JPH08104532A - Heat treating method of quartz glass - Google Patents

Heat treating method of quartz glass

Info

Publication number
JPH08104532A
JPH08104532A JP6239839A JP23983994A JPH08104532A JP H08104532 A JPH08104532 A JP H08104532A JP 6239839 A JP6239839 A JP 6239839A JP 23983994 A JP23983994 A JP 23983994A JP H08104532 A JPH08104532 A JP H08104532A
Authority
JP
Japan
Prior art keywords
quartz glass
conductivity
transmittance
heat treatment
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6239839A
Other languages
Japanese (ja)
Other versions
JP3237043B2 (en
Inventor
Masashi Fujiwara
誠志 藤原
Hiroyuki Hiraiwa
弘之 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP23983994A priority Critical patent/JP3237043B2/en
Publication of JPH08104532A publication Critical patent/JPH08104532A/en
Application granted granted Critical
Publication of JP3237043B2 publication Critical patent/JP3237043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE: To provide a heat treating method hardly causing deterioration of an initial transmittance of a high purity transparent synthetic quartz glass body in ultraviolet and vacuum ultraviolet regions. CONSTITUTION: The occurrence of an absorption at a wavelength region of <=200nm due to a defective structure which is caused by reduction of fundamental structure of Si-Si or Si-O-Si is prevented by holding the high purity transparent synthetic quartz glass body in a thermostatic state in >=10<-10> S.cm<-1> to <=10<-6> S.cm<-1> electric conductivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空紫外線レーザ全般
の光学系に使用される石英ガラスの熱処理方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for quartz glass used in optical systems for vacuum ultraviolet lasers in general.

【0002】[0002]

【従来の技術】従来、シリコン等のウエハ上に集積回路
の微細パターンを露光・転写する光リソグラフィー技術
においては、ステッパと呼ばれる露光装置が用いられて
いる。このステッパの光源は、近年の LSIの高集積化に
ともなって g線( 436nm)から i線( 365nm)、さらには K
rF( 248nm)や ArF( 193nm)エキシマレーザへと短波長化
が進められている。
2. Description of the Related Art Conventionally, an exposure apparatus called a stepper has been used in an optical lithography technique for exposing and transferring a fine pattern of an integrated circuit onto a wafer such as silicon. The light source of this stepper is g-line (436 nm) to i-line (365 nm), and further K
Shorter wavelengths are being promoted to rF (248 nm) and ArF (193 nm) excimer lasers.

【0003】一般に、ステッパの照明系あるいは投影レ
ンズとして用いられる光学ガラスは、 i線よりも短い波
長領域では光透過率が低下するため、従来の光学ガラス
にかえて合成石英ガラスやCaF2(蛍石)等のフッ化物単
結晶を用いることが提案されている。ステッパに搭載さ
れる光学系は多数のレンズの組み合わせにより構成され
ており、たとえレンズ一枚当たりの透過率低下量が小さ
くとも、それが使用レンズ枚数分だけ積算されてしま
い、照射面での光量の低下につながるため、光学素材に
対して高透過率化が要求されている。また、使用波長が
短くなるほど、屈折率分布のほんの小さなムラ(屈折率
の不均質)によってでも結像性能が極端に悪くなる。
Generally, the optical glass used as an illumination system or a projection lens of a stepper has a low light transmittance in a wavelength region shorter than the i-line, and therefore synthetic quartz glass or CaF 2 (fluorite) is used instead of the conventional optical glass. It has been proposed to use a fluoride single crystal such as stone. The optical system mounted on the stepper is composed of a combination of many lenses, and even if the amount of decrease in transmittance per lens is small, it is added up by the number of lenses used, and the amount of light on the irradiation surface is increased. As a result, the optical material is required to have a high transmittance. Further, as the used wavelength becomes shorter, the image forming performance becomes extremely poor even by the slightest unevenness in the refractive index distribution (refractive index inhomogeneity).

【0004】このように、紫外領域の光リソグラフィー
用光学体として用いられる石英ガラスには、紫外線の高
透過性と屈折率の高い均質性が要求されている。しか
し、通常市販されている合成石英ガラスは、初期透過
率,屈折率の均質性,耐紫外線性を始めとする品質が不
十分であり、前述したような精密光学機器に使用するこ
とができなかった。このため、均質化のための二次処理
(特公平03-17775,特開昭64-28240)や、加圧水素ガス
中での熱処理による均質性及び耐レーザ性の向上(特開
平03-109233 )等が提案されている。
As described above, quartz glass used as an optical body for photolithography in the ultraviolet region is required to have high transmittance of ultraviolet rays and high homogeneity of refractive index. However, commercially available synthetic quartz glass is insufficient in quality such as initial transmittance, homogeneity of refractive index, and resistance to ultraviolet rays, and cannot be used for precision optical instruments as described above. It was Therefore, secondary treatment for homogenization (Japanese Patent Publication No. 03-17775, Japanese Patent Laid-Open No. 64-28240) and improvement of homogeneity and laser resistance by heat treatment in pressurized hydrogen gas (Japanese Patent Laid-Open No. 03-109233). Etc. have been proposed.

