the measurement of a crucible is demonstrated. Moreover, the silica glass crucible 1 manufactured through the measurement of the crucible will be described.
 図14に示すように、本実施形態におけるルツボ測定装置は、レーザー光源2、カメラ部3、および照明部4を有する。レーザー光源2とカメラ部3との構成は、第1の実施形態において説明したものと同様である。そのため、重複する説明は省略する。 As shown in FIG. 14, the crucible measuring apparatus according to this embodiment includes a laser light source 2, a camera unit 3, and an illumination unit 4. The configurations of the laser light source 2 and the camera unit 3 are the same as those described in the first embodiment. Therefore, the overlapping description is omitted.
 照明部4は、例えばLED(Light emitting diode)などで構成されており、レーザー光源2が出射するレーザー光の波長に応じた波長の光を照射するよう構成されている。具体的には、例えば、レーザー光源2が赤色のレーザー光を出射する際には、照明部4は、青色の波長の光を照射するように構成されている。 The illumination unit 4 is configured by, for example, an LED (Light emitting diode), and is configured to irradiate light having a wavelength corresponding to the wavelength of the laser light emitted from the laser light source 2. Specifically, for example, when the laser light source 2 emits red laser light, the illumination unit 4 is configured to emit light having a blue wavelength.
 照明部4が照射する光(照明)は、レーザー光と近い色相の照明はレーザー光の散乱を目立たなくするため、避けることが望ましい。すなわち、照明部4は、レーザー光源2が出射するレーザー光の波長付近の波長を含まない光を照射するのが望ましい。例として、レーザー光源2から出射する光の波長が630nmの場合は、630nm付近の波長を含まない青色の波長の光の照明を用いることが望ましい。なお、ある物体に白色光を当て反射光が赤く見える場合は、その物体が人間の目で赤く見える領域の波長の光を反射し、それ以外の波長の光を吸収しているためである。したがって人間の目で青く見える領域の波長だけの光を当ててもその物体は赤く見えないことになる。 The light (illumination) emitted by the illumination unit 4 is desirably avoided because illumination with a hue close to that of the laser light makes the laser light scattering inconspicuous. That is, it is desirable that the illumination unit 4 irradiates light that does not include a wavelength near the wavelength of the laser light emitted from the laser light source 2. As an example, when the wavelength of light emitted from the laser light source 2 is 630 nm, it is desirable to use illumination of light having a blue wavelength that does not include a wavelength near 630 nm. When white light is applied to an object and the reflected light looks red, it is because the object reflects light having a wavelength in a region where the human eye looks red and absorbs light of other wavelengths. Therefore, even if the light of only the wavelength of the region that looks blue with human eyes is applied, the object does not look red.
 レーザー光源2がシリカガラスルツボ1にレーザー光を入射している際に、照明部4が当該レーザー光の波長に応じて調整される光の照射を行い、カメラ部3がシリカガラスルツボ1の端面を撮影することで、レーザー光の散乱状況を測定することができる。その結果、より高い精度でシリカガラスルツボ1の厚み方向の層の構造を測定することが出来る。 When the laser light source 2 is incident on the silica glass crucible 1, the illumination unit 4 emits light adjusted according to the wavelength of the laser light, and the camera unit 3 is the end surface of the silica glass crucible 1. Can be used to measure the state of laser light scattering. As a result, the layer structure in the thickness direction of the silica glass crucible 1 can be measured with higher accuracy.
 次に、上記ルツボ測定装置を用いて行われるルツボ測定方法の一例について、図15を参照して説明する。 Next, an example of the crucible measurement method performed using the crucible measurement apparatus will be described with reference to FIG.
 図15を参照すると、まず、レーザー光源2を用いて、シリカガラスルツボ1の内側から厚み方向に向かってレーザー光を出射する(ステップS101)。これにより、シリカガラスルツボ1には、レーザー光が入射されることになる。その後、シリカガラスルツボ1に入射されたレーザー光は、当該シリカガラスルツボ1の構造に応じて、透過する、一部散乱する、など様々な散乱状況を示すことになる。 Referring to FIG. 15, first, laser light is emitted from the inside of the silica glass crucible 1 toward the thickness direction using the laser light source 2 (step S101). As a result, the laser light is incident on the silica glass crucible 1. Thereafter, the laser light incident on the silica glass crucible 1 shows various scattering states such as transmission or partial scattering depending on the structure of the silica glass crucible 1.
 続いて、若しくは、レーザー光の出射と前後して、照明部4を用いて、当該レーザー光に応じた照明光を照射する(S201)。これにより、照明部4による照明下で、レーザー光がシリカガラスルツボ1に入射していることになる。 Subsequently, or before and after the emission of the laser beam, the illumination unit 4 is used to irradiate illumination light corresponding to the laser beam (S201). Thereby, the laser light is incident on the silica glass crucible 1 under illumination by the illumination unit 4.
 その後、シリカガラスルツボ1の端面をカメラ部3により撮影する。これにより、カメラ部3は、照明部4による照明下で、シリカガラスルツボ1の厚み方向の各位置のレーザー光の散乱状況を測定する。つまり、カメラ部3によりシリカガラスルツボ1の端面を撮影することにより、レーザー光の散乱状況を示す画像データを取得する(ステップS102)。その後、カメラ部3は、例えば、取得した画像データを表示装置に表示する。 Then, the end face of the silica glass crucible 1 is photographed by the camera unit 3. Thereby, the camera part 3 measures the scattering state of the laser beam at each position in the thickness direction of the silica glass crucible 1 under illumination by the illumination part 4. That is, image data indicating the scattering state of the laser light is acquired by photographing the end face of the silica glass crucible 1 with the camera unit 3 (step S102). Thereafter, the camera unit 3 displays the acquired image data on the display device, for example.
 このように、本実施形態におけるルツボ測定方法は、照明光による照射下で、シリカガラスルツボ1の厚み方向の各位置の散乱状況を測定するものである。その結果、当該測定した結果に基づいて、シリカガラスルツボ1の厚み方向の層の構造を把握することが可能となる。 Thus, the crucible measurement method in this embodiment measures the scattering state of each position in the thickness direction of the silica glass crucible 1 under irradiation with illumination light. As a result, the structure of the layer in the thickness direction of the silica glass crucible 1 can be grasped based on the measurement result.
