JP4085490B2 - Method of manufacturing an optical member for a synthetic quartz glass - Google Patents

Method of manufacturing an optical member for a synthetic quartz glass Download PDF

Info

Publication number
JP4085490B2
JP4085490B2 JP32552198A JP32552198A JP4085490B2 JP 4085490 B2 JP4085490 B2 JP 4085490B2 JP 32552198 A JP32552198 A JP 32552198A JP 32552198 A JP32552198 A JP 32552198A JP 4085490 B2 JP4085490 B2 JP 4085490B2
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
optical member
method
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32552198A
Other languages
Japanese (ja)
Other versions
JP2000154029A (en
Inventor
憲昭 下平
暁夫 増井
順亮 生田
信也 菊川
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP32552198A priority Critical patent/JP4085490B2/en
Publication of JP2000154029A publication Critical patent/JP2000154029A/en
Application granted granted Critical
Publication of JP4085490B2 publication Critical patent/JP4085490B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production
    • Y02P40/57Reduction of reject rates; Improving the yield

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、波長400nm以下の紫外線を光源とする装置に用いられる光学部材用合成石英ガラスおよびその製造方法に関する。 The present invention relates to a synthetic quartz glass and its manufacturing method for an optical member used in the apparatus as a light source for ultraviolet light having a wavelength of at most 400 nm. 詳細にはエキシマレーザ(XeCl:波長308nm、KrF:波長248nm、ArF:波長193nm)、F 2レーザ(波長157nm)、低圧水銀ランプ(波長185nm)、エキシマランプ(XeXe:波長172nm)、重水素ランプ(波長170〜400nm)などの光源から発せられる紫外域から真空紫外域までの光に用いられるレンズやプリズム、窓材などの光学部品として用いられる光学部材用合成石英ガラスとその製造方法に関する。 Excimer laser in particular (XeCl: wavelength 308 nm, KrF: wavelength 248 nm, ArF: wavelength 193 nm), F 2 laser (wavelength 157 nm), a low pressure mercury lamp (wavelength 185 nm), an excimer lamp (XeXe: wavelength 172 nm), a deuterium lamp (wavelength 170 to 400 nm) lenses and prisms used in light to vacuum ultraviolet region from ultraviolet region emitted from a light source such as an optical member for a synthetic quartz glass used as an optical component such as a window material a manufacturing method thereof.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
合成石英ガラスは、近赤外域から真空紫外域までの広範囲の波長域にわたって透明な材料であること、熱膨張係数がきわめて小さく寸法安定性に優れること、また、金属不純物をほとんど含有しておらず高純度であることなどの特徴がある。 Synthetic quartz glass, it is transparent material over a wide wavelength range from the near infrared region to a vacuum ultraviolet region, coefficient of thermal expansion excellent extremely small dimensional stability, also scarcely containing metallic impurities it is characterized such that a high purity. そのため、従来のg線、i線を光源として用いた光学装置の光学部材には合成石英ガラスが主に用いられてきた。 Therefore, the conventional g-line, the synthetic quartz glass for an optical member of an optical apparatus using the i-line as light source have been used mainly.
【0003】 [0003]
近年、LSIの高集積化に伴い、ウェハ上に集積回路パターンを描画する光リソグラフィ技術において、より線幅の短い微細な描画技術が要求されており、これに対応するために露光光源の短波長化が進められている。 Recently, with high integration of LSI, an optical lithography technique for drawing integrated circuit patterns on a wafer, it has been required more linewidth short fine drawing technique, short wavelength exposure light source in order to cope with this It is being advanced. たとえばリソグラフィ用ステッパの光源は、従来のg線(波長436nm)、i線(波長365nm)から進んで、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、さらにはF 2レーザ(波長157nm)が用いられようとしている。 For example the lithographic steppers light source, a conventional g-line (wavelength 436 nm), the process proceeds from i-line (wavelength 365 nm), KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), more F 2 laser (wavelength 157nm) is about to be used.
【0004】 [0004]
また、低圧水銀ランプ(波長185nm)やエキシマランプ(XeXe:波長172nm)は、1)光CVDなどの装置、2)シリコンウェハのアッシング装置やエッチング装置、または3)オゾン発生装置などに用いられている。 Further, low-pressure mercury lamp (wavelength 185 nm) or an excimer lamp (XeXe: wavelength 172 nm) is 1) device such as an optical CVD, 2) an ashing apparatus or etching apparatus of the silicon wafer, or 3) is used in such an ozone generator there. そして、今後光リソグラフィ技術に適用すべく開発が進んでいる。 And, it has been developed to be applied to future optical lithography technology. 低圧水銀ランプ、エキシマランプ、重水素ランプなどのガス封入管、または前述の短波長光源を用いた光学装置に用いられる光学部品にも合成石英ガラスを用いる必要がある。 Low-pressure mercury lamp, an excimer lamp, it is necessary to use also synthetic quartz glass for optical components used in optical devices using gas-filled tube or the aforementioned short wavelength light source, such as a deuterium lamp.