【0005】[0005]

【発明が解決しようとする課題】ところが、従来の加
熱,加圧による二次処理では、処理後に光透過率が紫外
領域、特に 200nm以下の真空紫外領域で初期透過率より
低下する場合があり、高い屈折率の均質性が得られたと
しても ArFエキシマレーザー光( 193nm)用の光学体とし
ては光透過率の面で十分なものとは言えなかった。
However, in the conventional secondary treatment by heating and pressure, the light transmittance after treatment may be lower than the initial transmittance in the ultraviolet region, particularly in the vacuum ultraviolet region of 200 nm or less, Even if a high refractive index homogeneity was obtained, it was not sufficient in terms of light transmittance as an optical body for ArF excimer laser light (193 nm).

【0006】また、初期透過率の等しい合成石英ガラス
を温度、圧力、雰囲気等の同じ条件で熱処理した場合で
も、必ずしも同一の光透過率を得ることができないこと
があった。本発明は高純度透明合成石英ガラス体の紫外
及び真空紫外領域の初期透過率を低下させることのない
熱処理方法を提供することを目的とする。
Further, even if synthetic quartz glass having the same initial transmittance is heat-treated under the same conditions of temperature, pressure, atmosphere, etc., the same light transmittance may not always be obtained. An object of the present invention is to provide a heat treatment method which does not reduce the initial transmittance of the high-purity transparent synthetic quartz glass body in the ultraviolet and vacuum ultraviolet regions.

【0007】[0007]

【課題を解決するための手段】本発明者らは、熱処理を
行ったことによる光透過率の低下原因ついて鋭意研究を
行った結果、その支配要因が石英ガラスの中に含まれる
酸素量の理論組成SiO2(Si一個に対して Oが二個)から
の大幅なズレによるものであることを見い出した。
The inventors of the present invention have conducted extensive studies on the cause of the decrease in light transmittance due to heat treatment, and as a result, the controlling factor is the theory of the amount of oxygen contained in quartz glass. It was found that this was due to the large deviation from the composition SiO 2 ( 2 O for 1 Si).

【0008】そこで、理論組成を維持するためにさらに
研究を行った結果、熱処理恒温時の導電率を調整するこ
とにより、熱処理に起因する紫外及び真空紫外領域の光
透過率の低下を防ぐことが可能であることがわかった。
さらには、紫外から真空紫外領域に吸収をもつ石英ガラ
ス体を用いた場合には、導電率を調整することにより、
その吸収を消去することが可能であることがわかった。
Then, as a result of further research to maintain the theoretical composition, it is possible to prevent the decrease in the light transmittance in the ultraviolet and vacuum ultraviolet regions due to the heat treatment by adjusting the electric conductivity at the time of constant temperature of the heat treatment. It turned out to be possible.
Furthermore, when a quartz glass body having an absorption in the ultraviolet to vacuum ultraviolet region is used, by adjusting the conductivity,
It turned out that the absorption could be eliminated.

【0009】従って、本発明は、高純度透明合成石英ガ
ラス体を 10-10S・cm-1以上10-6S・cm -1以下の導電率で恒
温状態に保持することを特徴とする石英ガラスの熱処理
方法を提供する。本発明の特徴は、熱処理恒温時の石英
ガラスの導電率を規定することにより、これまでの熱処
理で生成していたSi−Siや Si−O−Siの基本構造が還元
されてできた構造欠陥等の、 200nm以下の波長帯での吸
収の生成を未然に防ぐことができる点である。これによ
り、石英ガラスの光透過率を紫外あるいは 200nm以下の
真空紫外領域の精密光学機器で使用できるレベルまで引
き上げることができる。特に ArFエキシマレーザを用い
たステッパの場合は、石英ガラスの組成を最適化するこ
とにより吸収を消去することができるため、非常に有用
である。
Therefore, the present invention provides a high-purity transparent synthetic quartz glass.
Russ body 10-TenS ・ cm-1More than 10-6S ・ cm -1Constant at the following conductivity
Heat treatment of quartz glass characterized by keeping in a warm state
Provide a way. The feature of the present invention is that quartz during heat treatment and isothermal
By specifying the conductivity of glass, the heat treatment
The basic structure of Si-Si and Si-O-Si that was generated by
Absorption of structural defects created in the wavelength range below 200 nm.
It is possible to prevent the generation of yield. This
The quartz glass has a light transmittance of ultraviolet or 200 nm or less.
Pull to a level that can be used with precision optical instruments in the vacuum ultraviolet region.
Can be raised. Especially using ArF excimer laser
In case of a stepper, the composition of quartz glass can be optimized.
Very useful as absorption can be eliminated by and
Is.