 図16は、シリカガラスルツボ1の内表面(若しくは、端面)と照明部4との距離による、レーザー光の散乱状況の測定のしやすさの関係を示している。具体的には、図16(A)は、シリカガラスルツボ1の内表面と照明部4との距離が100mmの場合を示しており、図16(B)は、シリカガラスルツボ1の内表面と照明部4との距離が300mmの場合を示している。また、図16(C)は、シリカガラスルツボ1の内表面と照明部4との距離が500mmの場合を示している。 FIG. 16 shows the relationship of ease of measurement of the scattering state of the laser light depending on the distance between the inner surface (or end face) of the silica glass crucible 1 and the illumination unit 4. Specifically, FIG. 16A shows a case where the distance between the inner surface of the silica glass crucible 1 and the illumination unit 4 is 100 mm, and FIG. 16B shows the inner surface of the silica glass crucible 1. The case where the distance with the illumination part 4 is 300 mm is shown. FIG. 16C shows a case where the distance between the inner surface of the silica glass crucible 1 and the illumination unit 4 is 500 mm.
 図16で示すように、使用したレーザー光源2と照明部4とにおいては、シリカガラスルツボ1の内表面と照明部4との距離が500mm程度離れている場合が、最もレーザー光の散乱状況を明確に測定することが出来ることが分かる。このように、シリカガラスルツボ1の内表面と照明部4との距離を調整することで、入射レーザー光の散乱状況をより明確に測定できる。つまり、照明部4は、シリカガラスルツボ1の内表面との間の距離が予め定められた所定の距離(例えば、500mm)となるように調整されることが望ましい。なお、シリカガラスルツボ1と照明部4との間の適切な距離は、例えば、照明部4の照射する照射光の強さなどに応じて変化することが考えられる。そのため、上記予め定められた所定の距離は、必要に応じて調整可能な距離であるものとする。 As shown in FIG. 16, in the used laser light source 2 and the illuminating unit 4, when the distance between the inner surface of the silica glass crucible 1 and the illuminating unit 4 is about 500 mm, the laser light scattering state is the most. It can be seen that it can be measured clearly. Thus, by adjusting the distance between the inner surface of the silica glass crucible 1 and the illumination unit 4, the scattering state of incident laser light can be measured more clearly. In other words, the illumination unit 4 is preferably adjusted so that the distance from the inner surface of the silica glass crucible 1 is a predetermined distance (for example, 500 mm). In addition, it is possible that the suitable distance between the silica glass crucible 1 and the illumination part 4 changes according to the intensity of the irradiation light which the illumination part 4 irradiates, etc., for example. Therefore, it is assumed that the predetermined distance is a distance that can be adjusted as necessary.
 本実施形態におけるルツボ測定装置・測定方法は、第1の実施形態で説明した場合と同様に、様々なその他の構成を採用することが出来る。例えば、上述したラインレーザーやクロスラインレーザーなど(光出射部)と、照明部4とを組み合わせることも有効である。特に、例えば、照明部4による青色の照明光の照明下で赤色のレーザー光を出射することで、散乱している部分が紫色として測定可能となり、より明確に散乱状況を測定することが可能となる。 The crucible measuring apparatus and measuring method in the present embodiment can employ various other configurations as in the case described in the first embodiment. For example, it is also effective to combine the illumination unit 4 with the above-described line laser or cross line laser (light emitting unit). In particular, for example, by emitting red laser light under illumination of blue illumination light by the illumination unit 4, the scattered portion can be measured as purple, and the scattering state can be measured more clearly. Become.
 回転モールド法を用いてシリカガラスルツボ1を製造する際に、上述した照明光による照明下でシリカガラスルツボ1の厚み方向の各位置の散乱状況を測定する工程を経ることで、より容易に望ましいシリカガラスルツボ1を製造、実現することが出来る。 When manufacturing the silica glass crucible 1 using the rotating mold method, it is more easily desirable through the step of measuring the scattering state of each position in the thickness direction of the silica glass crucible 1 under illumination with the illumination light described above. The silica glass crucible 1 can be manufactured and realized.
[実施形態3]
 次に、本発明の第3の実施形態について、図17乃至図21を参照して説明する。図17は、本実施形態におけるルツボ測定装置の構成の一例である。図18は、本実施形態におけるルツボ測定装置がラマンスペクトルの測定を行う位置の一例を示す図である。図19は、第3の実施形態にかかるルツボ測定方法の流れの一例を示すフローチャートである。図20及び図21は、実際に測定したラマンスペクトルの一例である。
[Embodiment 3]
Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 17 is an example of the configuration of the crucible measuring apparatus according to the present embodiment. FIG. 18 is a diagram illustrating an example of a position where the crucible measurement apparatus according to the present embodiment measures a Raman spectrum. FIG. 19 is a flowchart illustrating an example of the flow of the crucible measurement method according to the third embodiment. 20 and 21 are examples of Raman spectra actually measured.
 本実施形態においては、ラマンスペクトルの測定を行う(ラマン散乱の測定を行う)ことで、シリカガラスルツボ1の厚み方向のレーザー光の散乱状況の測定を行うルツボ測定装置について説明する。また、上記装置を用いて行われる、ルツボ測定方法について説明する。また、上記ルツボの測定を経て製造されるシリカガラスルツボ1について説明する。 In this embodiment, a crucible measuring apparatus that measures the scattering state of laser light in the thickness direction of the silica glass crucible 1 by measuring a Raman spectrum (measuring Raman scattering) will be described. Moreover, the crucible measuring method performed using the said apparatus is demonstrated. Moreover, the silica glass crucible 1 manufactured through the measurement of the crucible will be described.
 図17を参照すると、本実施形態におけるルツボ測定装置は、例えば、レーザー部21(光出射部)と、ラマン分光測定部31(散乱状況測定部)と、を有している。また、ラマン分光測定部31は、例えば、レイリー光除去フィルタ311と、分光器312と、検出器313と、を有している。 Referring to FIG. 17, the crucible measuring apparatus according to this embodiment includes, for example, a laser unit 21 (light emitting unit) and a Raman spectroscopic measuring unit 31 (scattering state measuring unit). The Raman spectroscopic measurement unit 31 includes, for example, a Rayleigh light removal filter 311, a spectroscope 312, and a detector 313.
 レーザー部21は、例えば半導体レーザーや固体レーザーなどであり、シリカガラスルツボ1の端面方向から、シリカガラスルツボ1の端面に向かって、当該シリカガラスルツボ1の厚み方向の各位置に単色のレーザー光(例えば、520nmの緑色のレーザー光)を出射するよう構成されている。つまり、図17で示すように、レーザー部21は、シリカガラスルツボ1の端面に、当該シリカガラスルツボ1の厚み方向に出射位置を移動させながらレーザー光を出射させることになる。これにより、後述するように、シリカガラスルツボ1の厚み方向の各位置のラマンスペクトルがそれぞれ測定されることになる。 The laser unit 21 is, for example, a semiconductor laser or a solid-state laser, and is monochromatic laser light at each position in the thickness direction of the silica glass crucible 1 from the end surface direction of the silica glass crucible 1 toward the end surface of the silica glass crucible 1. (For example, 520 nm green laser light) is emitted. That is, as shown in FIG. 17, the laser unit 21 emits laser light to the end surface of the silica glass crucible 1 while moving the emission position in the thickness direction of the silica glass crucible 1. Thereby, as will be described later, the Raman spectrum at each position in the thickness direction of the silica glass crucible 1 is measured.