【0005】 [0005]
これらの光学系に用いられる合成石英ガラスは、紫外域から真空紫外域にわたる波長での光透過性が要求されるとともに、使用波長での耐光性が高いこと(光照射後に透過率が低下しないこと)が要求される。 Synthetic quartz glass used for these optical systems, as well as optical transparency at wavelengths over the vacuum ultraviolet region from ultraviolet region is required, the transmittance does not decrease after the high light fastness (light irradiation in the used wavelength ) is required.
【0006】 [0006]
従来の合成石英ガラスでは、たとえばKrFエキシマレーザやArFエキシマレーザなどの光源から発せられる高エネルギ光を照射すると、紫外域に新たな吸収帯を生じ、光学部材として用いるうえで問題があった。 In the conventional synthetic silica glass, for example, is irradiated with high energy light emitted from a light source such as a KrF excimer laser or ArF excimer laser produces a new absorption band in the ultraviolet region, there is a problem in use as an optical member. すなわち、紫外線が長時間照射されると、いわゆるE'センタ(≡Si・)と呼ばれる略215nmの吸収帯が生起する。 That is, when ultraviolet rays are irradiated for a long time, the absorption band of approximately 215nm, so-called E 'center (≡Si ·) is occurring.
【0007】 [0007]
E'センタによる吸収帯は、合成石英ガラス中の三員環構造や四員環構造などの不安定な構造による欠陥に起因するものと考えられている。 Absorption band due to E 'center is thought to be due to defects due to unstable structure such as a three-membered ring structure or a four-membered ring structure of the synthetic quartz glass. 略215nmの吸収帯が生成すると、透過率の低下、絶対屈折率の上昇、屈折率分布の変動や蛍光が生じるなどの問題があった。 When the absorption band of approximately 215nm is produced, decrease in transmittance, increase of the absolute refractive index, there is a problem such as fluctuation or fluorescence of the refractive index distribution occurs.
【0008】 [0008]
耐紫外線性を向上するためには三員環構造や四員環構造などの不安定な構造による欠陥を低減することが重要である。 In order to improve the ultraviolet resistance is important to reduce the defects due to unstable structure such as a three-membered ring structure or a four-membered ring structure. そのための方法として種々の方法が検討されている。 Various methods have been studied as a method therefor. 例えば、合成石英ガラスを500kgf/cm 2以上の高圧の希ガス含有雰囲気下で約1600℃の高温にて再溶融した後、同雰囲気下で500℃まで降温することにより、不安定な構造を低減する方法が提案されている(特開平4−164834、特開平5−43267)。 For example, after the synthetic quartz glass and re-melted at a high temperature of about 1600 ° C. under inert gas containing atmosphere 500 kgf / cm 2 or more high-pressure, by decreasing the temperature to 500 ° C. under the same atmosphere, it reduces the unstable structure how to have been proposed (JP-a 4-164834, JP-a-5-43267). しかしこれらの提案の方法では、高圧を必要とし装置が大がかりとなるうえ、高温で処理するため合成石英ガラスに不純物が混入し、合成石英ガラスの純度が低下する可能性があるなどの問題があった。 However, in the method of these proposals, after which require high pressure apparatus becomes large-scale, impurities are mixed into the synthetic quartz glass for processing at high temperatures, the purity of the synthetic quartz glass is a problem, such as may be lowered It was.
【0009】 [0009]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
本発明は、上記問題を解決すべくなされたものであり、紫外線照射によってもE'センタによる吸収帯の生成が少なく、耐紫外線性に優れた光学部材用合成石英ガラスの提供を目的とする。 The present invention has been made to solve the above problems, it is also generated in the absorption band due to E 'centers less, and an object thereof is to provide a superior optical member for the synthetic quartz glass in the ultraviolet resistance by irradiation with ultraviolet light. 本発明は、また、こうした光学部材用合成石英ガラスを生産性よく、簡便に得られる製造方法の提供を目的とする。 The present invention also such an optical member for a synthetic quartz glass good productivity, and to provide a manufacturing method of easily obtained.