【0010】[0010]

【作用】一般的に固体物質の導電率には電子導電率とイ
オン導電率の 2種類があり、物質によりどちらかが支配
的である。例えば、金属のように電子の移動によって電
気伝導を示すものは電子伝導が支配的であるし、また、
食塩水のように Na+や Cl-のイオンの移動により電気伝
導を示すものはイオン伝導が支配的である。
[Function] Generally, there are two kinds of electric conductivity of a solid substance, that is, electronic conductivity and ionic conductivity, and one of them is dominant depending on the substance. For example, in the case of metal, which shows electric conduction by the movement of electrons, the electron conduction is dominant, and
Ionic conduction is predominant in substances that show electrical conduction due to the movement of Na + and Cl ions, such as saline.

【0011】石英ガラスの場合、本質的には電子伝導が
支配的であるが、実際には、中に含まれている金属不純
物量により導電率が左右されていると言われている。そ
の中でも、アルカリ金属不純物はその量により導電率と
明確な相関が得られている(R.Bruckner, J.Non-Crysta
lline Solids, 123(5), 177-216(1970) )。ところで、
現在、紫外領域の光リソグラフィー用光学体として取り
扱われている石英ガラス中の金属不純物量は、 ppbオー
ダーまで低減されている。このため、不純物によるイオ
ン伝導と本質的な電子伝導とを比較した場合、電子伝導
のほうが遥かに大きく、イオン伝導の石英ガラスの導電
率への寄与はほとんど無視できるレベルと考えられる。
つまり、金属不純物が低減された石英ガラスの導電率
は、その本質的な組成の電子伝導による導電率と等価に
考えることができる。
In the case of quartz glass, electron conduction is essentially dominant, but in reality, it is said that the conductivity depends on the amount of metal impurities contained therein. Among them, alkali metal impurities have a clear correlation with conductivity depending on the amount (R. Bruckner, J. Non-Crysta.
lline Solids, 123 (5), 177-216 (1970)). by the way,
At present, the amount of metallic impurities in silica glass, which is handled as an optical body for photolithography in the ultraviolet region, has been reduced to the ppb order. Therefore, when comparing the ionic conduction due to impurities with the intrinsic electronic conduction, it is considered that the electronic conduction is much larger and the contribution of the ionic conduction to the conductivity of the silica glass is almost negligible.
That is, the conductivity of silica glass with reduced metal impurities can be considered to be equivalent to the conductivity due to electron conduction of its essential composition.

【0012】しかしながら、石英ガラスは他の酸化物と
同様に、合成時や熱処理条件等によりSiと Oの比率はノ
ンストイキオメトリックに変化するため、SiO2-xあるい
はSiO2+yと表したほうが正確になる。これらSiO2-x,Si
O2+yの関係は次のようになる。
However, like other oxides, the ratio of Si to O in quartz glass changes non-stoichiometrically depending on the synthesis conditions, heat treatment conditions, etc. Therefore, it is better to express it as SiO 2−x or SiO 2 + y. Be accurate. These SiO 2-x , Si
The relationship of O 2 + y is as follows.

【0013】[0013]

【化1】 Embedded image

【0014】この平衡反応は、質量作用の法則,ギブス
の自由エネルギーとの関係式とから、温度と周囲の酸素
圧に依存する。そのため、酸素圧と温度が決まれば一つ
の組成が必然的に決定される。( 1)式において、X=0あ
るいはY=0の場合が理論組成との平衡状態を示す。
This equilibrium reaction depends on the temperature and the ambient oxygen pressure from the law of mass action and the relational expression with Gibbs free energy. Therefore, if the oxygen pressure and temperature are determined, one composition is inevitably determined. In equation (1), when X = 0 or Y = 0, the equilibrium state with the theoretical composition is shown.