 ラマン分光測定部31は、上記のように、レイリー光除去フィルタ311と、分光器312と、検出器313と、を有している。 As described above, the Raman spectroscopic measurement unit 31 includes the Rayleigh light removal filter 311, the spectroscope 312, and the detector 313.
 レイリー光除去フィルタ311は、散乱光の中に含まれる、出射したレーザー光と同じ波長の光であるレイリー散乱を除去するためのフィルタである。レーザー部21が出射したレーザー光は、シリカガラスルツボ1の端面に入射した後、散乱光を発生させることになる。この散乱光には、測定の対象となるラマン散乱光(ストークス、アンチストークス、一方でも構わない)の他に、レイリー散乱光が含まれている。そこで、レイリー光除去フィルタ311を用いて、レイリー散乱光を除去することになる。 The Rayleigh light removal filter 311 is a filter for removing Rayleigh scattering that is included in the scattered light and has the same wavelength as the emitted laser light. The laser light emitted from the laser unit 21 enters the end surface of the silica glass crucible 1 and then generates scattered light. This scattered light includes Rayleigh scattered light in addition to Raman scattered light to be measured (Stokes, anti-Stokes, or either). Therefore, the Rayleigh light removal filter 311 is used to remove Rayleigh scattered light.
 続いて、レイリー光除去フィルタ311を通過した光は、分光器312に入射する。そして、分光器312にて、レイリー散乱光を除去した散乱光を分光する。その後、検出器313を用いて、分光した光を波長毎に検出する。このような構成により、本実施形態におけるルツボ測定装置は、シリカガラスルツボ1の厚み方向の各位置の散乱状況を測定することになる。また、検出器313は、例えば図示しない情報処理装置に接続されており、当該情報処理装置にて、検出した光に応じたラマンシフト値を算出することが出来る。これにより、ラマンスペクトルが測定されることになる。つまり、ラマン散乱が測定されることになる。 Subsequently, the light that has passed through the Rayleigh light removal filter 311 enters the spectroscope 312. Then, the spectroscope 312 separates the scattered light from which the Rayleigh scattered light has been removed. After that, using the detector 313, the dispersed light is detected for each wavelength. With such a configuration, the crucible measuring apparatus in the present embodiment measures the scattering state at each position in the thickness direction of the silica glass crucible 1. Further, the detector 313 is connected to, for example, an information processing device (not shown), and the information processing device can calculate a Raman shift value corresponding to the detected light. Thereby, the Raman spectrum is measured. That is, Raman scattering is measured.
 なお、上記ラマンスペクトルを測定するための構成は、あくまで一例である。上記構成以外を用いて、シリカガラスルツボ1の厚み方向の各位置のラマンスペクトルを測定するように構成しても構わない。 The configuration for measuring the Raman spectrum is merely an example. You may comprise so that the Raman spectrum of each position of the thickness direction of the silica glass crucible 1 may be measured using things other than the said structure.
 このように、本実施形態におけるルツボ測定装置は、レーザー部21と、ラマン分光測定部31と、を有している。このような構成により、シリカガラスルツボ1の端面の、当該シリカガラスルツボ1の厚み方向の各位置のラマンスペクトルを取得する。つまり、図18で示すように、シリカガラスルツボ1の厚み方向の各位置に当たるようにレーザー部21の位置を調整して、シリカガラスルツボ1の厚み方向の各位置のラマンスペクトルを取得する。 As described above, the crucible measuring apparatus according to the present embodiment includes the laser unit 21 and the Raman spectroscopic measuring unit 31. With such a configuration, the Raman spectrum of each position in the thickness direction of the silica glass crucible 1 on the end surface of the silica glass crucible 1 is acquired. That is, as shown in FIG. 18, the position of the laser unit 21 is adjusted so as to hit each position in the thickness direction of the silica glass crucible 1, and a Raman spectrum at each position in the thickness direction of the silica glass crucible 1 is acquired.
 ここで、シリカガラスのラマンスペクトルには、平面4員環に帰属されるピークと、平面3員環に帰属されるピークと、を代表とする複数のピークが測定されることが知られている。そのため、上記シリカガラスルツボ1の端面の厚み方向の各位置のラマンスペクトルも、同様に、平面4員環に帰属されるピークと、平面3員環に帰属されるピークと、を含む複数のピークを有している。一方で、実際に測定を行うと、シリカガラスルツボ1の厚み方向の各位置で、各ピークのラマンシフトの値にずれが生じている場合がある。つまり、シリカガラスルツボ1の厚み方向には、複数の構造が含まれている場合があり、上記のようにシリカガラスルツボ1の厚み方向の各位置でラマン測定を行うことで、上記複数の構造を測定することが出来ることになる。 Here, it is known that in the Raman spectrum of silica glass, a plurality of peaks represented by a peak attributed to a planar four-membered ring and a peak attributed to a planar three-membered ring are measured. . Therefore, the Raman spectrum at each position in the thickness direction of the end surface of the silica glass crucible 1 similarly includes a plurality of peaks including a peak attributed to a planar four-membered ring and a peak attributed to a planar three-membered ring. have. On the other hand, when the measurement is actually performed, there may be a deviation in the Raman shift value of each peak at each position in the thickness direction of the silica glass crucible 1. That is, a plurality of structures may be included in the thickness direction of the silica glass crucible 1, and the plurality of structures are obtained by performing Raman measurement at each position in the thickness direction of the silica glass crucible 1 as described above. Can be measured.
 なお、ラマンスペクトルを測定した際に、シリカガラスルツボ1の厚み方向の各位置でラマンシフトが異なる場合、シリカガラスルツボ1の厚み方向の構造が異なっているということになり、当該シリカガラスルツボ1を用いてシリコン単結晶の引き上げを行っている際に変形が起こりやすいことになる。逆にいうと、シリカガラスルツボ1の厚み方向の各位置でラマンスペクトルの測定を行って、シリカガラスルツボ1の厚み方向の各位置でラマンシフトが同一(差が少ない)なシリカガラスルツボ1を判別することで、割れにくい(割れない)シリカガラスルツボ1を判別することが出来る。このように、ラマンスペクトルの測定は、割れにくいシリカガラスルツボ1を判別する方法の一つとして、用いることも出来る。なお、ラマンスペクトルの測定を行って割れにくいシリカガラスルツボ1を判別する際には、例えば、光透過層や光散乱層内(透明層や気泡含有層内でも構わない)でラマンシフトが同一であるか否かを確認したり、厚み方向全体のラマンシフトが同一であるか否かを確認したりすることになる。 When the Raman shift is different at each position in the thickness direction of the silica glass crucible 1 when the Raman spectrum is measured, the structure in the thickness direction of the silica glass crucible 1 is different. Deformation is likely to occur when pulling up the silicon single crystal using. Conversely, a Raman spectrum is measured at each position in the thickness direction of the silica glass crucible 1, and the silica glass crucible 1 having the same Raman shift (small difference) at each position in the thickness direction of the silica glass crucible 1 is obtained. By determining, it is possible to determine the silica glass crucible 1 that is not easily broken (not broken). Thus, the measurement of the Raman spectrum can also be used as one of methods for discriminating the silica glass crucible 1 that is difficult to break. When determining the silica glass crucible 1 that is difficult to break by measuring the Raman spectrum, for example, the Raman shift is the same in the light transmission layer or the light scattering layer (may be in the transparent layer or the bubble-containing layer). It is confirmed whether or not there is, or whether or not the Raman shift in the entire thickness direction is the same.
