JPH07277752A - Synthetic quartz glass for ultraviolet light laser and method for producing the same - Google Patents

Synthetic quartz glass for ultraviolet light laser and method for producing the same

Info

Publication number
JPH07277752A
JPH07277752A JP8910694A JP8910694A JPH07277752A JP H07277752 A JPH07277752 A JP H07277752A JP 8910694 A JP8910694 A JP 8910694A JP 8910694 A JP8910694 A JP 8910694A JP H07277752 A JPH07277752 A JP H07277752A
Authority
JP
Japan
Prior art keywords
metal element
quartz glass
concentration
metal elements
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8910694A
Other languages
Japanese (ja)
Other versions
JP3702903B2 (en
Inventor
Mitsuru Kono
充 河野
Naoya Kuwazaki
尚哉 鍬先
Hatsushi Inoue
初志 井上
Tetsuhiko Takeuchi
哲彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Seiko Epson Corp
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Seiko Epson Corp
Priority to JP08910694A priority Critical patent/JP3702903B2/en
Publication of JPH07277752A publication Critical patent/JPH07277752A/en
Application granted granted Critical
Publication of JP3702903B2 publication Critical patent/JP3702903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/22Wet processes, e.g. sol-gel process using colloidal silica sols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)
  • Lasers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To provide the synthetic quartz glass capable of being applied to UV light optical parts such as lenses, prisms, beam splitters or spectroscopes, especially optical parts used for the optical systems of UV light laser devices such excimer laser devices, and excellent in optical characteristics, and to pro vide a method for producing the same by a sol-gel method. CONSTITUTION:The synthetic quartz glass for UV light lasers is produced by mixing silica fine particles containing metal elements belonging to the alkali metal elements, the alkaline earth metal elements, and the transition metal elements in concentrations of <=50ppb, respectively, and further Ge, Sn and Pb metal elements in concentrations of <=5ppb, respectively, with a silicone alkoxide containing the metal elements which belong to the alkali metal elements, the alkaline earth metal elements and the transition metal elements in concentrations of <=10ppb, respectively, and further the Ge, Sn and Pb metal elements in concentrations of <=5ppb, respectively, and subsequently subjecting the synthesized gel to a drying, sintering and glassifying treatments under heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レンズ、プリズム、ビ
−ムスプリッタ、分光器など紫外線用の光学部品、特に
エキシマレーザー等紫外線レーザ装置の光学系に使用さ
れるレンズ、プリズム等の光学部品に応用可能な光学特
性に優れたゾル−ゲル法による合成石英ガラス及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical parts for ultraviolet rays such as lenses, prisms, beam splitters, and spectroscopes, and in particular, optical parts such as lenses and prisms used in the optical system of an ultraviolet laser device such as an excimer laser. The present invention relates to a synthetic quartz glass by a sol-gel method having excellent optical properties applicable to the above and a method for producing the same.

【0002】[0002]

【従来の技術】合成石英ガラスの製造方法の一つとし
て、ゾル−ゲル法が知られている。例えば、特開昭60
−215532号公報では、シリカゾル及びシリコンア
ルコキシドの混合溶液を酸性触媒下でゲル化させてウェ
ットゲルを作成し、該ウェットゲルを乾燥してドライゲ
ルを得、該ドライゲルを焼成して透明石英ガラス体を製
造する方法を開示している。また、紫外線用の光学部品
として使用される合成石英ガラスは、例えばアルカリ金
属元素、遷移金属元素等の各金属元素濃度を規定した石
英ガラス(特開平3−5338号公報)が知られてい
る。
2. Description of the Related Art The sol-gel method is known as one of the methods for producing synthetic quartz glass. For example, JP-A-60
In JP-A-215532, a mixed solution of silica sol and silicon alkoxide is gelled under an acidic catalyst to prepare a wet gel, the wet gel is dried to obtain a dry gel, and the dry gel is fired to obtain a transparent quartz glass body. A method of manufacturing is disclosed. As a synthetic quartz glass used as an optical component for ultraviolet rays, for example, quartz glass (Japanese Patent Laid-Open No. 3-5338) in which the concentration of each metal element such as an alkali metal element and a transition metal element is defined is known.