【0015】任意のSiと Oの比率の石英ガラスにおい
て、( 1)式の平衡が右にずれてSi−Si等の酸素欠乏欠陥
が生成する、また、( 1)式の平衡が左にずれてSi−O−O
−Si等の酸素過剰欠陥が生成する。この生成した電子や
正孔は石英ガラスの導電率に反映される。また、酸素欠
乏・過剰欠陥が生成することにより紫外領域に吸収帯が
発生する。
In the silica glass having an arbitrary ratio of Si and O, the equilibrium of the formula (1) shifts to the right to generate oxygen deficiency defects such as Si-Si, and the balance of the formula (1) shifts to the left. Si-O-O
-Oxygen excess defects such as Si are generated. The generated electrons and holes are reflected in the conductivity of quartz glass. Further, an oxygen deficiency / excessive defect is generated, so that an absorption band is generated in the ultraviolet region.

【0016】以上のことから、導電率が等しい石英ガラ
スのSiと Oの比率は等しく、同等の光透過率の特性を得
ることができることがわかる。したがって、任意のSiと
Oの比率を持つ石英ガラスを任意の酸素分圧雰囲気中で
加熱し、石英ガラスの導電率をモニターし、その値が 1
0-10S・cm-1以上10-6S・cm-1以下の範囲で平衡反応により
一定値に収束させる熱処理を行うことにより、平衡組成
に近い石英ガラスを得ることができる。もっとも、実際
に平衡状態を確認することは難しいが、導電率が上記範
囲内に保持できるように昇降温及び酸素分圧を調整した
恒温状態をつくり、熱処理を完了させることにより、同
様の効果を得ることができる。
From the above, it can be seen that the ratios of Si and O of silica glass having the same conductivity are the same, and the characteristics of the same light transmittance can be obtained. Therefore, with any Si
Quartz glass with O ratio is heated in an oxygen partial pressure atmosphere and the conductivity of the quartz glass is monitored.
Quartz glass close to the equilibrium composition can be obtained by performing heat treatment in which the equilibrium reaction converges to a constant value in the range of 0 -10 S · cm −1 to 10 −6 S · cm −1 . However, it is difficult to confirm the equilibrium state actually, but the same effect can be obtained by completing the heat treatment by creating a constant temperature state in which the temperature rising / falling and oxygen partial pressure are adjusted so that the conductivity can be maintained within the above range. Obtainable.

【0017】石英ガラスの導電率は、 500℃未満では電
子伝導が非常に小さくなってしまうため、本発明で用い
ているような方法では観測することが困難になり測定値
の信頼性が低くなってしまう。このため、 500℃以上で
求められた値であることが好ましい。また、圧力は5kgG
より高いと、常圧と比較して平衡状態からのずれが著し
くなるので、5kgG以下での熱処理が好ましい。
Regarding the conductivity of quartz glass, if the temperature is less than 500 ° C., the electron conduction becomes very small, so that it is difficult to observe by the method used in the present invention, and the reliability of the measured value becomes low. Will end up. For this reason, the value obtained at 500 ° C. or higher is preferable. Also, the pressure is 5kgG
When it is higher, the deviation from the equilibrium state becomes more significant as compared with normal pressure, so heat treatment at 5 kgG or less is preferable.

【0018】熱処理は通常、保持温度まで昇温して一定
時間保持し、その後徐々に降温する温度操作で構成され
ている。本発明は従来の熱処理の構成で行われるが、導
電率の保持を最優先とする。そのため、任意の酸素分圧
雰囲気で、昇温に伴う石英ガラスの導電率をモニター
し、予定した保持温度に達する前に、すなわち昇温過程
に導電率が本発明の範囲の上限を越えそうな場合は昇温
を中断する、あるいは酸素分圧を操作する等を行い、導
電率を保持する。保持時間は石英ガラスの径及び導電率
の信頼性を加味し、経験則的に求める。
The heat treatment is usually carried out by raising the temperature to the holding temperature, holding it for a certain period of time, and then gradually lowering the temperature. Although the present invention is carried out in a conventional heat treatment configuration, maintaining conductivity is a top priority. Therefore, in an arbitrary oxygen partial pressure atmosphere, the conductivity of the quartz glass is monitored as the temperature rises, and the conductivity is likely to exceed the upper limit of the range of the present invention before the predetermined holding temperature is reached, that is, during the temperature rising process. In that case, the temperature is interrupted or the oxygen partial pressure is manipulated to maintain the conductivity. The holding time is empirically determined in consideration of the reliability of the diameter and conductivity of the quartz glass.