 なお、第1及び第2の実施形態で説明したレーザー光の散乱状況の測定と、本実施形態で説明するラマンスペクトルの測定と、を同時に(又は、レーザー光の散乱状況の測定結果に基づいてラマンスペクトル(ラマン散乱)の測定を)行うよう構成しても構わない。具体的には、例えば、シリカガラスルツボ1の内側から出射したレーザー光の散乱状況の測定を行い、当該レーザー光の散乱状況の測定により異なる構造であると判断される各層に対して、レーザー光の散乱状況の測定下でラマン励起用のレーザー光を当てる。その後、散乱測定用のレーザー光を止めた後(照明部4により照明光が照射されている場合は、照明光の照射も止めた後)、ラマン測定を行う。つまり、レーザー光の散乱状況の測定結果に基づいて光透過層と光散乱層とを把握し、当該把握結果に基づいて、光透過層や光散乱層、光透過層と光散乱層との境界付近などに対してラマンスペクトルの測定を行う。このように両方の方法を組み合わせて測定を行うことで、容易に、かつ、より精度高く、シリカガラスルツボ1の厚み方向の層の構造を把握することが可能となる。なお、散乱測定用のレーザー(レーザー光源2により出射されるレーザー光)とラマン測定用のレーザー(レーザー部21により出射されるレーザー光)とでは、異なる波長のレーザーを用いることが望ましい。 The measurement of the laser light scattering state described in the first and second embodiments and the measurement of the Raman spectrum described in this embodiment are performed simultaneously (or based on the measurement result of the laser light scattering state). It may be configured to perform measurement of a Raman spectrum (Raman scattering). Specifically, for example, the scattering state of laser light emitted from the inside of the silica glass crucible 1 is measured, and laser light is applied to each layer determined to have a different structure based on the measurement of the scattering state of the laser light. A laser beam for Raman excitation is applied under the measurement of the scattering state of the laser beam. Thereafter, after the laser beam for scattering measurement is stopped (when illumination light is irradiated by the illumination unit 4, the irradiation of illumination light is also stopped), and Raman measurement is performed. In other words, the light transmission layer and the light scattering layer are grasped based on the measurement result of the scattering state of the laser light, and the boundary between the light transmission layer, the light scattering layer, and the light transmission layer and the light scattering layer is determined based on the grasp result. Measure the Raman spectrum in the vicinity. Thus, by performing measurement by combining both methods, the structure of the layer in the thickness direction of the silica glass crucible 1 can be grasped easily and with higher accuracy. In addition, it is desirable to use lasers of different wavelengths for the laser for scattering measurement (laser light emitted from the laser light source 2) and the laser for Raman measurement (laser light emitted by the laser unit 21).
 続いて、上記ルツボ測定装置を用いて行われるルツボ測定方法について説明する。 Subsequently, a crucible measuring method performed using the crucible measuring apparatus will be described.
 図19を参照すると、まず、レーザー部21が、シリカガラスルツボ1の端面方向から、シリカガラスルツボ1の端面に向かって、レーザー光を出射する(S301)。レーザー部21が出射したレーザー光は、シリカガラスルツボ1の端面に入射した後、散乱光を発生させることになる。そこで、レイリー光を除去した後、分光して、分光した光を波長毎に検出する。例えば、このような方法により、ラマン散乱を測定する(S302)。 Referring to FIG. 19, first, the laser unit 21 emits laser light from the end surface direction of the silica glass crucible 1 toward the end surface of the silica glass crucible 1 (S301). The laser light emitted from the laser unit 21 enters the end surface of the silica glass crucible 1 and then generates scattered light. Therefore, after the Rayleigh light is removed, the light is split and the split light is detected for each wavelength. For example, Raman scattering is measured by such a method (S302).
 その後、レーザー光の出射ポイントをシリカガラスルツボ1の厚み方向にずらせるか否か確認を行う(S303)。ずらせる場合には、レーザー光の出射ポイントをシリカガラスルツボ1の厚み方向にずらした上で、再度ラマン散乱の測定を行う(S303、Yes)。一方、ずらせない場合(厚み方向の測定を終えた場合)には、ラマン散乱の測定を終了する(S303、No)。 Thereafter, it is confirmed whether or not the laser light emission point is shifted in the thickness direction of the silica glass crucible 1 (S303). In the case of shifting, the laser light emission point is shifted in the thickness direction of the silica glass crucible 1 and then Raman scattering is measured again (Yes in S303). On the other hand, when it is not shifted (when the measurement in the thickness direction is finished), the Raman scattering measurement is finished (S303, No).
 このように、本実施形態におけるルツボ測定方法は、ラマン散乱の測定をシリカガラスルツボ1の厚み方向の各位置に対して行う。その結果、当該測定した結果に基づいて、シリカガラスルツボ1の厚み方向の層の構造を把握することが可能となる。 Thus, the crucible measurement method in the present embodiment performs Raman scattering measurement for each position in the thickness direction of the silica glass crucible 1. As a result, the structure of the layer in the thickness direction of the silica glass crucible 1 can be grasped based on the measurement result.
 なお、回転モールド法を用いてシリカガラスルツボを製造する際に、上述したラマン測定を行う工程を経ることでも、望ましいシリカガラスルツボを製造、実現することが出来る。また、厚み方向のレーザー光の測定と、ラマン測定と、を行う構成を有するシリカガラスルツボの製造工程を経て製造されるシリカガラスルツボであっても、同様の有利な効果を有することが出来る。 In addition, when manufacturing a silica glass crucible using a rotation mold method, a desirable silica glass crucible can be manufactured and realized also through the process of performing the Raman measurement mentioned above. Further, a silica glass crucible manufactured through a manufacturing process of a silica glass crucible having a configuration in which measurement of laser light in the thickness direction and Raman measurement is performed can have the same advantageous effects.