【0003】従来のゾル−ゲル法により製造された石英
ガラス中には、Li、Na、K等のアルカリ金属元素、
Mg、Ca等のアルカリ土類金属元素、Ti、Fe、N
i、Cu等の遷移金属元素が含まれており、これら金属
元素による紫外線の吸収や、これら金属元素が誘起する
石英ガラス中の構造欠陥のため、石英ガラスは400n
m以下の波長域の紫外線透過率が低いという問題があっ
た。また、石英ガラスに、例えば248nm波長の紫外
線を照射すると、300〜450nm波長域の光を発光
する。この発光現象は、例えば石英ガラス中に含まれる
金属元素が誘起する石英ガラス中の構造欠陥によること
が知られていたが、前記アルカリ金属元素、アルカリ土
類金属元素及び遷移金属元素に属する各金属元素の石英
ガラス中の濃度を規定するだけでは発光現象を抑制する
ことは困難であった。更に、例えば従来のゾル−ゲル法
により合成した石英ガラスに紫外線などの短波長光を照
射すると構造欠陥部分にダメージを受け、新たな構造欠
陥種、例えばラジカル種などが発生し、石英ガラスの光
学特性を劣化させる原因となる。
In the quartz glass produced by the conventional sol-gel method, alkali metal elements such as Li, Na and K,
Alkaline earth metal elements such as Mg, Ca, Ti, Fe, N
Since the transition metal elements such as i and Cu are contained, and the absorption of ultraviolet rays by these metal elements and the structural defects in the silica glass induced by these metal elements, the silica glass has 400 n
There is a problem that the ultraviolet transmittance in the wavelength range of m or less is low. Further, when the quartz glass is irradiated with ultraviolet rays having a wavelength of 248 nm, for example, light in the wavelength range of 300 to 450 nm is emitted. It has been known that this light emission phenomenon is caused by a structural defect in the silica glass, which is induced by a metal element contained in the silica glass, but each metal belonging to the alkali metal element, the alkaline earth metal element and the transition metal element is known. It was difficult to suppress the light emission phenomenon only by defining the concentration of the element in the quartz glass. Furthermore, for example, when quartz glass synthesized by the conventional sol-gel method is irradiated with short-wavelength light such as ultraviolet rays, structural defect portions are damaged, and new structural defect species, for example, radical species, are generated, resulting in the optical It may cause deterioration of characteristics.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は波長域
が400nm以下の紫外線を透過し、紫外線照射により
発光することが無く、石英ガラス中の構造欠陥が抑制さ
れ、紫外線レーザ用光学ガラスなどに有用なゾル−ゲル
法による合成石英ガラス及びその製造方法を提供するこ
とにある。
DISCLOSURE OF THE INVENTION The object of the present invention is to transmit ultraviolet rays having a wavelength range of 400 nm or less, not to emit light by ultraviolet ray irradiation, to suppress structural defects in quartz glass, and to use optical glass for ultraviolet lasers, etc. Another object of the present invention is to provide a synthetic quartz glass by the sol-gel method, which is useful for the above, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】発明者らは、石英ガラス
中に微量に含まれるGe、Sn及びPbの各金属元素が
主たる発光原因であり、発光を抑制するためには少なく
ともGe、Sn及びPbの各金属元素の濃度をいずれも
10重量ppb以下にしなければならないことを究明し
た。また、アルカリ金属元素、アルカリ土類金属元素及
び遷移金属元素に属する各金属元素のうち1元素でも石
英ガラス中の濃度が100重量ppbを超えると、誘起
された発光を伴う構造欠陥種や、金属元素による紫外線
域の吸収帯のため、石英ガラスの紫外線透過率を低下さ
せる原因となることを見出した。つまり、石英ガラス中
のアルカリ金属元素、アルカリ土類金属元素及び遷移金
属元素に属する各金属元素の濃度がいずれも100重量
ppb以下であり、且つ石英ガラス中のGe、Sn及び
Pbの各金属元素の濃度がいずれも10重量ppb以下
であって初めて紫外線域の光の吸収を抑制でき、且つ紫
外線による発光を抑制できる。また、これらの各金属元
素は、石英ガラスの製造工程で混入したり、特に原料で
あるシリカ微粒子とシリコンアルコキシドに含まれてい
るものであることをつきとめた。更に、発明者らは、前
記各金属元素の他に石英ガラス中に存在するC元素によ
っても石英ガラス中の構造欠陥が生成することを究明
し、本発明に到達した。
MEANS FOR SOLVING THE PROBLEMS The inventors of the present invention are mainly responsible for the light emission of the respective metal elements Ge, Sn and Pb contained in the quartz glass, and at least Ge, Sn and Pb are used to suppress the light emission. It was determined that the concentration of each metal element of Pb must be 10 weight ppb or less. In addition, even if one of the metal elements belonging to the alkali metal element, the alkaline earth metal element, and the transition metal element has a concentration in the silica glass of more than 100 wt ppb, structural defect species accompanied by induced light emission and metal It was found that the absorption band in the ultraviolet region due to the element causes a decrease in the ultraviolet transmittance of the quartz glass. That is, the concentration of each metal element belonging to the alkali metal element, the alkaline earth metal element, and the transition metal element in the silica glass is 100 weight ppb or less, and each of the Ge, Sn, and Pb metal elements in the silica glass. It is possible to suppress the absorption of light in the ultraviolet region and suppress the emission of light by the ultraviolet light only when the concentration of each is 10 weight ppb or less. Further, it was found that each of these metal elements is mixed in the manufacturing process of quartz glass, and is particularly contained in the silica fine particles and silicon alkoxide which are the raw materials. Furthermore, the present inventors have found that structural defects in the silica glass are generated by the C element present in the silica glass in addition to the above metal elements, and arrived at the present invention.

【0006】本発明は、シリカ微粒子と、シリコンアル
コキシドとを混合してゲルを合成し、該ゲルを昇温しな
がら乾燥、焼結、ガラス化する工程より構成されるゾル
−ゲル法による合成石英ガラスの製造方法において、 a アルカリ金属元素、アルカリ土類金属元素及び遷移
金属元素に属する各金属元素の濃度がいずれも50重量
ppb以下で、且つGe、Sn及びPbの各金属元素の
濃度がいずれも5重量ppb以下であるシリカ微粒子 b アルカリ金属元素、アルカリ土類金属元素及び遷移
金属元素に属する各金属元素の濃度がいずれも10重量
ppb以下で、且つGe、Sn及びPbの各金属元素の
濃度がいずれも5重量ppb以下であるシリコンアルコ
キシド を原料として用いる合成石英ガラスの製造方法であり、
また、本発明は、シリコンアルコキシドを主原料とし、
ゾル−ゲル法により得られる合成石英ガラスにおいて、
前記合成石英ガラス中に含有されるアルカリ金属元素、
アルカリ土類金属元素及び遷移金属元素に属する各金属
元素の濃度がいずれも100重量ppb以下で、且つG
e、Sn及びPbの各金属元素の濃度がいずれも10重
量ppb以下、C元素濃度が30重量ppm以下である
紫外線レーザ用合成石英ガラスである。
The present invention is a synthetic quartz prepared by a sol-gel method, which comprises the steps of mixing silica fine particles and silicon alkoxide to synthesize a gel, and drying, sintering and vitrifying the gel while heating the gel. In the method for producing glass, the concentration of each metal element belonging to an alkali metal element, an alkaline earth metal element, and a transition metal element is 50 weight ppb or less, and the concentration of each metal element of Ge, Sn, and Pb is Also, the silica fine particles having a weight of 5 ppb or less. B The concentration of each metal element belonging to an alkali metal element, an alkaline earth metal element, and a transition metal element is 10 weight ppb or less, and each of the metal elements Ge, Sn, and Pb is A method for producing a synthetic quartz glass using as a raw material a silicon alkoxide having a concentration of 5 ppb or less,
Further, the present invention uses silicon alkoxide as a main raw material,
In the synthetic quartz glass obtained by the sol-gel method,
An alkali metal element contained in the synthetic quartz glass,
The concentration of each metal element belonging to the alkaline earth metal element and the transition metal element is 100 weight ppb or less, and G
The synthetic quartz glass for ultraviolet laser has a concentration of each metal element of e, Sn and Pb of 10 weight ppb or less and a C element concentration of 30 weight ppm or less.