【0010】 [0010]
【課題を解決するための手段】 In order to solve the problems]
本発明は、紫外域から真空紫外域の光に使用される光学部材用合成石英ガラスの製造方法であって、 OH基濃度が100ppm以下の合成石英ガラスを粘度が10 14.5ポアズになる温度T 1 (℃)以下、かつT 1 −200(℃)で示される温度T 2 (℃)以上の温度で80時間以上保持し、レーザラマンスペクトルにおける495cm -1 の散乱ピーク強度I 1 The present invention is, from the ultraviolet region to a method of producing an optical member for a synthetic quartz glass for use in the light of the vacuum ultraviolet region, temperatures T 1 to OH group concentration of the following synthetic silica glass 100ppm viscosity is 10 14.5 poise (℃) or less, and T 1 -200 holding temperature T 2 represented by (℃) (℃) at a temperature above 80 hours or more, the scattering peak intensity of 495cm -1 in the laser Raman spectrum I 1 、605cm -1 の散乱ピーク強度I 2 , Scattering peak intensity of 605 cm -1 I 2 、および440cm -1 の散乱ピーク強度I 0 And scattering peak intensity I 0 of 440 cm -1 が、I 1 There, I 1 /I 0 / I 0 ≦0.57、かつI 2 ≦ 0.57 and I 2, /I 0 / I 0 ≦0.14の関係を満たす合成石英ガラスとする工程を含むことを特徴とする光学部材用合成石英ガラスの製造方法を提供する。 Further comprising the step of the synthetic quartz glass satisfies the relationship ≦ 0.14 provides a method for producing an optical member for a synthetic quartz glass characterized by.
【0011】 [0011]
本発明者らは、合成石英ガラスをある範囲の温度で所定時間保持することにより合成石英ガラス中の不安定な構造を低減できることを見出した。 The present inventors have found to be able to reduce the unstable structure of the synthetic quartz glass by holding a predetermined time at a temperature in the range of the synthetic quartz glass.
1はいわゆる歪点のことであり、合成石英ガラス中のOHやFなどの含有量、または不純物として含まれる遷移金属や塩素などの含有量に依存するが、通常の合成石英ガラスの場合900〜1200℃である。 T 1 is a so-called strain point, the content of such OH and F in the synthetic quartz glass, or depends on the content of such transition metals and chlorine contained as impurities, usually a synthetic quartz glass 900 1200 is ℃.
【0012】 [0012]
温度T 1を超える温度で保持した場合、合成石英ガラス中の不安定な構造は低減されず、温度T 2未満の温度で保持した場合、合成石英ガラス中の不安定な構造を低減するに要する時間は1000時間以上と非常に長く、効率的ではない。 When kept at a temperature above the temperature T 1, unstable structures in the synthetic quartz glass is not reduced, when kept at a temperature below the temperature T 2, required to reduce the unstable structure of the synthetic quartz glass time is very long and more than 1000 hours, efficient and not.
【0013】 [0013]
こうした最適温度範囲が存在する理由は明らかではないが、合成石英ガラスの粘度と密接な関係があり、温度が高すぎると合成石英ガラスの網目構造が流動的状態となり、流動的状態の高温で保持しても不安定な構造が低減されないためと考えられる。 Although such optimum temperature range reason is not clear that there, is closely related to the viscosity of the synthetic quartz glass, a network structure of synthetic quartz glass temperature is too high is a fluid state, held at a high temperature fluid state unstable structure is considered to be due to not be reduced even if the. また温度が低すぎると合成石英ガラスの網目構造が固定され、不安定な構造を低減するには長時間を要すると考えられる。 The temperature is network structure fixed with synthetic quartz glass is too low, in order to reduce the unstable structure is considered to take a long time.
【0014】 [0014]
本発明において、前記範囲内の温度で保持する時間については、10時間以上が好ましく、特に80時間以上が好ましい。 In the present invention, the time for maintaining at a temperature within the range is preferably not less than 10 hours, in particular more than 80 hours is preferred. 実用上は800時間以下が好ましい。 Practically preferably not more than 800 hours. 保持時の雰囲気については、水素ガス、酸素ガス、窒素ガスおよび希ガスからなる群から選ばれる1種以上のガスを採用できる。 The atmosphere during retention, hydrogen gas, oxygen gas, at least one gas selected from the group consisting of nitrogen gas and a rare gas may be employed. 特に、設備の安全上の観点および合成石英ガラスの欠陥生成抑制の観点から、窒素ガスまたは希ガス(たとえばヘリウムなど)などの不活性ガスが好ましい。 In particular, in view of the defect generation suppression safety aspects and synthetic quartz glass equipment, nitrogen gas or a rare gas (e.g., helium) inert gas and the like are preferable.