【0019】本発明により、紫外あるいは 200nm以下の
真空紫外領域の精密光学機器で使用できる品質を確保す
ることができる。特に、歪、脈理が無く、屈折率分布が
高均質の高純度透明合成石英ガラス体を本発明の熱処理
の出発素材とすることで、ステッパ等の精密光学機器に
用いることのできる、 ArFエキシマレーザー波長( 193
nm)で 99.9%以上の高透過率を持ち、屈折率分布も高均
質である石英ガラスが得られる。
According to the present invention, it is possible to ensure quality that can be used in precision optical instruments in the ultraviolet or vacuum ultraviolet region of 200 nm or less. In particular, by using a high-purity transparent synthetic quartz glass body having no distortion and no striae and a highly uniform refractive index distribution as the starting material for the heat treatment of the present invention, it can be used in precision optical instruments such as steppers. Laser wavelength (193
Quartz glass with a high transmittance of 99.9% or more and a highly uniform refractive index distribution can be obtained.

【0020】[0020]

【実施例】【Example】

〔実施例1〕高純度石英ガラスインゴットは、原料とし
て高純度の四塩化ケイ素を用い、石英ガラス性バーナに
て酸素ガス及び水素ガスを混合・燃焼させ、中心部から
原料ガスをキャリアガスで希釈して噴出させ、ターゲッ
ト上に堆積、溶融して合成した。合成の際、原料ガスを
周囲の酸素ガス及び水素ガスの燃焼により生成する水と
反応させ、バーナ下方にある不透明石英ガラス板からな
るターゲット上にガラス化して堆積させるわけである
が、その際ターゲットは一定周期で回転及び揺動させ、
更に降下を同時に行うことによりインゴット部の位置を
常時バーナから同距離に保つことにより石英ガラスイン
ゴットを得た。
[Example 1] A high-purity quartz glass ingot uses high-purity silicon tetrachloride as a raw material, and an oxygen gas and a hydrogen gas are mixed and burned by a quartz glass burner, and the raw material gas is diluted with a carrier gas from a central portion. Then, it was ejected, deposited on the target, melted, and synthesized. During synthesis, the raw material gas is reacted with water generated by combustion of the surrounding oxygen gas and hydrogen gas, and vitrified and deposited on the target made of an opaque quartz glass plate below the burner. Rotates and oscillates at a constant cycle,
Further, the quartz glass ingot was obtained by simultaneously lowering the position of the ingot portion at the same distance from the burner.

【0021】これらの石英ガラスインゴットについて、
赤外吸収分光法( 1.38μmのOH基による吸収量を測定す
る)によりOH基含有量を測定したところ、 1200ppmであ
った。また、放射化分析法により塩素及びナトリウム含
有量を調べたところ、各々 20ppm,5ppbであった。さら
に、含有金属不純物( Mg,Ca,Ti,Cr,Fe,Ni,Cu,Zn,Co,M
n)の定量分析を誘導結合プラズマ発光分光法によって
行ったところ、濃度がそれぞれ 20ppb以下と高純度であ
ることがわかった。
Regarding these quartz glass ingots,
When the OH group content was measured by infrared absorption spectroscopy (the amount of absorption by the OH group at 1.38 μm is measured), it was 1200 ppm. In addition, when the chlorine and sodium contents were examined by activation analysis, they were 20 ppm and 5 ppb, respectively. Furthermore, contained metal impurities (Mg, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Co, M
Quantitative analysis of n) was carried out by inductively coupled plasma emission spectroscopy, and it was found that the concentration was 20 ppb or less and the purity was high.

【0022】この石英ガラスインゴットから試験片を切
り出し、透過率測定用サンプルを作製し、真空紫外域の
分光光度計を用いて、100nm〜240nmの透過率を測定した
結果、 193nmで 99.9%であった。しかしながら、この石
英ガラスインゴットは屈折率のばらつきが △n=2.6x10
-5の光学的に不均質な石英ガラスであったため、もとの
インゴットから処理サンプルを作製し、均質化熱処理を
行った。すなわち、処理サンプルをSiO2の粉末で作った
母型の中で、N2雰囲気、 5kg/cm2加圧下でヒーターによ
り昇温し、1900℃で2時間保持し、その後 50℃/hrで降
温処理した。その結果、処理サンプルの屈折率のばらつ
き△nは2.0x10-6に良化した(特開平5-116969参照)。
この様にして、歪、脈理が無く高均質の高純度透明合成
石英ガラス体を得ることができた。
A test piece was cut from this quartz glass ingot.
Produce a sample for transmittance measurement and put it in the vacuum ultraviolet region.
Transmittance from 100 nm to 240 nm was measured using a spectrophotometer.
As a result, it was 99.9% at 193 nm. However, this stone
The variation of refractive index of British glass ingot is △ n = 2.6x10
-FiveSince it was an optically inhomogeneous quartz glass,
Make a processed sample from the ingot and perform homogenization heat treatment
went. That is, the treated sample is SiO2Made of powder
N in the matrix2Atmosphere, 5kg / cm2With a heater under pressure
Temperature is maintained at 1900 ℃ for 2 hours, and then at 50 ℃ / hr.
Heat treated. As a result, the refractive index of the processed sample varies.
△ n is 2.0x10-6(See JP-A-5-116969).
In this way, there is no distortion or striae, and it is a highly pure and transparent synthetic material of high homogeneity.
A quartz glass body could be obtained.