【0007】本発明において、原料として使用するシリ
コンアルコキシドとしては、テトラメトキシシラン、テ
トラエトキシシラン、テトラプロポキシシラン、テトラ
ブトキシシランなどを挙げることができ、好ましくはテ
トラメトキシシラン及びテトラエトキシシランである。
シリコンアルコキシド中に含まれるアルカリ金属元素、
アルカリ土類金属元素及び遷移金属元素に属する各金属
元素の濃度は10重量ppb以下、好ましくは1重量p
pb以下で、且つGe、Sn及びPbの各金属元素の濃
度は5重量ppb以下、好ましくは1重量ppb以下の
必要がある。なお、本発明でいう遷移金属元素は原子番
号21〜30、39〜48、57〜80及び89以上の
元素である。シリコンアルコキシド中の金属濃度を低減
するには、例えば高純度石英ガラス製の蒸留装置により
蒸留する方法等が挙げられる。
In the present invention, examples of the silicon alkoxide used as a raw material include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane and the like, with tetramethoxysilane and tetraethoxysilane being preferred.
An alkali metal element contained in silicon alkoxide,
The concentration of each metal element belonging to the alkaline earth metal element and the transition metal element is 10 weight ppb or less, preferably 1 weight p.
It is necessary that the concentration of each of the metal elements Ge, Sn, and Pb be 5 wt ppb or less, preferably 1 wt ppb or less. The transition metal elements referred to in the present invention are elements having atomic numbers 21 to 30, 39 to 48, 57 to 80 and 89 or more. To reduce the metal concentration in the silicon alkoxide, for example, a method of distilling with a distillation apparatus made of high-purity quartz glass can be mentioned.

【0008】本発明において使用するシリカ微粒子中に
含まれるアルカリ金属元素、アルカリ土類金属元素及び
遷移金属元素に属する各金属元素の濃度は50重量pp
b以下、好ましくは20重量ppb以下で、且つGe、
Sn及びPbの各金属元素の濃度は5重量ppb以下、
好ましくは1重量ppb以下の必要がある。また、シリ
カ微粒子の形状は球状で、且つその粒子直径が0.1〜
1μmであるものが好ましい。このようなシリカ微粒子
は、アルカリ金属元素、アルカリ土類金属元素及び遷移
金属元素に属する各金属元素の濃度がいずれも10重量
ppb以下で、且つGe、Sn及びPbの各金属元素の
濃度がいずれも5重量ppb以下であるシリコンアルコ
キシドの、加水分解と脱水縮重合反応により合成でき
る。つまり、水、アルコール及びアンモニア水溶液の混
合溶液に撹拌条件下、前記シリコンアルコキシドを滴下
する方法により、粒子直径が0.1μm〜1μmで且つ
球状のシリカ微粒子を合成することができる。この際に
使用する水、アルコール及びアンモニア水溶液に含まれ
るアルカリ金属元素、アルカリ土類金属元素及び遷移金
属元素に属する各金属元素の濃度は10重量ppb以
下、好ましくは1重量ppb以下で、且つGe、Sn及
びPbの各金属元素の濃度は5重量ppb以下、好まし
くは1重量ppb以下とする。
The concentration of each metal element belonging to the alkali metal element, the alkaline earth metal element and the transition metal element contained in the silica fine particles used in the present invention is 50 weight pp.
b or less, preferably 20 weight ppb or less, and Ge,
The concentration of each metal element of Sn and Pb is 5 weight ppb or less,
It is preferably required to be 1 ppb or less by weight. Further, the shape of the silica fine particles is spherical, and the particle diameter is 0.1 to 10.
It is preferably 1 μm. In such silica fine particles, the concentration of each metal element belonging to the alkali metal element, the alkaline earth metal element, and the transition metal element is 10 weight ppb or less, and the concentration of each metal element of Ge, Sn, and Pb is Can be synthesized by hydrolysis and dehydration polycondensation reaction of a silicon alkoxide having a weight of 5 ppb or less. That is, spherical silica fine particles having a particle diameter of 0.1 μm to 1 μm can be synthesized by a method of dropping the silicon alkoxide under a stirring condition in a mixed solution of water, alcohol and an aqueous ammonia solution. The concentration of each metal element belonging to the alkali metal element, the alkaline earth metal element and the transition metal element contained in the water, alcohol and aqueous ammonia solution used at this time is 10 wt ppb or less, preferably 1 wt ppb or less, and Ge The concentration of each metal element of Sn, Pb and Sn is 5 weight ppb or less, preferably 1 weight ppb or less.

【0009】前記シリカ微粒子及びシリコンアルコキシ
ドを原料に用いてゾル−ゲル法により合成石英ガラスを
製造する方法は、公知の方法を採用することができる
が、例えば次のような方法を採用することが望ましい。
シリカ微粒子を水あるいは水を含む液体に分散させて、
いわゆるシリカゾル溶液を作製する。この際用いる水あ
るいは水を含む液体中の各金属元素の濃度は、いずれも
1重量ppb以下であることが好ましく、例えば電気抵
抗値が17.5MΩ以上の超純水であることが好まし
い。
As a method for producing synthetic quartz glass by the sol-gel method using the silica fine particles and silicon alkoxide as raw materials, known methods can be adopted. For example, the following method can be adopted. desirable.
Disperse silica fine particles in water or a liquid containing water,
A so-called silica sol solution is prepared. The concentration of each metal element in water or a liquid containing water used at this time is preferably 1 weight ppb or less, for example, ultrapure water having an electric resistance value of 17.5 MΩ or more.