【0015】 [0015]
本発明においては、得られる合成石英ガラスの、光学的均質性向上の観点、歪み発生の抑制の観点から、前記T 2以上の温度で保持する工程の後、T 1 −500(℃)で示される温度T 3 (℃)以下の温度まで50℃/hr以下の降温速度で降温する工程をさらに含むことが好ましい。 In the present invention, the synthetic quartz glass obtained, in view of optical homogeneity improvement, from the viewpoint of suppression of distortion generator, after the step of holding at the T 2 or higher, indicated by T 1 -500 (℃) It may further include a temperature T 3 (° C.) a step of cooling in the following to a temperature 50 ° C. / hr or less of cooling rate to be.
【0016】 [0016]
本発明は、また、紫外域から真空紫外域までの光に使用される光学部材用合成石英ガラスであって、 OH基濃度が100ppm以下であり、レーザラマンスペクトルにおける495cm -1の散乱ピーク強度I 1 、60 cm -1の散乱ピーク強度I 2 、および440cm -1の散乱ピーク強度I 0が、I 1 /I 0 ≦0.57、かつI 2 /I 0 ≦0.14の関係を満たすことを特徴とする光学部材用合成石英ガラスを提供する。 The present invention also provides an optical member for a synthetic quartz glass for use in light from the ultraviolet region to the vacuum ultraviolet region, OH group concentration is at 100ppm or less, the scattering peak intensity of 495cm -1 in the laser Raman spectrum I 1 , 60 scattering peak intensity I 2 of 5 cm -1, and the scattering peak intensity I 0 of 440 cm -1 is, I 1 / I 0 ≦ 0.57 and satisfies the relation of I 2 / I 0 ≦ 0.14, to provide an optical member for a synthetic quartz glass characterized by.
【0017】 [0017]
495cm -1散乱ピークおよび605cm -1散乱ピークはそれぞれ三員環構造、四員環構造によるピークであり、440cm -1散乱ピークはケイ素と酸素との間の基本振動によるピークであり、I 1 /I 0およびI 2 /I 0は光学部材用合成石英ガラス中の三員環構造および四員環構造の相対濃度を表すものである。 495cm -1 scattering peak and 605 cm -1 scattering peaks each three-membered ring structure, a peak due to four-membered ring structure, 440 cm -1 scattering peak is a peak due to the fundamental vibration between silicon and oxygen, I 1 / I 0 and I 2 / I 0 is representative of the relative concentrations of the three-membered ring structures and four-membered ring structures in the synthetic quartz glass for an optical member. なお、前記の495cm -1 、605cm -1および440cm -1は、測定装置や測定試料等によりわずかにずれることもある。 Incidentally, the above 495cm -1, 605cm -1, and 440 cm -1 are also slightly shifted it by the measuring device and the measurement sample and the like.
【0018】 [0018]
蛍光強度低減の観点から、OH基濃度は400ppm(重量ppmの意であり、以下も同様。)以下、特に100ppm以下が好ましい。 From the standpoint of fluorescence intensity reduction, OH group concentration (a meaning of weight ppm, same below.) 400 ppm or less, particularly 100ppm or less. また、蛍光強度低減の観点から、水素分子濃度は5×10 16分子/cm 3以上が好ましい。 Further, from the viewpoint of fluorescence intensity reduction, the hydrogen molecule concentration is preferably 5 × 10 16 molecules / cm 3 or more.
本発明の光学部材用合成石英ガラスは、たとえば前述した製造方法により得ることができる。 An optical member for a synthetic quartz glass of the present invention can be obtained by the manufacturing method for example described above.
【0019】 [0019]
【実施例】 【Example】
SiCl 4を酸水素火炎中で加水分解させて形成させたSiO 2微粒子を基材上に堆積させ、500mmφ、長さ700mmの多孔質石英ガラス体を合成した。 The SiO 2 particles were formed by hydrolyzing SiCl 4 in an oxyhydrogen flame is deposited on a substrate, it was synthesized 500Mmfai, the porous quartz glass body length 700 mm. この多孔質石英ガラス体を雰囲気制御可能な電気炉の中に置いて、水蒸気を含んだヘリウムガス雰囲気、常圧下にて1450℃まで昇温し、この温度にて3時間保持し透明ガラス化を行い、250mmφ、長さ450mmの合成石英ガラスを得た。 Keep this porous quartz glass body in an electric furnace capable of controlling the atmosphere, a helium gas atmosphere containing water vapor, the temperature was raised to 1450 ° C. under atmospheric pressure, the 3 hour hold to vitrification at this temperature performed to obtain 250Mmfai, the synthetic quartz glass of length 450 mm.