 図20及び図21は、実際にシリカガラスルツボ1の厚み方向の各位置のラマンスペクトルを測定した結果である。図20は、図6、図10と同様のシリカガラスルツボ1の端面の、当該シリカガラスルツボ1の厚み方向の各位置のラマンスペクトルを測定した結果である。図21は、図7、図11と同様のシリカガラスルツボ1の端面の、当該シリカガラスルツボ1の厚み方向の各位置のラマンスペクトルを測定した結果である。 20 and 21 show the results of actually measuring the Raman spectrum at each position in the thickness direction of the silica glass crucible 1. FIG. 20 shows the result of measuring the Raman spectrum of each position in the thickness direction of the silica glass crucible 1 on the same end face of the silica glass crucible 1 as in FIGS. 6 and 10. FIG. 21 shows the result of measuring the Raman spectrum of each position in the thickness direction of the silica glass crucible 1 on the same end face of the silica glass crucible 1 as in FIGS. 7 and 11.
 図20、図21のラマンスペクトルは、下から順番に、内面側(透明層)、内面と中間との境界、中間、中間と外面側との境界、外面側、の位置のラマン測定の結果を示している。なお、見やすいように図20及び図21のラマンスペクトルの結果は、各結果が重なり合わないように修正されている。そのため、以下においては、ラマンシフトの値のみを問題とし、強度は見ないものとする。 20 and FIG. 21, in order from the bottom, the Raman spectra of the inner surface side (transparent layer), the boundary between the inner surface and the middle, the middle, the boundary between the middle and the outer surface side, and the position of the outer surface side are measured. Show. For easy viewing, the results of the Raman spectra of FIGS. 20 and 21 are corrected so that the results do not overlap. Therefore, in the following, it is assumed that only the value of the Raman shift is a problem and the intensity is not seen.
 図20を参照すると、平面4員環に帰属されるピーク(488cm-1付近のピーク)において、内面側及び内面と中間との境界の測定結果と、中間、中間と外面側との境界、外面側の測定結果とに大きな開きがあることが分かる。図6、図10で示したように、図20を測定したシリカガラスルツボ1は、光透過層と光散乱層とを有し、光散乱層が単一の構造で構成されていると判断される層である。以上より、ラマン測定の結果と、シリカガラスルツボ1の厚み方向の散乱状況の測定結果とは、一定の相関関係があるものと考えることが出来る。つまり、内面側及び内面と中間との境界の測定結果が光透過層を示し、中間、中間と外面側との境界、外面側の測定結果が光散乱層を示している。このように、ラマン測定の結果に基づいて、シリカガラスルツボ1の厚み方向の層の構造を把握することが出来ることが分かる。 Referring to FIG. 20, in the peak attributed to the plane four-membered ring (peak near 488 cm −1 ), the measurement results of the inner surface side and the boundary between the inner surface and the middle, the boundary between the middle, the middle and the outer surface side, the outer surface It can be seen that there is a large gap between the measurement results on the side. As shown in FIGS. 6 and 10, the silica glass crucible 1 measured in FIG. 20 has a light transmission layer and a light scattering layer, and the light scattering layer is determined to have a single structure. Layer. From the above, it can be considered that the result of Raman measurement and the measurement result of the scattering state in the thickness direction of the silica glass crucible 1 have a certain correlation. That is, the measurement result of the inner surface side and the boundary between the inner surface and the middle indicates the light transmission layer, and the measurement result of the middle, the boundary between the middle and the outer surface, and the measurement result on the outer surface side indicates the light scattering layer. Thus, it can be seen that the structure of the layer in the thickness direction of the silica glass crucible 1 can be grasped based on the result of Raman measurement.
 また、同様に、図21では、平面4員環に帰属されるピーク(488cm-1付近のピーク)及び平面3員環に帰属されるピーク(602cm-1付近のピーク)において、各境界(内面と中間との境界、中間と外面側との境界)のラマンシフトの値にずれが見られることが分かる。図7、図11で示したように、図21を測定したシリカガラスルツボ1は、光透過層と光散乱層とを有し、光散乱層が複数の層から構成されていると判断されている。このことからも、ラマン測定の結果と、シリカガラスルツボ1の厚み方向の散乱状況の測定結果とは、一定の相関関係があることが分かる。 Similarly, in FIG. 21, each boundary (inner surface) of a peak attributed to a plane four-membered ring (peak near 488 cm −1 ) and a peak attributed to a plane three-membered ring (peak near 602 cm −1 ) are shown. It can be seen that there is a shift in the value of the Raman shift at the boundary between the center and the middle, the boundary between the middle and the outer surface). As shown in FIGS. 7 and 11, the silica glass crucible 1 measured in FIG. 21 has a light transmission layer and a light scattering layer, and the light scattering layer is determined to be composed of a plurality of layers. Yes. This also shows that there is a certain correlation between the Raman measurement result and the measurement result of the scattering state in the thickness direction of the silica glass crucible 1.
 また、上述した複数の界面を有するシリカガラスルツボ1の各点(内面側、界面1、界面1を境にして内面側の外側に位置する中間、界面2、外面側)のラマンスペクトルを測定した結果の一例を表2に示す。表2では、上記各点の平面4員環に帰属されるピーク(488cm-1付近のピーク)及び平面3員環に帰属されるピーク(602cm-1付近のピーク)の一例を示している。
Figure JPOXMLDOC01-appb-T000003
In addition, the Raman spectrum of each point of the silica glass crucible 1 having a plurality of interfaces described above (inner surface side, interface 1, intermediate located on the outer surface side from the interface 1, interface 2, outer surface side) was measured. An example of the results is shown in Table 2. Table 2 shows an example of a peak attributed to a planar 4-membered ring at each point (peak near 488 cm −1 ) and a peak attributed to a planar 3-membered ring (peak near 602 cm −1 ).
Figure JPOXMLDOC01-appb-T000003
 上述したシリカガラスルツボ1の場合、表3で示すように、各界面(界面1、界面2)を境にして、内面側、中間、外面側、でそれぞれの構造が異なっていることが分かる。つまり、上述したシリカガラスルツボ1は、各界面を境にして、複数の厚み方向の層構造を有していることが分かり、ヒビが広がり難く割れないシリカガラスルツボ1であることが分かる。 In the case of the silica glass crucible 1 described above, as shown in Table 3, it can be seen that the respective structures are different on the inner surface side, the intermediate surface, and the outer surface side with the interfaces (interface 1 and interface 2) as boundaries. That is, it can be seen that the silica glass crucible 1 described above has a plurality of layer structures in the thickness direction with each interface as a boundary, and it is understood that the silica glass crucible 1 does not easily crack and does not break.
 以上、上記実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることが出来る。 Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above-described embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
1 シリカガラスルツボ
2 レーザー光源
3 カメラ部
4 照明部
21 レーザー部
31 ラマン分光測定部
311 レイリー光除去フィルタ
312 分光器
313 検出器
DESCRIPTION OF SYMBOLS 1 Silica glass crucible 2 Laser light source 3 Camera part 4 Illumination part 21 Laser part 31 Raman spectroscopic measurement part 311 Rayleigh light removal filter 312 Spectrometer 313 Detector