【0010】作製したシリカゾル溶液を撹拌条件下、酸
性水溶液にてpHを約2に調節する。続いて、シリコン
アルコキシドをシリカゾル溶液中のシリカ微粒子1モル
に対して0.1〜1.0モル加え、加えたシリコンアル
コキシドを加水分解させる。その後、撹拌条件下で塩基
性水溶液にてpHを4〜5に調節し、脱水縮重合反応を
行わせる。pHを調節した後の混合溶液を適当な容器に
注ぎ室温で保持すると、数時間でゲル化してゲル(ウエ
ットゲル)が得られる。使用する酸性水溶液及び塩基性
水溶液はそれぞれ塩酸水溶液、アンモニア水溶液が好ま
しく、これらの水溶液中のアルカリ金属元素、アルカリ
土類金属元素及び遷移金属元素に属する各金属元素の濃
度はいずれも10重量ppb以下、好ましくは1重量p
pb以下で、且つGe、Sn及びPbの各金属元素の濃
度はいずれも5重量ppb以下、好ましくは1重量pp
b以下とする。このような塩酸水溶液及びアンモニア水
溶液が市販されている場合は、そのまま用いることがで
きる。
The pH of the prepared silica sol solution is adjusted to about 2 with an acidic aqueous solution under stirring conditions. Subsequently, 0.1 to 1.0 mol of silicon alkoxide is added to 1 mol of silica fine particles in the silica sol solution to hydrolyze the added silicon alkoxide. After that, the pH is adjusted to 4 to 5 with a basic aqueous solution under stirring conditions to carry out the dehydration polycondensation reaction. When the mixed solution after adjusting the pH is poured into an appropriate container and kept at room temperature, it gels in several hours to obtain a gel (wet gel). The acidic aqueous solution and the basic aqueous solution to be used are preferably hydrochloric acid aqueous solution and ammonia aqueous solution, respectively, and the concentration of each metal element belonging to the alkali metal element, the alkaline earth metal element and the transition metal element is 10 weight ppb or less. , Preferably 1 weight p
The concentration of each metal element of Ge, Sn, and Pb is 5 wtppb or less, preferably 1 wtpp or less.
b or less. When such hydrochloric acid aqueous solution and ammonia aqueous solution are commercially available, they can be used as they are.

【0011】シリカゾル溶液の作製からゲルを得るまで
の工程において、Na等のアルカリ金属元素、Ca等の
アルカリ土類金属元素及びFe等の遷移金属元素は、原
料であるシリカ微粒子とシリコンアルコキシドに含まれ
ているものを除いて、大気中に浮遊する粒子や、使用す
る容器等から混入し易く、またSn等はメッキを施され
た装置等から混入し易い。従って、厳密に各金属元素の
混入を排除するために、シリカゾル溶液の作製からゲル
を得るまでの工程を、クラス10000(米国連邦規格
209Dによるクラスをいい、クラスの数字は、0.5
μm以上の浮遊粒子の濃度(個/ft3 )を表す)より
も無塵化されたクリーンルームで行い、ゲルの合成に使
用する容器類として、酸、塩基による金属元素の溶出分
の極力少ない、例えば高純度石英ガラス製、テフロン
製、ポリエチレン製等の容器類を使用し、更に、溶液の
撹拌装置は、モーター部の摺動部分からの金属摩耗粉の
飛散がない装置、例えばテフロン製回転子とマグネット
スターラーを使用するなどする。このようにすると、環
境、容器などからの各金属元素の混入をいずれも最大3
0重量ppb以下、特にGe、Sn及びPbの各金属元
素についてはいずれも最大3重量ppb以下に抑制する
ことができる。
In the steps from preparation of the silica sol solution to obtaining the gel, alkali metal elements such as Na, alkaline earth metal elements such as Ca and transition metal elements such as Fe are contained in the silica fine particles and silicon alkoxide as the raw materials. Except for those described above, it is easy to mix in particles floating in the air, the container used, and the like, and Sn and the like are easily mixed in from a plated device and the like. Therefore, in order to strictly exclude the mixing of each metal element, the steps from the preparation of the silica sol solution to the preparation of the gel are referred to as class 10000 (class according to US Federal Standard 209D, and the number of the class is 0.5
The concentration of airborne particles of μm or more (representing the number of particles / ft 3 ) is performed in a clean room that is dust-free, and as a container used for gel synthesis, the amount of metal elements eluted by acids and bases is as small as possible. For example, containers made of high-purity quartz glass, Teflon, polyethylene, etc. are used, and the solution stirring device is a device that does not scatter metal abrasion powder from the sliding part of the motor part, such as a Teflon rotor. And using a magnetic stirrer. By doing this, the maximum amount of each metal element mixed from the environment and the container is 3
It can be suppressed to 0 weight ppb or less, and particularly for each metal element such as Ge, Sn, and Pb to a maximum of 3 weight ppb or less.

【0012】このウエットゲルを適当な時間をかけて乾
燥してドライゲルとし、更に、1800℃程度まで加熱
して焼結、ガラス化することにより、透明な合成石英ガ
ラスが得られる。この合成石英ガラス中の炭素濃度を3
0重量ppm以下にするためには、少なくとも200〜
500℃の温度範囲を酸素ガス含有ガス雰囲気中で10
0時間以上、好ましくは300時間以上かけて処理を行
う。ゲルを乾燥する工程はクラス10000よりも無塵
化されたクリーンルームで行い、使用する乾燥器の内壁
から特にFe等の金属元素の混入を抑制するために、内
壁を樹脂または石英ガラスで覆う等することにより金属
元素の混入を極力排除する。また、乾燥したゲルを18
00℃まで加熱処理する際には、酸素、窒素、アルゴ
ン、ヘリウム等の高純度ガス中、またはこれらガスを流
通させながら、あるいは減圧下にて行うことが好まし
い。また、加熱処理するゲルは、石英ガラス製治具、高
純度炭素製治具等に配置して、直接炉材等に接触しない
ようにする。
This wet gel is dried for a suitable time to give a dry gel, which is then heated to about 1800 ° C. for sintering and vitrification to obtain transparent synthetic quartz glass. The carbon concentration in this synthetic quartz glass is 3
In order to make it 0 ppm by weight or less, at least 200-
Within the temperature range of 500 ° C. in an oxygen-containing gas atmosphere,
The treatment is performed for 0 hours or longer, preferably 300 hours or longer. The step of drying the gel is performed in a clean room that is dust-free compared to class 10000, and the inner wall is covered with resin or quartz glass in order to suppress the mixing of metallic elements such as Fe from the inner wall of the dryer used. By doing so, the mixing of metal elements is eliminated as much as possible. In addition, dry gel 18
The heat treatment to 00 ° C. is preferably performed in a high-purity gas such as oxygen, nitrogen, argon, or helium, while circulating these gases, or under reduced pressure. The gel to be heat-treated is placed on a jig made of quartz glass, a jig made of high-purity carbon, or the like so as not to come into direct contact with the furnace material or the like.