【0020】 [0020]
ここでガラス化を行う際の雰囲気中の水蒸気分圧を調整してOH基含有量を制御し、表1に示す、歪点T 1が1110℃、1090℃、1070℃、950℃の4種類の異なる合成石英ガラスを準備した(T 2はそれぞれ910℃、890℃、870℃、750℃、であり、T 3はそれぞれ610℃、590℃、570℃、450℃である)。 Here adjust the steam partial pressure in the atmosphere in performing vitrification controls OH group content in shown in Table 1, the strain point T 1 is 1110 ℃, 1090 ℃, 1070 ℃ , 4 kinds of 950 ° C. of prepared different synthetic quartz glass (T 2 are respectively 910 ℃, 890 ℃, 870 ℃ , a 750 ℃,, T 3, respectively 610 ℃, 590 ℃, 570 ℃ , is 450 ° C.). なお、歪点T 1が1110℃、1090℃、1070℃、950℃の合成石英ガラスのOH基濃度は、それぞれ、33ppm、120ppm、230ppm、970ppmである。 Incidentally, the strain point T 1 is 1110 ℃, 1090 ℃, 1070 ℃ , OH group concentration in the synthetic quartz glass of 950 ° C., respectively, 33 ppm, 120 ppm, 230 ppm, which is 970 ppm.
【0021】 [0021]
次いで、250mmφ、長さ450mmの合成石英ガラスから、200mmφ×30mmtのサイズの合成石英ガラスを切り出し、雰囲気条件をヘリウムガス1気圧と固定した以外は表1に示す熱処理条件で熱処理し、表1に示す徐冷条件で熱処理後の徐冷を行った。 Then, 250Mmfai, a synthetic quartz glass of length 450 mm, cut out the synthetic quartz glass in the size of 200mmφ × 30mmt, except for fixing the ambient conditions and 1 atm helium gas was heat-treated at a heat treatment conditions shown in Table 1, Table 1 It was gradually cooled after the heat treatment in the slow cooling conditions shown. なお、炉冷とは、炉の中で放冷した意である。 It is to be noted that the furnace cooling, a meaning that was allowed to cool in the furnace.
【0022】 [0022]
上記徐冷後にさらに、水素ガス含有雰囲気、500℃にて250時間保持し、水素をドープさせた。 After a further above slow cooling, hydrogen gas-containing atmosphere, and held for 250 hours at 500 ° C., was doped with hydrogen. なお、例1〜15は水素ガス100%雰囲気、10気圧(絶対圧)で、例16は水素ガス100%雰囲気、1気圧(絶対圧)で、例17は水素ガス/Heが10/90(体積比)の雰囲気、1気圧(絶対圧)で、それぞれ水素をドープした。 Incidentally, Examples 1 to 15 is 100% hydrogen gas atmosphere at 10 atm (absolute pressure), Example 16 100% hydrogen gas atmosphere at 1 atm (absolute pressure), Example 17 is a hydrogen gas / the He 10/90 ( atmosphere volume ratio), at 1 atm (absolute pressure), doped with hydrogen, respectively. 得られた合成石英ガラスの水素分子濃度を表1に示す。 Hydrogen molecule concentration of the resulting synthetic quartz glass are shown in Table 1. なお、OH基濃度に変化はなかった。 In addition, there was no change in the OH group concentration.
【0023】 [0023]
得られた合成石英ガラスについてそれぞれ下記評価を行った。 Each of the obtained synthetic quartz glass were subjected to the following evaluation. なお、例1〜3、例7〜10および例14〜17は実施例、例4〜6および例11〜13は比較例に相当する。 Incidentally, Examples 1 to 3, Examples 7-10 and Examples 14-17 are examples, Examples 4-6 and Examples 11-13 corresponds to a comparative example.
【0024】 [0024]
(評価1) (Evaluation 1)
ラマン分光測定(Jobin Ybon製 Ramonor T64000、励起光源:アルゴンイオンレーザ(波長514.5nm))を行い、レーザラマンスペクトルにおける495cm -1の散乱ピーク強度I 1および605cm -1の散乱ピーク強度I 2と、440cm -1の散乱ピークの強度I 0との強度比I 1 /I 0およびI 2 /I 0を求めた。 Raman spectroscopy (Jobin Ybon made Ramonor T64000, excitation light source: argon ion laser (wavelength 514.5 nm)) performed, and the scattering peak intensity I 2 of the scattering peak intensity of 495cm -1 in the laser Raman spectrum I 1 and 605 cm -1, was determined intensity ratio I 1 / I 0 and I 2 / I 0 the intensity I 0 of the scattering peak of 440 cm -1. 強度比I 1 /I 0 、強度比I 2 /I 0の値が小さいほど良好である。 The intensity ratio I 1 / I 0, it is good as the value of the intensity ratio I 2 / I 0 is small. 評価結果を表2に示す。 The evaluation results are shown in Table 2.