【0023】この処理サンプルの透過率を上記と同様の
操作で試験片を切り出し、測定したところ、 200nm付近
にブロードな吸収帯が発生していており、 193nmの透過
率は99.0%に低下していた(図2−II)。そこで、本発
明に従い熱処理を行った。上記処理サンプルを炉内に静
置し密閉した。一旦、真空ポンプで排気をした後、N2
スを炉内に1atmまで導入し、1600℃まで200℃/hrの割合
で昇温した。この時点でのサンプルの導電率は10-7S・cm
-1であった。導電率の測定方法は図1に示した。この雰
囲気,温度で60hr処理を行い、冷却過程に入る直前にサ
ンプルの導電率を測定したところ、6x10-6S・cm-1であっ
た。 10℃/hrの降温速度で 500℃まで冷却し、その後室
温まで放冷してサンプルを取り出した。この際の雰囲気
は処理時と同じ雰囲気に保った。取り出したサンプルに
研磨を施し透過率を測定したところ、 193nmでの10mm内
部透過率が 99.9%以上であった(図2−I)。また、他
の光学的性質(歪,脈理,均質性)も損なわれていなか
った。 〔実施例2〕実施例1と同様な方法で脈理,歪が無く、
屈折率の分布が高均質の高純度透明合成石英ガラスを用
意した。この処理サンプルの透過率を上記と同様の操作
で試験片を切り出し、測定したところ、 200nm付近にブ
ロードな吸収帯が発生していており、 193nmの透過率は
99.0%に低下していたため、本発明に従い熱処理を行っ
た。すなわち、この処理サンプルを炉内に静置し密閉し
た。一旦、真空ポンプで排気をした後、Arガスを炉内に
1atmまで導入し、1500℃まで200℃/hrの割合で昇温し
た。この時点でのサンプルの導電率は8x10-8S・cm-1であ
った。この雰囲気,温度で60hr処理を行い、冷却過程に
入る直前にサンプルの導電率を測定したところ、3x10-7
S・cm-1であった。 10℃/hrの降温速度で 500℃まで冷却
し、その後室温まで放冷してサンプルを取り出した。こ
の際の雰囲気は処理時と同じ雰囲気に保った。取り出し
たサンプルに研磨を施し透過率を測定したところ、実施
例1と同様に 193nmでの10mm内部透過率が 99.9%以上に
なっていた。また、他の光学的性質も損なわれていなか
った。 〔比較例1〕実施例1と同様の方法で、脈理,歪が無
く、屈折率の分布が高均質性の高純度透明石英ガラスを
用意した。この処理サンプルの透過率を上記と同様の操
作で試験片を切り出し、測定したところ、 200nm付近に
ブロードな吸収帯が発生していており、 193nmの透過率
は 99.0%に低下していた。この処理サンプルを炉内に静
置し密閉した。一旦、真空ポンプで排気をした後、Arガ
スを炉内に1atmまで導入し、1600℃まで200℃/hrの割合
で昇温した。この時点でのサンプルの導電率は1x10-6S・
cm-1であった。この雰囲気,温度で 120hr処理を行い、
冷却過程に入る直前にサンプルの導電率を測定したとこ
ろ、1x10-5S・cm-1であった。 10℃/hrの降温速度で 500
℃まで冷却し、その後室温まで放冷してサンプルを取り
出した。この際の雰囲気は処理時と同じ雰囲気に保っ
た。取り出したサンプルに研磨を施し透過率を測定した
ところ、 193nmでの10mm内部透過率が 99.2%と吸収の消
失は確認できなかった。他の光学的性質は損なわれてい
なかった。
With respect to the transmittance of this treated sample, a test piece was cut out by the same operation as above and measured. As a result, a broad absorption band was generated around 200 nm, and the transmittance at 193 nm was reduced to 99.0%. (Fig. 2-II). Therefore, heat treatment was performed according to the present invention. The treated sample was placed in a furnace and sealed. After evacuating with a vacuum pump once, N 2 gas was introduced into the furnace to 1 atm and the temperature was raised to 1600 ° C. at a rate of 200 ° C./hr. The conductivity of the sample at this point is 10 −7 S · cm
It was -1 . The method of measuring the conductivity is shown in FIG. The sample was treated for 60 hours in this atmosphere and at a temperature, and the conductivity of the sample was measured immediately before entering the cooling process and found to be 6 × 10 −6 S · cm −1 . The sample was taken out by cooling to 500 ° C. at a cooling rate of 10 ° C./hr and then allowing to cool to room temperature. The atmosphere at this time was kept the same as that of the treatment. When the sample taken out was polished and the transmittance was measured, the 10 mm internal transmittance at 193 nm was 99.9% or more (Fig. 2-I). In addition, other optical properties (distortion, striae, homogeneity) were not impaired. [Embodiment 2] Striae and distortion are eliminated by the same method as in Embodiment 1,
A high-purity transparent synthetic quartz glass having a highly uniform refractive index distribution was prepared. The transmittance of this treated sample was cut out from the test piece by the same operation as above, and the measurement showed that a broad absorption band was generated around 200 nm, and the transmittance at 193 nm was
Since it had fallen to 99.0%, heat treatment was performed according to the present invention. That is, this treated sample was left to stand in a furnace and sealed. Once exhausted with a vacuum pump, Ar gas is fed into the furnace.
It was introduced to 1 atm and heated up to 1500 ° C at a rate of 200 ° C / hr. The conductivity of the sample at this point was 8 × 10 −8 S · cm −1 . This atmosphere, subjected to 60hr at a temperature, where the conductivity of the sample immediately prior to entering the cooling process was measured, 3x10 -7
It was S · cm −1 . The sample was taken out by cooling to 500 ° C. at a cooling rate of 10 ° C./hr and then allowing to cool to room temperature. The atmosphere at this time was kept the same as that of the treatment. When the sample taken out was polished and the transmittance was measured, the internal transmittance at 10 mm at 193 nm was 99.9% or more as in Example 1. Moreover, other optical properties were not impaired. [Comparative Example 1] In the same manner as in Example 1, a high-purity transparent quartz glass having no striae and no distortion and a highly uniform refractive index distribution was prepared. The transmittance of this treated sample was cut out from the test piece by the same operation as above and measured. As a result, a broad absorption band was generated around 200 nm, and the transmittance at 193 nm was reduced to 99.0%. This treated sample was placed in a furnace and sealed. After evacuation with a vacuum pump once, Ar gas was introduced into the furnace to 1 atm and the temperature was raised to 1600 ° C. at a rate of 200 ° C./hr. The conductivity of the sample at this point is 1x10 -6 S
It was cm -1 . Perform 120hr treatment in this atmosphere and temperature,
When the conductivity of the sample was measured immediately before entering the cooling process, it was 1 × 10 −5 S · cm −1 . 500 at a cooling rate of 10 ℃ / hr
The sample was taken out after cooling to 0 ° C. and then allowing to cool to room temperature. The atmosphere at this time was kept the same as that of the treatment. When the sample taken out was polished and the transmittance was measured, the 10 mm internal transmittance at 193 nm was 99.2%, and disappearance of absorption could not be confirmed. Other optical properties were intact.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
加圧,加熱等により均質化を行う際の処理を、該石英ガ
ラスの導電率が 10-10S・cm-1以上10-6S・cm-1以下の間で
行うことにより、二次処理で生成するSi−Si等の 200nm
以下の波長帯に吸収を持つような構造欠陥の生成を抑
え、その結果 200nm以下の紫外あるいは真空紫外光の光
透過率を精密光学機器で使用できるレベルまで良化させ
ることができる。
As described above, according to the present invention,
The secondary treatment is carried out by performing the homogenization treatment such as pressurization and heating while the electric conductivity of the quartz glass is between 10 -10 S ・ cm -1 and 10 -6 S ・ cm -1. 200nm of Si-Si etc.
Generation of structural defects that have absorption in the following wavelength bands can be suppressed, and as a result, the light transmittance of UV or vacuum UV light of 200 nm or less can be improved to a level that can be used in precision optical equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】 サンプル熱処理時の導電率の測定方法の一例
を示した模式図である。
FIG. 1 is a schematic view showing an example of a method of measuring conductivity during heat treatment of a sample.