【0013】このようにして製造された合成石英ガラス
は、石英ガラス中に含有されるアルカリ金属元素、アル
カリ土類金属元素及び遷移金属元素に属する各金属元素
の濃度がいずれも100重量ppb以下で、且つGe、
Sn及びPbの各金属元素の濃度がいずれも10重量p
pb以下、C濃度が30重量ppm以下であり、波長域
が400nm以下の紫外線を透過し、紫外線照射により
発光することのない石英ガラスである。
The synthetic quartz glass produced in this manner has a concentration of each metal element belonging to the alkali metal element, the alkaline earth metal element and the transition metal element contained in the quartz glass of 100 weight ppb or less. , And Ge,
The concentration of each metal element of Sn and Pb is 10 weight p
Quartz glass having pb or less, C concentration of 30 ppm by weight or less, transmitting ultraviolet rays having a wavelength range of 400 nm or less, and not emitting light by ultraviolet ray irradiation.

【0014】[0014]

【作用】石英ガラス中に含有されるアルカリ金属元素、
アルカリ土類金属元素及び遷移金属元素に属する各金属
元素の濃度をいずれも100重量ppb以下、且つC元
素の濃度を30重量ppm以下とすることにより、これ
らの金属元素による紫外線の吸収やこれらの金属元素あ
るいはC元素が誘起する石英ガラス中の構造欠陥の生成
を抑制でき、またGe、Sn及びPbの各金属元素の濃
度をいずれも10重量ppb以下とすることにより、発
光を抑制でき、400nm以下の紫外線域の透過率が良
好な、紫外線照射により発光することのない合成石英ガ
ラスとすることができる。
[Function] An alkali metal element contained in quartz glass,
By setting the concentration of each metal element belonging to the alkaline earth metal element and the transition metal element to 100 weight ppb or less and the concentration of C element to 30 weight ppm or less, absorption of ultraviolet rays by these metal elements and these Generation of structural defects in silica glass induced by a metal element or C element can be suppressed, and by setting the concentration of each metal element of Ge, Sn, and Pb to 10 weight ppb or less, emission can be suppressed, and 400 nm The synthetic quartz glass which has good transmittance in the following ultraviolet region and which does not emit light by irradiation with ultraviolet rays can be obtained.

【0015】[0015]

【実施例】以下、実施例及び比較例に基づいて本発明を
具体的に説明する。 実施例1〜3、比較例1〜9 ポリエチレン製反応容器に水8モル/リットル、アンモ
ニア1.5モル/リットルの組成のメタノール溶液を調
製し、マグネットスターラーによる撹拌条件下でテトラ
メトキシシランを前記メタノール溶液1リットルに対し
1モル滴下し、シリカ微粒子を含むシリカゾル溶液を合
成した。次いで、シリカゾル溶液中の溶液分を蒸発させ
て、シリカゾル溶液中のシリカ微粒子分が30重量%に
なるように調節した。ポリエチレン製反応容器中のシリ
カゾル溶液に、マグネットスターラーによる撹拌条件下
で塩酸水溶液を加えてpHを2.0に調節した後、テト
ラメトキシシランを加えて加水分解した。更に、アンモ
ニア水溶液を加えてpHを5.0に調節した。pHを調
節後、シリカゾル溶液を所定のテフロン製容器に移し替
えた。シリカゾル溶液は徐々に粘度が高くなり、pH調
節後約2時間でゲル化してウエットゲルが得られた。シ
リカゾル合成からゲル化までの作業は、クラス1000
のクリーンルームで行った。
EXAMPLES The present invention will be specifically described below based on Examples and Comparative Examples. Examples 1 to 3 and Comparative Examples 1 to 9 A methanol solution having a composition of 8 mol / liter of water and 1.5 mol / liter of ammonia was prepared in a polyethylene reaction vessel, and tetramethoxysilane was added under stirring conditions with a magnetic stirrer. 1 mol of 1 liter of a methanol solution was dropped to synthesize a silica sol solution containing silica fine particles. Next, the solution content in the silica sol solution was evaporated to adjust the silica fine particle content in the silica sol solution to 30% by weight. An aqueous hydrochloric acid solution was added to the silica sol solution in the polyethylene reaction vessel under stirring conditions with a magnetic stirrer to adjust the pH to 2.0, and then tetramethoxysilane was added to cause hydrolysis. Further, an aqueous ammonia solution was added to adjust the pH to 5.0. After adjusting the pH, the silica sol solution was transferred to a predetermined Teflon container. The silica sol solution gradually increased in viscosity, and gelled in about 2 hours after pH adjustment to obtain a wet gel. Work from silica sol synthesis to gelation is class 1000
I went in a clean room.