Claims (19)

  1.  回転モールド法により製造されるシリカガラスルツボの製造方法であって、
     上端に開口部を有する円筒状の直胴部と、湾曲した底部と、前記側壁部と前記底部とを連結し且つ前記底部よりも曲率が大きいコーナー部と、を有し、前記直胴部の上端が平坦に形成されているシリカガラスルツボ内に入射されたレーザー光の、当該シリカガラスルツボ側壁部内部の厚み方向の各位置の散乱状況を測定する工程を有する
     シリカガラスルツボの製造方法。
    A method for producing a silica glass crucible produced by a rotational mold method,
    A cylindrical straight body having an opening at the upper end; a curved bottom; a corner that connects the side wall and the bottom and has a larger curvature than the bottom; and A method for producing a silica glass crucible, comprising a step of measuring a scattering state of each position in a thickness direction inside the side wall of the silica glass crucible of laser light incident in a silica glass crucible having a flat upper end.
  2.  前記レーザー光の散乱状況を測定する工程は、シリカガラスルツボの内側から当該シリカガラスルツボの厚み方向に向かってレーザー光を出射し、測定の対象となるシリカガラスルツボのうちのレーザー光を入射される部分の上端開口部周辺の円環状の端面方向からレーザー光のシリカガラスルツボ側壁部内部の厚み方向の各位置の散乱状況を測定する
     請求項1に記載のシリカガラスルツボの製造方法。
    The step of measuring the scattering state of the laser light is performed by emitting laser light from the inside of the silica glass crucible toward the thickness direction of the silica glass crucible, and entering the laser light of the silica glass crucible to be measured. The method for producing a silica glass crucible according to claim 1, wherein the scattering state of each position in the thickness direction inside the silica glass crucible side wall portion of the laser light is measured from the annular end face direction around the upper end opening of the portion.
  3.  前記レーザー光の散乱状況を測定する工程は、出射するレーザー光の波長に応じた所定の波長の照明光をシリカガラスルツボに照射し、前記照明光の照射下で前記レーザー光の散乱状況を測定する
     請求項1又は2に記載のシリカガラスルツボの製造方法。
    The step of measuring the scattering state of the laser light is performed by irradiating a silica glass crucible with illumination light having a predetermined wavelength corresponding to the wavelength of the emitted laser light, and measuring the scattering state of the laser light under the illumination light irradiation. The method for producing a silica glass crucible according to claim 1 or 2.
  4.  前記レーザー光の散乱状況を測定する工程は、
     シリカガラスルツボに水平レーザーを出射し、
     シリカガラスルツボ内に入射された前記水平レーザーの、シリカガラスルツボの厚み方向の各位置の散乱状況を測定する
     請求項1乃至3のいずれかに記載のシリカガラスルツボの製造方法。
    The step of measuring the scattering state of the laser light,
    A horizontal laser is emitted to the silica glass crucible,
    The method for producing a silica glass crucible according to any one of claims 1 to 3, wherein a scattering state of each position in the thickness direction of the silica glass crucible of the horizontal laser incident on the silica glass crucible is measured.
  5.  前記レーザー光の散乱状況を測定する工程は、
     シリカガラスルツボに垂直レーザーを出射し、
     シリカガラスルツボ内に入射された垂直レーザーの、シリカガラスルツボの厚み方向の各位置の散乱状況を測定する
     請求項1乃至4のいずれかに記載のシリカガラスルツボの製造方法。
    The step of measuring the scattering state of the laser light,
    A vertical laser is emitted to a silica glass crucible,
    The method for producing a silica glass crucible according to any one of claims 1 to 4, wherein a scattering state at each position in the thickness direction of the silica glass crucible of a vertical laser incident on the silica glass crucible is measured.
  6.  前記レーザー光の散乱状況を測定する工程は、
     シリカガラスルツボの深さ方向に向かって斜めにレーザー光を出射するよう構成されている
     請求項1乃至5のいずれかに記載のシリカガラスルツボの製造方法。
    The step of measuring the scattering state of the laser light,
    The method for producing a silica glass crucible according to any one of claims 1 to 5, wherein the silica glass crucible is configured to emit laser light obliquely toward a depth direction of the silica glass crucible.
  7.  前記レーザー光の散乱状況を測定する工程は、予め定められた所定の間隔でシリカガラスルツボの全周に亘ってレーザー光を出射し、
     出射したレーザー光に応じた前記レーザー光の散乱状況をそれぞれ測定する
     請求項1乃至6のいずれかに記載のシリカガラスルツボの製造方法。
    The step of measuring the scattering state of the laser light, the laser light is emitted over the entire circumference of the silica glass crucible at a predetermined predetermined interval,
    The method for producing a silica glass crucible according to any one of claims 1 to 6, wherein each of the scattering states of the laser light corresponding to the emitted laser light is measured.
  8.  前記散乱状況を測定する工程は、
     可視光のレーザー光を出射することでシリカガラスルツボにレーザー光を入射する
     請求項1乃至7のいずれかに記載のシリカガラスルツボの製造方法。
    The step of measuring the scattering state includes:
    The method for producing a silica glass crucible according to any one of claims 1 to 7, wherein laser light is incident on the silica glass crucible by emitting visible laser light.
  9.  前記散乱状況を測定する工程は、
     入射面に対して電場の振動方向が平行になる向きの偏光であるp偏光を、入射角がブリュースター角となるようにシリカガラスルツボに対して出射し、
     シリカガラスルツボ内に入射されたp偏光の、シリカガラスルツボの厚み方向の各位置の散乱状況を測定する
     請求項1乃至8のいずかに記載のシリカガラスルツボの製造方法。
    The step of measuring the scattering state includes:
    P-polarized light, which is polarized light whose direction of vibration of the electric field is parallel to the incident surface, is emitted to the silica glass crucible so that the incident angle is a Brewster angle.
    The method for producing a silica glass crucible according to any one of claims 1 to 8, wherein the scattering state of each position of the p-polarized light incident on the silica glass crucible in the thickness direction of the silica glass crucible is measured.