なお、各散乱ピーク強度I 1 、I 2 、I 0の求め方は以下のとおりである。 Each scattering peak intensity I 1, I 2, of determining the I 0 is as follows.
【0025】 [0025]
495cm -1の散乱ピークおよび605cm -1の散乱ピークに対してそれぞれ1本のローレンツ関数によりカーブフィッティングを行い、実スペクトルとの最小二乗誤差が最低となるように近似を行って各関数の係数を決定した。 Perform curve fitting by a single Lorentzian respectively scattering peak of scattering peak and 605 cm -1 of 495cm -1, the coefficients of the functions performed approximated as least square error is minimum between the actual spectrum Were determined.
440cm -1の散乱ピークに対しては3本のガウス関数の合成により、また495cm -1散乱ピークと605cm -1散乱ピークと440cm -1散乱ピークとを除いた残余(ベースライン)に対しては2次関数により、それぞれカーブフィッティングを行い、実スペクトルとの最小二乗誤差が最低となるように近似を行って各関数の係数を決定した。 The synthesis of the Gaussian function of the three for scattering peak of 440 cm -1, also with respect to the remainder (baseline), excluding the 495cm -1 scattering peak and 605 cm -1 scattering peak and 440 cm -1 scattering peak the quadratic function, respectively perform curve fitting, least square error between the actual spectrum has determined the coefficients of the functions performed approximated as the lowest.
以上により求められた関数を用いて各散乱ピークの強度を求めた。 It was determined the intensity of each scattering peaks by using a function obtained by the above.
【0026】 [0026]
(評価2) (Evaluation 2)
複屈折計(オーク製作所製ADR−150LC)を用いて200mmφの面内での複屈折量を測定し、200mmφ面内における複屈折量が10nm/cm以下である場合をOK、10nm/cm超である場合をNGとした。 Birefringence meter measures the amount of birefringence in the plane of 200mmφ using (Oak Seisakusho ADR-150LC), and if the amount of birefringence in the 200mmφ plane is not more than 10 nm / cm OK, at 10 nm / cm greater a certain case was NG. 複屈折量は、歪みの大きさを図る指標であり、その値が小さいほど歪みは小さく良好である。 Birefringence is an indicator to reduce the magnitude of the strain, strain the smaller the value is less good. 評価結果を表2に示す。 The evaluation results are shown in Table 2.
【0027】 [0027]
(評価3) (Evaluation 3)
例1および6の合成石英ガラスについて、200mmφ×30mmtのサイズからさらに30mmφ×10mmtのサイズの試料を切り出し、KrFエキシマレーザ(ラムダフィジーク社製LPX−120i)からの光をエネルギ密度100mJ/cm 2 /pulse、周波数200Hz、3×10 6ショットの条件で試料に照射した。 Example 1 and the synthetic quartz glass 6, 200 mm × further cut the size of a sample of 30mmφ × 10mmt from the size of 30Mmt, energy density light from a KrF excimer laser (Lambda Fiji click manufactured LPX-120i) 100mJ / cm 2 / pulse, and irradiates the sample at a frequency of 200Hz, 3 × 10 6 shots. 照射前後での190〜250nmにおける透過率を測定し、前記透過率から照射による吸収係数の変化を算出した。 The transmittance at 190~250nm before and after the irradiation was measured to calculate the change in the absorption coefficient due to radiation from the transmittance. 吸収係数の変化が小さいほど耐紫外線性に優れている。 As a change in the absorption coefficient is small and excellent UV resistance. 照射前後の吸収係数の変化を図1に示す。 The change in absorption coefficient before and after irradiation are shown in Fig. なお、図1において2.0E−03は2.0×10 -3の意であり、他も同様である。 Incidentally, 2.0E-03 is a meaning of 2.0 × 10 -3 1, and so on.
【0028】 [0028]
(評価4) (Evaluation 4)
例1、8、14〜17の石英ガラスについて、評価3同様に30mmφ×10mmtのサイズの試料を切り出し、評価3で用いたKrFエキシマレーザからの光をエネルギ密度100mJ/cm 2 /pulse、周波数200Hz、1×10 6ショットの条件で試料に照射した。 Quartz glass in Example 1,8,14~17, rating 3 likewise cut out samples of the size of 30mmφ × 10mmt, energy density light from a KrF excimer laser used in evaluation 3 100mJ / cm 2 / pulse, frequency 200Hz It was irradiated to the sample under the conditions of 1 × 10 6 shots. KrFエキシマレーザからの光を照射した場合の、650nmの蛍光強度L 650および248nmの散乱光強度S 248をファイバ導光タイプの分光光度計を用いてそれぞれ測定し、両者の比L 650 /S 248を求めることにより、蛍光強度を評価した。 When irradiated with light from a KrF excimer laser, the fluorescence intensity L 650 and 248nm of the scattered light intensity S 248 of 650nm were measured with a spectrophotometer of the fiber light guide type, the ratio of the two L 650 / S 248 by finding to evaluate the fluorescence intensity. 評価結果を表3に示す。 The evaluation results are shown in Table 3.