【0016】得られたウエットゲルを、クラス1000
0のクリーンルームに配置した乾燥器中で200℃まで
段階的に加熱してゲルを乾燥させ、ドライゲルとした。
これを、電気炉内に設置した石英ガラス製容器内に入れ
た。石英ガラス製容器内に0.2μmのフィルターで濾
過した後の酸素を流通させながら、900℃まで約38
0時間かけて段階的に加熱し、残留した溶液成分の除去
を行った。次いで、真空式電気炉内に設置した高純度炭
素製容器内に900℃までの加熱を終了したゲルを移
し、900℃から1300℃まで、1×10-2Torr
以下の減圧雰囲気下で約150時間かけて段階的に加熱
し、更に、1300℃から1800℃まで、高純度アル
ゴンガス雰囲気下で約10時間かけて段階的に加熱して
透明な合成石英ガラスを作成した。
The wet gel obtained was classified into Class 1000.
In a dryer placed in a clean room of 0, the gel was dried stepwise by heating to 200 ° C. to obtain a dry gel.
This was placed in a quartz glass container installed in an electric furnace. Approximately 38 up to 900 ° C while circulating oxygen after filtering with a 0.2 μm filter in a quartz glass container.
The remaining solution components were removed by heating stepwise over 0 hours. Then, the gel, which has been heated up to 900 ° C., is transferred into a high purity carbon container installed in a vacuum electric furnace, and the gel is heated from 900 ° C. to 1300 ° C. at 1 × 10 −2 Torr.
The transparent synthetic quartz glass is heated stepwise in the following reduced pressure atmosphere for about 150 hours, and further gradually heated from 1300 ° C to 1800 ° C in the high purity argon gas atmosphere for about 10 hours. Created.

【0017】使用したテトラメトキシシラン、メタノー
ル、アンモニア水溶液、塩酸水溶液、合成したシリカゾ
ル中のシリカ微粒子及び合成した石英ガラス中の各金属
元素の濃度は、誘導結合プラズマ−質量分析(ICP−
MS)法を用いて分析した。ICP−MSの分析下限値
は、分析しようとする全元素で1重量ppb以下であ
る。全ての実施例、比較例で使用したメタノール、アン
モニア水溶液、塩酸水溶液中のSn濃度はそれぞれ2重
量ppb、2重量ppb、1重量ppb、Pb濃度はそ
れぞれ1重量ppb、1重量ppb、2重量ppb、G
e濃度はいずれも1重量ppbで、その他の各金属元素
の濃度はいずれも5重量ppb以下であった。
The concentrations of the tetramethoxysilane used, methanol, an aqueous ammonia solution, an aqueous hydrochloric acid solution, the silica fine particles in the synthesized silica sol, and the respective metal elements in the synthesized quartz glass were determined by inductively coupled plasma-mass spectrometry (ICP-).
MS) method was used for analysis. The lower limit of analysis of ICP-MS is 1 weight ppb or less for all elements to be analyzed. The Sn concentrations in the methanol, ammonia aqueous solution, and hydrochloric acid aqueous solution used in all Examples and Comparative Examples were 2 wtppb, 2 wtppb, 1 wtppb, and Pb concentrations were 1 wtppb, 1 wtppb, and 2 wtppb, respectively. , G
The e concentration was 1 weight ppb in all, and the concentration of each of the other metal elements was 5 weight ppb or less.

【0018】アルカリ金属元素、アルカリ土類金属元素
及び遷移金属元素に属する各金属元素の濃度がいずれも
10重量ppb以下で、且つGe、Sn及びPbの各金
属元素濃度がいずれも5重量ppb以下であるテトラメ
トキシシランを用いてシリカゾルを合成した場合は、シ
リカ微粒子中のアルカリ金属元素、アルカリ土類金属元
素及び遷移金属元素に属する各金属元素の濃度がいずれ
も50重量ppb以下で、且つGe、Sn及びPbの各
金属元素の濃度がいずれも5重量ppb以下であった。
さまざまな各金属元素の濃度のテトラメトキシシラン
と、これらを用いて合成したシリカ微粒子とを原料とし
て合成した石英ガラス中の各金属濃度を表1に示した。
アルカリ金属元素、アルカリ土類金属元素及び遷移金属
元素に属する各金属元素の濃度がいずれも10重量pp
b以下で、且つGe、Sn及びPbの各金属元素の濃度
がいずれも5重量ppb以下であるテトラメトキシシラ
ンと、アルカリ金属元素、アルカリ土類金属元素及び遷
移金属元素に属する各金属元素の濃度がいずれも50重
量ppb以下で、且つGe、Sn及びPbの各金属元素
の濃度がいずれも5重量ppb以下であるシリカ微粒子
とを原料とした場合を実施例として示した。また、それ
以外の場合を比較例として示した。
The concentration of each metal element belonging to the alkali metal element, the alkaline earth metal element and the transition metal element is 10 weight ppb or less, and the concentration of each metal element of Ge, Sn and Pb is 5 weight ppb or less. When a silica sol is synthesized using tetramethoxysilane which is, the concentration of each metal element belonging to the alkali metal element, the alkaline earth metal element and the transition metal element in the silica fine particles is 50 weight ppb or less, and Ge , Sn and Pb each had a concentration of 5 weight ppb or less.
Table 1 shows each metal concentration in the silica glass synthesized by using tetramethoxysilane having various concentrations of each metal element as a raw material and silica fine particles synthesized by using them.
The concentration of each metal element belonging to alkali metal elements, alkaline earth metal elements, and transition metal elements is 10 weight pp
b or less and the concentration of each metal element of Ge, Sn, and Pb is 5 weight ppb or less, and the concentration of each metal element belonging to an alkali metal element, an alkaline earth metal element, and a transition metal element In the examples, silica fine particles having a metal content of 50 ppb or less and a metal element concentration of Ge, Sn and Pb of 5 ppb or less are used as raw materials. The other cases are shown as comparative examples.

【0019】合成した石英ガラス中の炭素濃度を、石英
ガラスを酸素気流中で高周波誘導加熱により略2000
℃まで加熱して、脱離した二酸化炭素を定量する手法に
より測定した。ゲルの900℃までの加熱を380時間
かけて合成した石英ガラス中の炭素濃度はいずれも30
重量ppm以下であった。ゲルの900℃までの加熱を
50時間及び10時間かけて合成した石英ガラス中の炭
素濃度は、それぞれ50重量ppm及び100重量pp
mであった。
The carbon concentration in the synthesized quartz glass was adjusted to about 2000 by high-frequency induction heating of the quartz glass in an oxygen stream.
The measurement was performed by heating to 0 ° C. and quantifying the desorbed carbon dioxide. The carbon concentration in the silica glass synthesized by heating the gel to 900 ° C. over 380 hours was 30
It was less than ppm by weight. The carbon concentration in the silica glass synthesized by heating the gel to 900 ° C. for 50 hours and 10 hours was 50 ppm by weight and 100 ppm by weight, respectively.
It was m.