  10.  前記散乱状況を測定する工程は、
     シリカガラスルツボの内表面の3次元形状を測定し、
     測定結果に基づいて、入射角がブリュースター角となるようにシリカガラスルツボに対してレーザー光を出射する
     請求項9に記載のシリカガラスルツボの製造方法。
    The step of measuring the scattering state includes:
    Measure the three-dimensional shape of the inner surface of the silica glass crucible,
    The method for producing a silica glass crucible according to claim 9, wherein laser light is emitted to the silica glass crucible so that the incident angle becomes a Brewster angle based on the measurement result.
  11.  前記レーザー光の散乱状況を測定する工程は、
     シリカガラスルツボの端面方向から当該シリカガラスルツボの厚み方向の各位置にレーザー光を出射し、
     前記出射したレーザー光に応じて生じるラマン散乱を前記レーザー光の散乱状況として前記各位置で測定する
     請求項1に記載のシリカガラスルツボの製造方法。
    The step of measuring the scattering state of the laser light,
    A laser beam is emitted from the end face direction of the silica glass crucible to each position in the thickness direction of the silica glass crucible,
    The method for producing a silica glass crucible according to claim 1, wherein Raman scattering generated according to the emitted laser light is measured at each position as a scattering state of the laser light.
  12.  前記レーザー光の散乱状況を測定する工程は、
     シリカガラスルツボの内側から当該シリカガラスルツボの厚み方向に向かって前記レーザー光を出射し、
     測定の対象となるシリカガラスルツボのうちのレーザー光を入射される部分の上端開口部周辺の円環状の端面方向からレーザー光のシリカガラスルツボ側壁部内部の散乱状況を測定するとともに、
     前記散乱状況の測定結果に基づいて、前記ラマン散乱の測定を行う
     請求項11に記載のシリカガラスルツボの製造方法。
    The step of measuring the scattering state of the laser light,
    The laser light is emitted from the inside of the silica glass crucible toward the thickness direction of the silica glass crucible,
    While measuring the scattering situation inside the silica glass crucible side wall of the silica glass crucible from the annular end surface direction around the upper end opening of the portion of the silica glass crucible to be measured is incident,
    The method for producing a silica glass crucible according to claim 11, wherein the Raman scattering is measured based on the measurement result of the scattering state.
  13.  シリコン単結晶引き上げに用いる、上端に開口部を有する円筒状の直胴部と、湾曲した底部と、前記側壁部と前記底部とを連結し且つ前記底部よりも曲率が大きいコーナー部と、を有し、前記直胴部の上端が平坦に形成されているシリカガラスルツボであって、
     シリカガラスルツボは、当該シリカガラスルツボの内面に当該シリカガラスルツボに出射されたレーザー光を透過する光透過層を有する
     シリカガラスルツボ。
    A cylindrical straight body portion having an opening at the upper end, a curved bottom portion, and a corner portion that connects the side wall portion and the bottom portion and has a larger curvature than the bottom portion, which are used for pulling a silicon single crystal. And a silica glass crucible in which the upper end of the straight body is formed flat,
    The silica glass crucible has a light transmission layer that transmits laser light emitted to the silica glass crucible on the inner surface of the silica glass crucible.
  14.  前記光透過層の外側にレーザー光を散乱する光散乱層を有する
     請求項13に記載のシリカガラスルツボ。
    The silica glass crucible according to claim 13, further comprising a light scattering layer that scatters laser light outside the light transmission layer.
  15.  前記光透過層はレーザー光を散乱せずに透過する層である
     請求項13又は14に記載のシリカガラスルツボ。
    The silica glass crucible according to claim 13 or 14, wherein the light transmission layer is a layer that transmits laser light without scattering.
  16.  前記光透過層はシリカガラスルツボの開口端部の内面全周にわたって形成されている
     請求項13乃至15のいずれかに記載のシリカガラスルツボ。
    The silica glass crucible according to any one of claims 13 to 15, wherein the light transmission layer is formed over the entire inner surface of the open end of the silica glass crucible.
  17.  前記光散乱層はレーザー光の散乱光が予め設定された基準により均一である
     請求項13乃至16の何れかに記載のシリカガラスルツボ。
    The silica glass crucible according to any one of claims 13 to 16, wherein the light scattering layer is uniform in accordance with a reference in which scattered light of laser light is set in advance.
  18.  シリカガラスルツボに出射したレーザー光の散乱状況に基づいて測定した、前記光透過層と前記光散乱層との境目の形状の真円度をシリカガラスルツボの直径で割った値が予め定められた値よりも小さくなるよう構成されている
     請求項13乃至17のいずれかに記載のシリカガラスルツボ。
    A value obtained by dividing the roundness of the shape of the boundary between the light transmission layer and the light scattering layer by the diameter of the silica glass crucible, which was measured based on the scattering state of the laser light emitted to the silica glass crucible, was determined in advance. It is comprised so that it may become smaller than a value. The silica glass crucible in any one of Claims 13 thru | or 17.
  19.  シリカガラスルツボの厚み方向に複数の界面を有する請求項13乃至18のいずれかに記載のシリカガラスルツボ。 The silica glass crucible according to any one of claims 13 to 18, which has a plurality of interfaces in the thickness direction of the silica glass crucible.
PCT/JP2016/001614 2016-03-18 2016-03-18 Silica glass crucible and method for producing silica glass crucible WO2017158656A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/001614 WO2017158656A1 (en) 2016-03-18 2016-03-18 Silica glass crucible and method for producing silica glass crucible
TW106107891A TW201738414A (en) 2016-03-18 2017-03-10 Silica glass crucible and method for producing silica glass crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/001614 WO2017158656A1 (en) 2016-03-18 2016-03-18 Silica glass crucible and method for producing silica glass crucible