【0029】 [0029]
【表1】 [Table 1]
【0030】 [0030]
【表2】 [Table 2]
【0031】 [0031]
【表3】 [Table 3]
【0032】 [0032]
【発明の効果】 【Effect of the invention】
本発明によれば、エキシマレーザなどの紫外線照射によってもE'センタによる吸収帯の生成が少なく、耐紫外線性に優れた光学部材用合成石英ガラスが得られる。 According to the present invention, less generation of the absorption band due to E 'centers by ultraviolet irradiation such as an excimer laser, an optical member for a synthetic quartz glass having excellent ultraviolet resistance is obtained. また、本発明の製造方法によれば、エキシマレーザなどの紫外線照射によってもE'センタによる吸収帯の生成が少なく、耐紫外線性に優れた光学部材用合成石英ガラスを、厳しい条件や大がかりな装置を必要とすることなく、生産性よく、簡便に得ることができる。 According to the production method of the present invention, less generation of the absorption band due to E 'centers by ultraviolet irradiation such as an excimer laser, excellent optical member for a synthetic quartz glass ultraviolet resistance, harsh conditions and large-scale equipment without the need for high productivity can be conveniently obtained.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】KrFエキシマレーザ照射前後の吸収係数の変化を示す図。 FIG. 1 shows the change in absorption coefficient before and after KrF excimer laser irradiation.

Claims (6)

  1. 紫外域から真空紫外域までの光に使用される光学部材用合成石英ガラスの製造方法であって、 OH基濃度が100ppm以下の合成石英ガラスを粘度が10 14.5ポアズになる温度T 1 (℃)以下、かつT 1 −200(℃)で示される温度T 2 (℃)以上の温度で80時間以上保持し、レーザラマンスペクトルにおける495cm -1 の散乱ピーク強度I 1 The method for producing an optical member for a synthetic quartz glass used to light from ultraviolet region to a vacuum ultraviolet region, the temperature T 1 OH group concentration of the following synthetic silica glass 100ppm viscosity is 10 14.5 poise (℃) or less and T 1 -200 holding temperature T 2 represented by (℃) (℃) at a temperature above 80 hours or more, the scattering peak intensity of 495cm -1 in the laser Raman spectrum I 1 、605cm -1 の散乱ピーク強度I 2 , Scattering peak intensity of 605 cm -1 I 2 、および440cm -1 の散乱ピーク強度I 0 And scattering peak intensity I 0 of 440 cm -1 が、I 1 There, I 1 /I 0 / I 0 ≦0.57、かつI 2 ≦ 0.57 and I 2, /I 0 / I 0 ≦0.14の関係を満たす合成石英ガラスとする工程を含むことを特徴とする光学部材用合成石英ガラスの製造方法。 Method of producing an optical member for a synthetic quartz glass which comprises the step of the synthetic quartz glass satisfies the relationship ≦ 0.14.
  2. 前記T 2以上の温度で保持する工程の後、T 1 −500(℃)で示される温度T 3 (℃)以下の温度まで50℃/hr以下の降温速度で降温する工程をさらに含む請求項1に記載の光学部材用合成石英ガラスの製造方法。 After the step of holding at the T 2 or higher, further comprising Claim the step of cooling at T 1 -500 temperature T 3 shown at (℃) (℃) below to a temperature 50 ° C. / hr or less cooling rate method of producing an optical member for a synthetic quartz glass according to 1.
  3. 合成石英ガラスのOH基濃度が33pm以下である請求項1または請求項2のいずれかに記載の光学部材用合成石英ガラスの製造方法。 Method of producing an optical member for a synthetic quartz glass according to any one of the synthetic claim quartz OH group concentration of the glass is less than 33 pM 1 or claim 2.