【0020】得られた石英ガラスの光学特性を評価する
ために、石英ガラスを12mm×12mm×20mmの
角柱に光学研磨した。200〜400nmの紫外線透過
率、及び248nmの紫外線励起による発光スペクトル
を測定した。耐レーザ性を評価するために、照射エネル
ギー密度が50〜400mJ/ cm2 、総照射パルス数
が1×105 パルスの条件でKrFエキシマレーザ光を
石英ガラスに照射し、電子スピン共鳴(ESR)の手法
を用いて、レーザ照射により石英ガラス中に生成したラ
ジカル種をESRシグナルとして観測した。石英ガラス
の紫外線透過率、発光強度及びESRの評価結果を表2
に示した。石英ガラス中のアルカリ金属元素、アルカリ
土類金属元素及び遷移金属元素に属する各金属元素のう
ち、少なくとも一元素の濃度が100重量ppbを超え
た石英ガラスは、200〜400nmの紫外線波長域に
吸収帯を持ち、紫外線透過率が良好な石英ガラスは得ら
れなかった。また、石英ガラス中のGe、Sn及びPb
の各金属元素のうち、少なくとも一元素の濃度が10重
量ppbを超えた石英ガラスは、紫外線の照射により3
00〜500nmの波長域に発光帯を持った。
In order to evaluate the optical characteristics of the obtained quartz glass, the quartz glass was optically polished into a 12 mm × 12 mm × 20 mm prism. The ultraviolet transmittance of 200 to 400 nm and the emission spectrum by ultraviolet excitation of 248 nm were measured. In order to evaluate laser resistance, quartz glass is irradiated with KrF excimer laser light under conditions of irradiation energy density of 50 to 400 mJ / cm 2 and total irradiation pulse number of 1 × 10 5 , and electron spin resonance (ESR). Using the above method, the radical species produced in the quartz glass by laser irradiation were observed as an ESR signal. Table 2 shows the evaluation results of ultraviolet transmittance, luminescence intensity and ESR of the quartz glass.
It was shown to. Quartz glass, in which the concentration of at least one of the metal elements belonging to the alkali metal elements, alkaline earth metal elements, and transition metal elements in the quartz glass exceeds 100 weight ppb, is absorbed in the ultraviolet wavelength range of 200 to 400 nm. It was not possible to obtain quartz glass having a band and good ultraviolet transmittance. In addition, Ge, Sn and Pb in quartz glass
Among the respective metallic elements, the quartz glass in which the concentration of at least one element exceeds 10 weight ppb is
It had an emission band in the wavelength range of 00 to 500 nm.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】本発明により、波長域が400nm以下
の紫外線を透過し、紫外線照射により発光することのな
い、石英ガラス中の構造欠陥量を抑制した、耐レーザ性
に優れた合成石英ガラスを製造することが可能となっ
た。また、本発明による合成石英ガラスは、レンズ、プ
リズム、ビ−ムスプリッタ、分光器など紫外線用の光学
部品、特にエキシマレーザー等紫外線レーザ装置の光学
系に使用されるレンズ、プリズム等の光学部品に応用可
能である。
Industrial Applicability According to the present invention, there is provided a synthetic quartz glass excellent in laser resistance, which transmits ultraviolet rays having a wavelength range of 400 nm or less and does not emit light upon irradiation with ultraviolet rays and which suppresses the amount of structural defects in the quartz glass. It has become possible to manufacture. The synthetic quartz glass according to the present invention is used as an optical component for ultraviolet rays such as a lens, a prism, a beam splitter, and a spectroscope, particularly as an optical component such as a lens and a prism used in an optical system of an ultraviolet laser device such as an excimer laser. It is applicable.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鍬先 尚哉 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 井上 初志 東京都杉並区下井草2−18−17 (72)発明者 竹内 哲彦 長野県諏訪市大和3−3−5 セイコーエ プソン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Naoya Hoe, 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Advanced Technology Research Laboratories, Nippon Steel Corporation (72) Hatsushi Inoue 2-18 Shimogusa, Suginami-ku, Tokyo -17 (72) Inventor Tetsuhiko Takeuchi 3-3-5 Yamato, Suwa, Nagano Seiko Epson Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリカ微粒子と、シリコンアルコキシド
とを混合してゲルを合成し、該ゲルを昇温しながら乾
燥、焼結、ガラス化する工程より構成されるゾル−ゲル
法による合成石英ガラスの製造方法において、以下に示
すシリカ微粒子とシリコンアルコキシドを用いることを
特徴とする、紫外線レーザ用合成石英ガラスの製造方
法。 a アルカリ金属元素、アルカリ土類金属元素及び遷移
金属元素に属する各金属元素の濃度がいずれも50重量
ppb以下で、且つGe、Sn及びPbの各金属元素の
濃度がいずれも5重量ppb以下であるシリカ微粒子。 b アルカリ金属元素、アルカリ土類金属元素及び遷移
金属元素に属する各金属元素の濃度がいずれも10重量
ppb以下で、且つGe、Sn及びPbの各金属元素の
濃度がいずれも5重量ppb以下であるシリコンアルコ
キシド。
1. A synthetic quartz glass produced by a sol-gel method, which comprises steps of mixing silica fine particles and silicon alkoxide to synthesize a gel, and drying, sintering, and vitrifying the gel while heating the gel. A method for producing a synthetic quartz glass for an ultraviolet laser, which comprises using the following fine silica particles and a silicon alkoxide in the production method. a The concentration of each metal element belonging to the alkali metal element, the alkaline earth metal element and the transition metal element is 50 weight ppb or less, and the concentration of each metal element of Ge, Sn and Pb is 5 weight ppb or less. Some silica fine particles. b The concentration of each metal element belonging to the alkali metal element, the alkaline earth metal element, and the transition metal element is 10 weight ppb or less, and the concentration of each metal element of Ge, Sn, and Pb is 5 weight ppb or less. A silicon alkoxide.
【請求項2】 シリカ微粒子が、シリコンアルコキシド
の加水分解と脱水縮重合反応により合成されたものであ
る請求項1記載の合成石英ガラスの製造方法。
2. The method for producing synthetic quartz glass according to claim 1, wherein the silica fine particles are synthesized by hydrolysis of silicon alkoxide and dehydration polycondensation reaction.
【請求項3】 シリコンアルコキシドを主原料とし、ゾ
ル−ゲル法により得られる合成石英ガラスにおいて、前
記合成石英ガラス中に含有されるアルカリ金属元素、ア
ルカリ土類金属元素及び遷移金属元素に属する各金属元
素の濃度がいずれも100重量ppb以下で、且つG
e、Sn及びPbの各金属元素の濃度がいずれも10重
量ppb以下、C元素濃度が30重量ppm以下である
ことを特徴とする紫外線レーザ用合成石英ガラス。
3. A synthetic quartz glass obtained by a sol-gel method using silicon alkoxide as a main raw material, and each metal belonging to the alkali metal element, alkaline earth metal element and transition metal element contained in the synthetic quartz glass. The concentration of each element is 100 weight ppb or less, and G
A synthetic quartz glass for an ultraviolet laser, characterized in that the concentration of each metal element of e, Sn and Pb is 10 weight ppb or less and the concentration of C element is 30 weight ppm or less.
JP08910694A 1994-04-04 1994-04-04 Synthetic quartz glass for ultraviolet laser and manufacturing method thereof Expired - Lifetime JP3702903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08910694A JP3702903B2 (en) 1994-04-04 1994-04-04 Synthetic quartz glass for ultraviolet laser and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08910694A JP3702903B2 (en) 1994-04-04 1994-04-04 Synthetic quartz glass for ultraviolet laser and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07277752A true JPH07277752A (en) 1995-10-24
JP3702903B2 JP3702903B2 (en) 2005-10-05