【図2】 処理したサンプルの透過率の一例を示した模
式図であり、Iは比較例に基づいて行ったもの、IIは実
施例に基づいて行ったものである。
FIG. 2 is a schematic diagram showing an example of the transmittance of a treated sample, where I is based on a comparative example and II is based on an example.

【符号の説明】[Explanation of symbols]

1…直流電源 2…電流計 3…石英ガラスサンプル 4…熱処理容器 5…電極 1 ... DC power supply 2 ... Ammeter 3 ... Quartz glass sample 4 ... Heat treatment container 5 ... Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高純度透明合成石英ガラス体を 10-10S・cm
-1以上10-6S・cm-1以下の導電率で、恒温状態に保持する
ことを特徴とする石英ガラスの熱処理方法。
1. A high-purity transparent synthetic quartz glass body of 10 -10 S · cm
-1 or more and 10 -6 S · cm -1 or less, a method for heat treatment of quartz glass, characterized in that it is kept in a constant temperature state.
【請求項2】請求項1に記載の熱処理方法において、前
記恒温状態が、任意の酸素分圧下で500℃以上の温度で5
kgG以下の圧力下であることを特徴とする石英ガラスの
熱処理方法。
2. The heat treatment method according to claim 1, wherein the isothermal state is at a temperature of 500 ° C. or higher under an arbitrary oxygen partial pressure.
A heat treatment method for quartz glass, which is characterized in that the pressure is not higher than kgG.
JP23983994A 1994-10-04 1994-10-04 Heat treatment method for quartz glass and synthetic quartz glass Expired - Lifetime JP3237043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23983994A JP3237043B2 (en) 1994-10-04 1994-10-04 Heat treatment method for quartz glass and synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23983994A JP3237043B2 (en) 1994-10-04 1994-10-04 Heat treatment method for quartz glass and synthetic quartz glass

Publications (2)

Publication Number Publication Date
JPH08104532A true JPH08104532A (en) 1996-04-23
JP3237043B2 JP3237043B2 (en) 2001-12-10

Family

ID=17050638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23983994A Expired - Lifetime JP3237043B2 (en) 1994-10-04 1994-10-04 Heat treatment method for quartz glass and synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP3237043B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012566A1 (en) * 1999-08-12 2001-02-22 Nikon Corporation Method for preparation of synthetic vitreous silica and apparatus for heat treatment
WO2004016556A1 (en) * 2002-08-12 2004-02-26 Sumitomo Electric Industries, Ltd. Method of producing higher-purity glass element, high-purity glass element, and production method and device for glass tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012566A1 (en) * 1999-08-12 2001-02-22 Nikon Corporation Method for preparation of synthetic vitreous silica and apparatus for heat treatment
US6732546B1 (en) 1999-08-12 2004-05-11 Nikon Corporation Product method of synthetic silica glass and thermal treatment apparatus
KR100719817B1 (en) * 1999-08-12 2007-05-18 가부시키가이샤 니콘 Method for preparation of synthetic vitreous silica and apparatus for heat treatment
WO2004016556A1 (en) * 2002-08-12 2004-02-26 Sumitomo Electric Industries, Ltd. Method of producing higher-purity glass element, high-purity glass element, and production method and device for glass tube

Also Published As

Publication number Publication date
JP3237043B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
TW593191B (en) Silica glass optical material for excimer laser and excimer lamp, and method for producing the same
KR100382776B1 (en) Quartz glass, optical member containing the same, and manufacturing method thereof
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
KR19980080264A (en) Image forming optical system for ultraviolet laser
US8323856B2 (en) Mask blanks
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP3654500B2 (en) Quartz glass material and optical member for F2 excimer laser optical member
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
WO2000039038A1 (en) Method for producing optical quartz glass for excimer lasers
JP3237043B2 (en) Heat treatment method for quartz glass and synthetic quartz glass
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2000290026A (en) Optical quartz glass member for excimer laser
JP4051805B2 (en) Exposure apparatus and photomask
JPH01212247A (en) Production of base material for laser optical system
JP4831328B2 (en) Method for manufacturing synthetic quartz glass substrate for excimer laser
WO2000048953A1 (en) Synthetic quartz glass optical member for ultraviolet light and reduction projection exposure system using the same
JP2001302274A (en) Quartz glass for ultraviolet light and method for producing the same
JPH0624997B2 (en) Optical components for laser light
JP2566151B2 (en) Method for manufacturing laser optical system base material
JPH11116248A (en) Synthetic quartz glass member
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP2000154029A (en) Synthetic quartz glass for optical member and its production
JPH01197343A (en) Element for producing optical system with laser
JP3780532B2 (en) Method for modifying synthetic quartz glass optical body and synthetic quartz glass optical body
JP2864414B2 (en) Modification method of synthetic quartz glass optical body for ultraviolet light and synthetic quartz glass optical body for ultraviolet light

Legal Events

Date Code Title Description
S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350