  4. 紫外域から真空紫外域までの光に使用される光学部材用合成石英ガラスであって、 OH基濃度が100ppm以下であり、レーザラマンスペクトルにおける495cm -1の散乱ピーク強度I 1 、60 cm -1の散乱ピーク強度I 2 、および440cm -1の散乱ピーク強度I 0が、I 1 /I 0 ≦0.57、かつI 2 /I 0 ≦0.14の関係を満たすことを特徴とする光学部材用合成石英ガラス。 An optical member for a synthetic quartz glass used to light from ultraviolet region to a vacuum ultraviolet region, OH group concentration is at 100ppm or less, the scattering peak intensity of 495cm -1 in the laser Raman spectrum I 1, 60 5 cm -1 optical members scattering peak intensity I 0 of the scattering peak intensity I 2, and 440 cm -1, which is characterized by satisfying the relation of I 1 / I 0 ≦ 0.57 and I 2 / I 0 ≦ 0.14, the use synthetic quartz glass.
  5. 水素分子濃度が5×10 16分子/cm 3以上である請求項4に記載の光学部材用合成石英ガラス。 An optical member for a synthetic quartz glass according to claim 4 hydrogen molecule concentration is 5 × 10 16 molecules / cm 3 or more.
  6. 合成石英ガラスのOH基濃度が33pm以下である請求項4または請求項5のいずれかに記載の光学部材用合成石英ガラス。 An optical member for a synthetic quartz glass according to any one of claims 4 or claim 5 OH group concentration in the synthetic quartz glass is less than 33 pM.
JP32552198A 1998-11-16 1998-11-16 Method of manufacturing an optical member for a synthetic quartz glass Expired - Lifetime JP4085490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32552198A JP4085490B2 (en) 1998-11-16 1998-11-16 Method of manufacturing an optical member for a synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32552198A JP4085490B2 (en) 1998-11-16 1998-11-16 Method of manufacturing an optical member for a synthetic quartz glass

Publications (2)

Publication Number Publication Date
JP2000154029A JP2000154029A (en) 2000-06-06
JP4085490B2 true JP4085490B2 (en) 2008-05-14

Family

ID=18177812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32552198A Expired - Lifetime JP4085490B2 (en) 1998-11-16 1998-11-16 Method of manufacturing an optical member for a synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP4085490B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941872B2 (en) * 2003-09-02 2012-05-30 日本電気硝子株式会社 Transparent non-alkali glass substrate for a liquid crystal display
JP4535497B2 (en) * 2004-12-24 2010-09-01 信越石英株式会社 Production method of controlled synthetic silica glass Oh group concentration
JP4702898B2 (en) * 2007-09-18 2011-06-15 信越石英株式会社 Method for manufacturing a silicon single crystal pulling quartz glass crucible for
JP6107701B2 (en) 2014-02-21 2017-04-05 信越化学工業株式会社 Heat treatment method and a manufacturing method of synthetic quartz glass substrate of synthetic quartz glass

Also Published As

Publication number Publication date
JP2000154029A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
US7538052B2 (en) Silica glass containing TiO2 and process for its production
JP4792705B2 (en) Silica glass and its manufacturing method containing TiO2
US5707908A (en) Silica glass
US5474589A (en) UV light-permeable glass and article comprising the same
EP0917523B1 (en) Synthetic silica glass used with uv-rays and method producing the same
KR0165695B1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
EP0720970A1 (en) Silica glass for photolithography, optical member including the same, exposure apparatus including the same, and method for producing the same
US6492072B2 (en) Vacuum ultraviolet transmitting silicon oxyfluoride lithography glass
US5679125A (en) Method for producing silica glass for use with light in a vacuum ultraviolet wavelength range
US20030037568A1 (en) Fluorine-containing silica glass and its method of manufacture
US7022633B2 (en) Synthetic quartz glass and process for producing it
US7294595B2 (en) Silica glass
JP5473216B2 (en) Synthetic silica glass optical material and a manufacturing method thereof
US6451719B1 (en) Silica glass optical material for excimer laser and excimer lamp, and method for producing the same
US5086352A (en) Optical members and blanks or synthetic silica glass and method for their production
Saito et al. Effects of fluorine on structure, structural relaxation, and absorption edge in silica glass
US7506522B2 (en) High refractive index homogeneity fused silica glass and method of making same
US5325230A (en) Optical members and blanks of synthetic silica glass and method for their production
EP1084995B1 (en) Optical member of silica glass for transmitting fluorine excimer laser radiation and method for producing the same
WO2009096557A1 (en) Optical fiber preform used for energy transmission or ultraviolet light transmission and method of manufacturing the optical fiber preform
KR20000029593A (en) Fused silica having high resistance to optical demage
JP3228732B2 (en) Method for producing a silica glass optical material for a projection lens for use in vacuum ultraviolet lithography
US7514382B2 (en) Synthetic quartz glass for optical member and its production method
US6754002B2 (en) Photolithography methods and systems
EP1035084B1 (en) Synthetic fused silica glass member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

EXPY Cancellation because of completion of term