Family

ID=13961646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08910694A Expired - Lifetime JP3702903B2 (en) 1994-04-04 1994-04-04 Synthetic quartz glass for ultraviolet laser and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3702903B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131373A (en) * 2002-09-09 2004-04-30 Corning Inc Method of manufacturing silica and titania extreme ultraviolet ray optical element
US10184069B2 (en) 2016-12-02 2019-01-22 Jgc Catalysts And Chemicals Ltd. Silica-based polishing particle and abrasive
US10190023B2 (en) 2016-11-07 2019-01-29 Jgc Catalysts And Chemicals Ltd. Silica-based polishing particle and abrasive
US10301183B2 (en) 2016-12-28 2019-05-28 Jgc Catalysts And Chemicals Ltd. Silica particle dispersion and production method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131373A (en) * 2002-09-09 2004-04-30 Corning Inc Method of manufacturing silica and titania extreme ultraviolet ray optical element
US10190023B2 (en) 2016-11-07 2019-01-29 Jgc Catalysts And Chemicals Ltd. Silica-based polishing particle and abrasive
US10184069B2 (en) 2016-12-02 2019-01-22 Jgc Catalysts And Chemicals Ltd. Silica-based polishing particle and abrasive
US10301183B2 (en) 2016-12-28 2019-05-28 Jgc Catalysts And Chemicals Ltd. Silica particle dispersion and production method of the same

Also Published As

Publication number Publication date
JP3702903B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
US6800574B2 (en) Glass beads and uses thereof
Ehrt et al. Glass for high performance optics and laser technology
Gimon-Kinsel et al. Photoluminescent properties of MCM-41 molecular sieves
CN108658451A (en) The high-purity silicon dioxide granule applied for quartz glass and the method for preparing the particle
US5896222A (en) Fused silica lens, microlithography system including a fused silica lens and method of making a fused silica lens
US5958577A (en) Transparent bulk silica porous material with uniform pore size and distribution
CN108865120B (en) Europium ion doped CaF2Preparation method and application of optical functional powder
KR970005142B1 (en) Fabrication of semiconductor devices using phosphosilicate glasses
JPH07277752A (en) Synthetic quartz glass for ultraviolet light laser and method for producing the same
EP1623963B1 (en) Process for producing high silicate glass and high silicate glass
JPH07277744A (en) Production of synthetic silica glass
Wang et al. Fabrication and characterisation of neodymium-doped silica glass by sol-gel process
JPH0891867A (en) Ultraviolet ray transmitting synthetic quartz glass and its production
JP2955463B2 (en) Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same
JPH08133753A (en) Optical synthetic quartz glass, its production and application thereof
Mandal et al. Synthesis of Er 3+ and Er 3+: Yb 3+ doped sol-gel derived silica glass and studies on their optical properties
JP3358883B2 (en) Ultraviolet absorbing visible light transmitting silica glass for high pressure discharge lamp and method for producing the same
JP3418640B2 (en) Method for producing doped quartz glass
JP2004026586A (en) Synthetic quartz glass for vacuum ultraviolet light, method of manufacturing the same and mask substrates for vacuum ultraviolet light using the same
JP4166456B2 (en) Synthetic quartz glass for vacuum ultraviolet light, manufacturing method thereof, and mask substrate for vacuum ultraviolet light using the same
JP4093393B2 (en) Highly homogeneous synthetic quartz glass for vacuum ultraviolet light, method for producing the same, and mask substrate for vacuum ultraviolet light using the same
JPH07206452A (en) Production of quartz glass having high oh group content
JP2005067914A (en) Quartz glass and manufacturing method therefor
Battisha Structural and Optical Studies of Nanostructure Monolithic Silica gel Derived Glasses Containing Nd3+
JPH08104532A (en) Heat treating method of quartz glass

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040622

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

Effective date: 20040820

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050629

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050712

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090729

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120729

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

EXPY Cancellation because of completion of term