Publications (1)

Publication Number Publication Date
WO2017158656A1 true WO2017158656A1 (en) 2017-09-21

Family

ID=59851038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001614 WO2017158656A1 (en) 2016-03-18 2016-03-18 Silica glass crucible and method for producing silica glass crucible

Country Status (2)

Country Link
TW (1) TW201738414A (en)
WO (1) WO2017158656A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221191A1 (en) * 2018-05-17 2019-11-21 株式会社Sumco Method and device for measuring transmittance of quartz crucible
CN110938871A (en) * 2019-12-31 2020-03-31 江西中材新材料有限公司 Polycrystalline silicon ingot casting equipment and polycrystalline silicon ingot casting method
CN110938871B (en) * 2019-12-31 2024-05-31 江西中材新材料有限公司 Polycrystalline silicon ingot casting equipment and polycrystalline silicon ingot casting method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617996A (en) * 1979-07-12 1981-02-20 Heraeus Schott Quarzschmelze Crucible for semiconductor art and manufacture thereof
JPH03146496A (en) * 1989-10-31 1991-06-21 Shinetsu Sekiei Kk Silica glass crucible for pulling silicon single crystal and method for inspecting the same
JP2012116713A (en) * 2010-12-01 2012-06-21 Japan Siper Quarts Corp Vitreous silica crucible
JP2013134177A (en) * 2011-12-27 2013-07-08 Japan Siper Quarts Corp Method for measuring three-dimensional shape of silica glass crucible
WO2015099001A1 (en) * 2013-12-28 2015-07-02 株式会社Sumco Quartz glass crucible and strain measurement device therefor
JP2016064934A (en) * 2014-09-22 2016-04-28 株式会社Sumco Crucible measuring method
JP2016064931A (en) * 2014-09-22 2016-04-28 株式会社Sumco Crucible measurement device
JP2016064933A (en) * 2014-09-22 2016-04-28 株式会社Sumco Method for manufacturing silica glass crucible
JP2016064932A (en) * 2014-09-22 2016-04-28 株式会社Sumco Silica glass crucible

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617996A (en) * 1979-07-12 1981-02-20 Heraeus Schott Quarzschmelze Crucible for semiconductor art and manufacture thereof
JPH03146496A (en) * 1989-10-31 1991-06-21 Shinetsu Sekiei Kk Silica glass crucible for pulling silicon single crystal and method for inspecting the same
JP2012116713A (en) * 2010-12-01 2012-06-21 Japan Siper Quarts Corp Vitreous silica crucible
JP2013134177A (en) * 2011-12-27 2013-07-08 Japan Siper Quarts Corp Method for measuring three-dimensional shape of silica glass crucible
WO2015099001A1 (en) * 2013-12-28 2015-07-02 株式会社Sumco Quartz glass crucible and strain measurement device therefor
JP2016064934A (en) * 2014-09-22 2016-04-28 株式会社Sumco Crucible measuring method
JP2016064931A (en) * 2014-09-22 2016-04-28 株式会社Sumco Crucible measurement device
JP2016064933A (en) * 2014-09-22 2016-04-28 株式会社Sumco Method for manufacturing silica glass crucible
JP2016064932A (en) * 2014-09-22 2016-04-28 株式会社Sumco Silica glass crucible

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221191A1 (en) * 2018-05-17 2019-11-21 株式会社Sumco Method and device for measuring transmittance of quartz crucible
KR20200142063A (en) * 2018-05-17 2020-12-21 가부시키가이샤 사무코 Method and apparatus for measuring transmittance of quartz crucible
JPWO2019221191A1 (en) * 2018-05-17 2021-05-20 株式会社Sumco Permeability measurement method and equipment for quartz crucible
KR20220132064A (en) * 2018-05-17 2022-09-29 가부시키가이샤 사무코 Method and device for measuring transmittance of quartz crucible
KR102468217B1 (en) 2018-05-17 2022-11-16 가부시키가이샤 사무코 Method and apparatus for measuring transmittance of quartz crucible
JP7196913B2 (en) 2018-05-17 2022-12-27 株式会社Sumco Method and apparatus for measuring transmittance of quartz crucible
KR102513746B1 (en) 2018-05-17 2023-03-24 가부시키가이샤 사무코 Method and device for measuring transmittance of quartz crucible
US11703452B2 (en) 2018-05-17 2023-07-18 Sumco Corporation Method and apparatus for measuring transmittance of quartz crucible
CN110938871A (en) * 2019-12-31 2020-03-31 江西中材新材料有限公司 Polycrystalline silicon ingot casting equipment and polycrystalline silicon ingot casting method
CN110938871B (en) * 2019-12-31 2024-05-31 江西中材新材料有限公司 Polycrystalline silicon ingot casting equipment and polycrystalline silicon ingot casting method

Also Published As

Publication number Publication date
TW201738414A (en) 2017-11-01

Similar Documents

Publication Publication Date Title
US10024784B2 (en) Vitreous silica crucible and evaluation method of the same
KR101638584B1 (en) Method for evaluating silica glass crucible, method for producing silicon single crystals
JP5169194B2 (en) Sheet glass defect detection apparatus, sheet glass manufacturing method
KR101688125B1 (en) Method for measuring three-dimensional shape of silica glass crucible, and method for producing monocrystalline silicon
CN1902474A (en) Detection of imperfections in precious stones
JP7196913B2 (en) Method and apparatus for measuring transmittance of quartz crucible
JP6405828B2 (en) Crucible measurement method
JPH07294422A (en) Detecting method for surface vicinity crystal defect and device therefor
WO2002001170A1 (en) Method and apparatus for measuring temperature
CN112129772A (en) Defect detection system and method
JP2016064932A (en) Silica glass crucible
JP6405827B2 (en) Method for producing silica glass crucible
WO2017158656A1 (en) Silica glass crucible and method for producing silica glass crucible
WO2017158655A1 (en) Crucible measurement device, crucible measurement method, and crucible production method
JP6336867B2 (en) Crucible measuring device
CN105452544A (en) Method for inspecting silica glass crucible
JP6665870B2 (en) Crucible management system, crucible management method, silica glass crucible manufacturing method, silicon ingot manufacturing method, homoepitaxial wafer manufacturing method
JP2000221009A (en) Device and method for measuring thickness of glass material
JP2000111317A (en) Measuring device/method for glass material thickness
US20170045463A1 (en) Volumetric substrate scanner
Kaplunov et al. Methods for measuring light scattering in germanium and paratellurite crystals

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894280

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP