JP4085490B2 - Synthetic quartz glass for optical members and manufacturing method thereof - Google Patents

Synthetic quartz glass for optical members and manufacturing method thereof Download PDF

Info

Publication number
JP4085490B2
JP4085490B2 JP32552198A JP32552198A JP4085490B2 JP 4085490 B2 JP4085490 B2 JP 4085490B2 JP 32552198 A JP32552198 A JP 32552198A JP 32552198 A JP32552198 A JP 32552198A JP 4085490 B2 JP4085490 B2 JP 4085490B2
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
temperature
scattering peak
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32552198A
Other languages
Japanese (ja)
Other versions
JP2000154029A (en
Inventor
順亮 生田
憲昭 下平
暁夫 増井
信也 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP32552198A priority Critical patent/JP4085490B2/en
Publication of JP2000154029A publication Critical patent/JP2000154029A/en
Application granted granted Critical
Publication of JP4085490B2 publication Critical patent/JP4085490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、波長400nm以下の紫外線を光源とする装置に用いられる光学部材用合成石英ガラスおよびその製造方法に関する。詳細にはエキシマレーザ(XeCl:波長308nm、KrF:波長248nm、ArF:波長193nm)、F2 レーザ(波長157nm)、低圧水銀ランプ(波長185nm)、エキシマランプ(XeXe:波長172nm)、重水素ランプ(波長170〜400nm)などの光源から発せられる紫外域から真空紫外域までの光に用いられるレンズやプリズム、窓材などの光学部品として用いられる光学部材用合成石英ガラスとその製造方法に関する。
【0002】
【従来の技術】
合成石英ガラスは、近赤外域から真空紫外域までの広範囲の波長域にわたって透明な材料であること、熱膨張係数がきわめて小さく寸法安定性に優れること、また、金属不純物をほとんど含有しておらず高純度であることなどの特徴がある。そのため、従来のg線、i線を光源として用いた光学装置の光学部材には合成石英ガラスが主に用いられてきた。
【0003】
近年、LSIの高集積化に伴い、ウェハ上に集積回路パターンを描画する光リソグラフィ技術において、より線幅の短い微細な描画技術が要求されており、これに対応するために露光光源の短波長化が進められている。たとえばリソグラフィ用ステッパの光源は、従来のg線(波長436nm)、i線(波長365nm)から進んで、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、さらにはF2 レーザ(波長157nm)が用いられようとしている。
【0004】
また、低圧水銀ランプ(波長185nm)やエキシマランプ(XeXe:波長172nm)は、1)光CVDなどの装置、2)シリコンウェハのアッシング装置やエッチング装置、または3)オゾン発生装置などに用いられている。そして、今後光リソグラフィ技術に適用すべく開発が進んでいる。低圧水銀ランプ、エキシマランプ、重水素ランプなどのガス封入管、または前述の短波長光源を用いた光学装置に用いられる光学部品にも合成石英ガラスを用いる必要がある。
【0005】
これらの光学系に用いられる合成石英ガラスは、紫外域から真空紫外域にわたる波長での光透過性が要求されるとともに、使用波長での耐光性が高いこと(光照射後に透過率が低下しないこと)が要求される。
【0006】
従来の合成石英ガラスでは、たとえばKrFエキシマレーザやArFエキシマレーザなどの光源から発せられる高エネルギ光を照射すると、紫外域に新たな吸収帯を生じ、光学部材として用いるうえで問題があった。すなわち、紫外線が長時間照射されると、いわゆるE’センタ(≡Si・)と呼ばれる略215nmの吸収帯が生起する。
【0007】
E’センタによる吸収帯は、合成石英ガラス中の三員環構造や四員環構造などの不安定な構造による欠陥に起因するものと考えられている。略215nmの吸収帯が生成すると、透過率の低下、絶対屈折率の上昇、屈折率分布の変動や蛍光が生じるなどの問題があった。
【0008】
耐紫外線性を向上するためには三員環構造や四員環構造などの不安定な構造による欠陥を低減することが重要である。そのための方法として種々の方法が検討されている。例えば、合成石英ガラスを500kgf/cm2 以上の高圧の希ガス含有雰囲気下で約1600℃の高温にて再溶融した後、同雰囲気下で500℃まで降温することにより、不安定な構造を低減する方法が提案されている(特開平4−164834、特開平5−43267)。しかしこれらの提案の方法では、高圧を必要とし装置が大がかりとなるうえ、高温で処理するため合成石英ガラスに不純物が混入し、合成石英ガラスの純度が低下する可能性があるなどの問題があった。
【0009】
【発明が解決しようとする課題】
本発明は、上記問題を解決すべくなされたものであり、紫外線照射によってもE’センタによる吸収帯の生成が少なく、耐紫外線性に優れた光学部材用合成石英ガラスの提供を目的とする。本発明は、また、こうした光学部材用合成石英ガラスを生産性よく、簡便に得られる製造方法の提供を目的とする。
【0010】
【課題を解決するための手段】
本発明は、紫外域から真空紫外域の光に使用される光学部材用合成石英ガラスの製造方法であって、OH基濃度が100ppm以下の合成石英ガラスを粘度が1014.5ポアズになる温度T1 (℃)以下、かつT1 −200(℃)で示される温度T2 (℃)以上の温度で80時間以上保持し、レーザラマンスペクトルにおける495cm -1 の散乱ピーク強度I 1 、605cm -1 の散乱ピーク強度I 2 、および440cm -1 の散乱ピーク強度I 0 が、I 1 /I 0 ≦0.57、かつI 2 /I 0 ≦0.14の関係を満たす合成石英ガラスとする工程を含むことを特徴とする光学部材用合成石英ガラスの製造方法を提供する。
【0011】
本発明者らは、合成石英ガラスをある範囲の温度で所定時間保持することにより合成石英ガラス中の不安定な構造を低減できることを見出した。
1 はいわゆる歪点のことであり、合成石英ガラス中のOHやFなどの含有量、または不純物として含まれる遷移金属や塩素などの含有量に依存するが、通常の合成石英ガラスの場合900〜1200℃である。
【0012】
温度T1 を超える温度で保持した場合、合成石英ガラス中の不安定な構造は低減されず、温度T2 未満の温度で保持した場合、合成石英ガラス中の不安定な構造を低減するに要する時間は1000時間以上と非常に長く、効率的ではない。
【0013】
こうした最適温度範囲が存在する理由は明らかではないが、合成石英ガラスの粘度と密接な関係があり、温度が高すぎると合成石英ガラスの網目構造が流動的状態となり、流動的状態の高温で保持しても不安定な構造が低減されないためと考えられる。また温度が低すぎると合成石英ガラスの網目構造が固定され、不安定な構造を低減するには長時間を要すると考えられる。
【0014】
本発明において、前記範囲内の温度で保持する時間については、10時間以上が好ましく、特に80時間以上が好ましい。実用上は800時間以下が好ましい。保持時の雰囲気については、水素ガス、酸素ガス、窒素ガスおよび希ガスからなる群から選ばれる1種以上のガスを採用できる。特に、設備の安全上の観点および合成石英ガラスの欠陥生成抑制の観点から、窒素ガスまたは希ガス(たとえばヘリウムなど)などの不活性ガスが好ましい。
【0015】
本発明においては、得られる合成石英ガラスの、光学的均質性向上の観点、歪み発生の抑制の観点から、前記T2 以上の温度で保持する工程の後、T1 −500(℃)で示される温度T3 (℃)以下の温度まで50℃/hr以下の降温速度で降温する工程をさらに含むことが好ましい。
【0016】
本発明は、また、紫外域から真空紫外域までの光に使用される光学部材用合成石英ガラスであって、OH基濃度が100ppm以下であり、レーザラマンスペクトルにおける495cm-1の散乱ピーク強度I1 、60cm-1の散乱ピーク強度I2 、および440cm-1の散乱ピーク強度I0 が、I1 /I0 ≦0.57、かつI2 /I0 ≦0.14の関係を満たすことを特徴とする光学部材用合成石英ガラスを提供する。
【0017】
495cm-1散乱ピークおよび605cm-1散乱ピークはそれぞれ三員環構造、四員環構造によるピークであり、440cm-1散乱ピークはケイ素と酸素との間の基本振動によるピークであり、I1 /I0 およびI2 /I0 は光学部材用合成石英ガラス中の三員環構造および四員環構造の相対濃度を表すものである。なお、前記の495cm-1、605cm-1および440cm-1は、測定装置や測定試料等によりわずかにずれることもある。
【0018】
蛍光強度低減の観点から、OH基濃度は400ppm(重量ppmの意であり、以下も同様。)以下、特に100ppm以下が好ましい。また、蛍光強度低減の観点から、水素分子濃度は5×1016分子/cm3 以上が好ましい。
本発明の光学部材用合成石英ガラスは、たとえば前述した製造方法により得ることができる。
【0019】
【実施例】
SiCl4 を酸水素火炎中で加水分解させて形成させたSiO2 微粒子を基材上に堆積させ、500mmφ、長さ700mmの多孔質石英ガラス体を合成した。この多孔質石英ガラス体を雰囲気制御可能な電気炉の中に置いて、水蒸気を含んだヘリウムガス雰囲気、常圧下にて1450℃まで昇温し、この温度にて3時間保持し透明ガラス化を行い、250mmφ、長さ450mmの合成石英ガラスを得た。
【0020】
ここでガラス化を行う際の雰囲気中の水蒸気分圧を調整してOH基含有量を制御し、表1に示す、歪点T1 が1110℃、1090℃、1070℃、950℃の4種類の異なる合成石英ガラスを準備した(T2 はそれぞれ910℃、890℃、870℃、750℃、であり、T3 はそれぞれ610℃、590℃、570℃、450℃である)。なお、歪点T1 が1110℃、1090℃、1070℃、950℃の合成石英ガラスのOH基濃度は、それぞれ、33ppm、120ppm、230ppm、970ppmである。
【0021】
次いで、250mmφ、長さ450mmの合成石英ガラスから、200mmφ×30mmtのサイズの合成石英ガラスを切り出し、雰囲気条件をヘリウムガス1気圧と固定した以外は表1に示す熱処理条件で熱処理し、表1に示す徐冷条件で熱処理後の徐冷を行った。なお、炉冷とは、炉の中で放冷した意である。
【0022】
上記徐冷後にさらに、水素ガス含有雰囲気、500℃にて250時間保持し、水素をドープさせた。なお、例1〜15は水素ガス100%雰囲気、10気圧(絶対圧)で、例16は水素ガス100%雰囲気、1気圧(絶対圧)で、例17は水素ガス/Heが10/90(体積比)の雰囲気、1気圧(絶対圧)で、それぞれ水素をドープした。得られた合成石英ガラスの水素分子濃度を表1に示す。なお、OH基濃度に変化はなかった。
【0023】
得られた合成石英ガラスについてそれぞれ下記評価を行った。なお、例1〜3、例7〜10および例14〜17は実施例、例4〜6および例11〜13は比較例に相当する。
【0024】
(評価1)
ラマン分光測定(Jobin Ybon製 Ramonor T64000、励起光源:アルゴンイオンレーザ(波長514.5nm))を行い、レーザラマンスペクトルにおける495cm-1の散乱ピーク強度I1 および605cm-1の散乱ピーク強度I2 と、440cm-1の散乱ピークの強度I0 との強度比I1 /I0 およびI2 /I0 を求めた。強度比I1 /I0 、強度比I2 /I0 の値が小さいほど良好である。評価結果を表2に示す。
なお、各散乱ピーク強度I1 、I2 、I0 の求め方は以下のとおりである。
【0025】
495cm-1の散乱ピークおよび605cm-1の散乱ピークに対してそれぞれ1本のローレンツ関数によりカーブフィッティングを行い、実スペクトルとの最小二乗誤差が最低となるように近似を行って各関数の係数を決定した。
440cm-1の散乱ピークに対しては3本のガウス関数の合成により、また495cm-1散乱ピークと605cm-1散乱ピークと440cm-1散乱ピークとを除いた残余(ベースライン)に対しては2次関数により、それぞれカーブフィッティングを行い、実スペクトルとの最小二乗誤差が最低となるように近似を行って各関数の係数を決定した。
以上により求められた関数を用いて各散乱ピークの強度を求めた。
【0026】
(評価2)
複屈折計(オーク製作所製ADR−150LC)を用いて200mmφの面内での複屈折量を測定し、200mmφ面内における複屈折量が10nm/cm以下である場合をOK、10nm/cm超である場合をNGとした。複屈折量は、歪みの大きさを図る指標であり、その値が小さいほど歪みは小さく良好である。評価結果を表2に示す。
【0027】
(評価3)
例1および6の合成石英ガラスについて、200mmφ×30mmtのサイズからさらに30mmφ×10mmtのサイズの試料を切り出し、KrFエキシマレーザ(ラムダフィジーク社製LPX−120i)からの光をエネルギ密度100mJ/cm2 /pulse、周波数200Hz、3×106 ショットの条件で試料に照射した。照射前後での190〜250nmにおける透過率を測定し、前記透過率から照射による吸収係数の変化を算出した。吸収係数の変化が小さいほど耐紫外線性に優れている。照射前後の吸収係数の変化を図1に示す。なお、図1において2.0E−03は2.0×10-3の意であり、他も同様である。
【0028】
(評価4)
例1、8、14〜17の石英ガラスについて、評価3同様に30mmφ×10mmtのサイズの試料を切り出し、評価3で用いたKrFエキシマレーザからの光をエネルギ密度100mJ/cm2 /pulse、周波数200Hz、1×106 ショットの条件で試料に照射した。KrFエキシマレーザからの光を照射した場合の、650nmの蛍光強度L650 および248nmの散乱光強度S248 をファイバ導光タイプの分光光度計を用いてそれぞれ測定し、両者の比L650 /S248 を求めることにより、蛍光強度を評価した。評価結果を表3に示す。
【0029】
【表1】

Figure 0004085490
【0030】
【表2】
Figure 0004085490
【0031】
【表3】
Figure 0004085490
【0032】
【発明の効果】
本発明によれば、エキシマレーザなどの紫外線照射によってもE’センタによる吸収帯の生成が少なく、耐紫外線性に優れた光学部材用合成石英ガラスが得られる。また、本発明の製造方法によれば、エキシマレーザなどの紫外線照射によってもE’センタによる吸収帯の生成が少なく、耐紫外線性に優れた光学部材用合成石英ガラスを、厳しい条件や大がかりな装置を必要とすることなく、生産性よく、簡便に得ることができる。
【図面の簡単な説明】
【図1】KrFエキシマレーザ照射前後の吸収係数の変化を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a synthetic quartz glass for optical members used in an apparatus using ultraviolet rays having a wavelength of 400 nm or less as a light source, and a method for producing the same. Specifically, excimer laser (XeCl: wavelength 308 nm, KrF: wavelength 248 nm, ArF: wavelength 193 nm), F 2 laser (wavelength 157 nm), low-pressure mercury lamp (wavelength 185 nm), excimer lamp (XeXe: wavelength 172 nm), deuterium lamp The present invention relates to a synthetic quartz glass for optical members used as optical parts such as lenses, prisms, window materials and the like used for light from an ultraviolet region to a vacuum ultraviolet region emitted from a light source such as (wavelength 170 to 400 nm) and a method for producing the same.
[0002]
[Prior art]
Synthetic quartz glass is a transparent material over a wide wavelength range from the near infrared region to the vacuum ultraviolet region, has an extremely small coefficient of thermal expansion and excellent dimensional stability, and contains almost no metal impurities. It has features such as high purity. Therefore, synthetic quartz glass has been mainly used as an optical member of an optical device using conventional g-line and i-line as a light source.
[0003]
In recent years, with the high integration of LSIs, a fine drawing technique with a shorter line width has been required in the optical lithography technique for drawing an integrated circuit pattern on a wafer. Is being promoted. For example, the light source of a stepper for lithography is advanced from the conventional g-line (wavelength 436 nm) and i-line (wavelength 365 nm), KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), and F 2 laser (wavelength). 157 nm) is about to be used.
[0004]
The low-pressure mercury lamp (wavelength 185 nm) and excimer lamp (XeXe: wavelength 172 nm) are used in 1) equipment such as photo-CVD, 2) ashing and etching equipment for silicon wafers, or 3) ozone generators. Yes. Development is progressing to be applied to photolithography technology in the future. Synthetic quartz glass must also be used for optical components used in gas sealed tubes such as low-pressure mercury lamps, excimer lamps, deuterium lamps, or optical devices using the aforementioned short-wavelength light sources.
[0005]
Synthetic quartz glass used in these optical systems is required to have light transmittance at wavelengths ranging from the ultraviolet region to the vacuum ultraviolet region, and has high light resistance at the wavelength used (the transmittance does not decrease after light irradiation). ) Is required.
[0006]
In conventional synthetic silica glass, when high energy light emitted from a light source such as a KrF excimer laser or an ArF excimer laser is irradiated, a new absorption band is generated in the ultraviolet region, which causes a problem in use as an optical member. That is, when ultraviolet rays are irradiated for a long time, an absorption band of about 215 nm called a so-called E ′ center (≡Si ·) occurs.
[0007]
The absorption band due to the E ′ center is considered to be caused by defects due to unstable structures such as a three-membered ring structure and a four-membered ring structure in synthetic quartz glass. When an absorption band of approximately 215 nm is generated, there are problems such as a decrease in transmittance, an increase in absolute refractive index, a change in refractive index distribution, and fluorescence.
[0008]
In order to improve UV resistance, it is important to reduce defects due to unstable structures such as three-membered ring structures and four-membered ring structures. Various methods have been studied for this purpose. For example, after re-melting synthetic quartz glass at a high temperature of about 1600 ° C in a high-pressure rare gas-containing atmosphere of 500 kgf / cm 2 or more, the temperature is lowered to 500 ° C in the same atmosphere, thereby reducing unstable structures. Have been proposed (JP-A-4-164834, JP-A-5-43267). However, these proposed methods require a high pressure and require a large apparatus. Further, since the processing is performed at a high temperature, impurities are mixed in the synthetic quartz glass, and the purity of the synthetic quartz glass may be lowered. It was.
[0009]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a synthetic quartz glass for an optical member that is less likely to generate an absorption band due to an E ′ center even when irradiated with ultraviolet rays and has excellent ultraviolet resistance. Another object of the present invention is to provide a production method for easily obtaining such synthetic quartz glass for optical members with high productivity.
[0010]
[Means for Solving the Problems]
The present invention is a method for producing synthetic quartz glass for optical members used for light in the ultraviolet region to the vacuum ultraviolet region, and a temperature T 1 at which the viscosity of synthetic quartz glass having an OH group concentration of 100 ppm or less becomes 10 14.5 poise. Held at a temperature equal to or lower than (° C.) and equal to or higher than a temperature T 2 (° C.) indicated by T 1 -200 (° C.) for 80 hours or longer, and a scattering peak intensity I 1 of 495 cm −1 in a laser Raman spectrum. , Scattering peak intensity I 2 at 605 cm −1 , And a scattering peak intensity I 0 at 440 cm −1 But I 1 / I 0 ≦ 0.57 and I 2 / I 0 There is provided a method for producing a synthetic quartz glass for an optical member, comprising a step of producing a synthetic quartz glass satisfying a relationship of ≦ 0.14 .
[0011]
The present inventors have found that the unstable structure in the synthetic quartz glass can be reduced by holding the synthetic quartz glass at a temperature in a certain range for a predetermined time.
T 1 is a so-called strain point, which depends on the content of OH, F, etc. in the synthetic quartz glass, or the content of transition metals, chlorine, etc. contained as impurities. ˜1200 ° C.
[0012]
When held at a temperature exceeding T 1 , the unstable structure in the synthetic quartz glass is not reduced, and when held at a temperature lower than T 2 , it is necessary to reduce the unstable structure in the synthetic quartz glass. The time is very long, 1000 hours or more, which is not efficient.
[0013]
The reason why such an optimum temperature range exists is not clear, but it is closely related to the viscosity of the synthetic quartz glass. If the temperature is too high, the network structure of the synthetic quartz glass becomes a fluid state and is maintained at a high temperature in the fluid state. This is probably because the unstable structure is not reduced. If the temperature is too low, the network structure of synthetic quartz glass is fixed, and it is considered that it takes a long time to reduce the unstable structure.
[0014]
In the present invention, the time for holding at the temperature within the above range is preferably 10 hours or more, particularly preferably 80 hours or more. In practice, 800 hours or less is preferable. About the atmosphere at the time of holding | maintenance, 1 or more types of gas chosen from the group which consists of hydrogen gas, oxygen gas, nitrogen gas, and a noble gas is employable. In particular, an inert gas such as nitrogen gas or a rare gas (for example, helium) is preferable from the viewpoint of safety of equipment and suppression of defect generation of synthetic quartz glass.
[0015]
In the present invention, from the viewpoint of improving the optical homogeneity of the obtained synthetic quartz glass and suppressing the generation of distortion, it is indicated by T 1 -500 (° C.) after the step of holding at the temperature of T 2 or higher. It is preferable that the method further includes a step of lowering the temperature to a temperature equal to or lower than a temperature T 3 (° C.) at a temperature lowering rate of 50 ° C./hr or lower.
[0016]
The present invention is also a synthetic quartz glass for optical members used for light from the ultraviolet region to the vacuum ultraviolet region, having an OH group concentration of 100 ppm or less, and a scattering peak intensity I 1 of 495 cm −1 in a laser Raman spectrum. , 60 5 cm −1 scattering peak intensity I 2 and 440 cm −1 scattering peak intensity I 0 satisfy the relationship of I 1 / I 0 ≦ 0.57 and I 2 / I 0 ≦ 0.14 A synthetic quartz glass for an optical member is provided.
[0017]
The 495 cm −1 scattering peak and the 605 cm −1 scattering peak are peaks due to a three-membered ring structure and a four-membered ring structure, respectively, and the 440 cm −1 scattering peak is a peak due to fundamental vibration between silicon and oxygen, and I 1 / I 0 and I 2 / I 0 represent the relative concentrations of the three-membered ring structure and the four-membered ring structure in the synthetic quartz glass for optical members. Note that the above-described 495 cm −1 , 605 cm −1, and 440 cm −1 may be slightly shifted depending on a measuring device, a measurement sample, or the like.
[0018]
From the viewpoint of reducing the fluorescence intensity, the OH group concentration is preferably 400 ppm (meaning weight ppm, the same shall apply hereinafter) or less, particularly preferably 100 ppm or less. Further, from the viewpoint of reducing the fluorescence intensity, the hydrogen molecule concentration is preferably 5 × 10 16 molecules / cm 3 or more.
The synthetic quartz glass for optical members of the present invention can be obtained, for example, by the production method described above.
[0019]
【Example】
SiO 2 fine particles formed by hydrolyzing SiCl 4 in an oxyhydrogen flame were deposited on a substrate to synthesize a porous quartz glass body having a diameter of 500 mmφ and a length of 700 mm. This porous quartz glass body is placed in an electric furnace capable of controlling the atmosphere, heated to 1450 ° C. under a helium gas atmosphere containing water vapor under normal pressure, and kept at this temperature for 3 hours to form a transparent glass. A synthetic quartz glass having a diameter of 250 mm and a length of 450 mm was obtained.
[0020]
Here, the water vapor partial pressure in the atmosphere during vitrification is adjusted to control the OH group content, and the strain points T 1 shown in Table 1 are 4 types of 1110 ° C., 1090 ° C., 1070 ° C., and 950 ° C. (T 2 is 910 ° C., 890 ° C., 870 ° C., and 750 ° C., respectively, and T 3 is 610 ° C., 590 ° C., 570 ° C., and 450 ° C., respectively). The OH group concentrations of the synthetic quartz glass having strain points T 1 of 1110 ° C., 1090 ° C., 1070 ° C., and 950 ° C. are 33 ppm, 120 ppm, 230 ppm, and 970 ppm, respectively.
[0021]
Next, a synthetic quartz glass having a size of 200 mmφ × 30 mmt was cut out from a synthetic quartz glass having a diameter of 250 mm and a length of 450 mm, and heat treatment was performed under the heat treatment conditions shown in Table 1 except that the atmospheric conditions were fixed at 1 atm of helium gas. Slow cooling after the heat treatment was performed under the slow cooling conditions shown. In addition, furnace cooling is the meaning which stood to cool in a furnace.
[0022]
After the above slow cooling, it was further kept at 500 ° C. for 250 hours in an atmosphere containing hydrogen gas to dope hydrogen. Examples 1 to 15 have a hydrogen gas 100% atmosphere and 10 atmospheres (absolute pressure), Example 16 has a hydrogen gas 100% atmosphere and 1 atmosphere (absolute pressure), and Example 17 has a hydrogen gas / He of 10/90 ( Each was doped with hydrogen in an atmosphere (volume ratio) and 1 atmosphere (absolute pressure). Table 1 shows the hydrogen molecule concentration of the obtained synthetic quartz glass. There was no change in the OH group concentration.
[0023]
The obtained synthetic quartz glass was evaluated as follows. Examples 1-3, Examples 7-10, and Examples 14-17 correspond to Examples, and Examples 4-6 and Examples 11-13 correspond to Comparative Examples.
[0024]
(Evaluation 1)
Raman spectroscopy (Jobin Ybon made Ramonor T64000, excitation light source: argon ion laser (wavelength 514.5 nm)) performed, and the scattering peak intensity I 2 of the scattering peak intensity of 495cm -1 in the laser Raman spectrum I 1 and 605 cm -1, Intensity ratios I 1 / I 0 and I 2 / I 0 with respect to the intensity I 0 of the scattering peak at 440 cm −1 were determined. The smaller the intensity ratio I 1 / I 0 and the intensity ratio I 2 / I 0 , the better. The evaluation results are shown in Table 2.
Each scattering peak intensity I 1, I 2, of determining the I 0 is as follows.
[0025]
Perform curve fitting by a single Lorentzian respectively scattering peak of scattering peak and 605 cm -1 of 495cm -1, the coefficients of the functions performed approximated as least square error is minimum between the actual spectrum Were determined.
The synthesis of the Gaussian function of the three for scattering peak of 440 cm -1, also with respect to the remainder (baseline), excluding the 495cm -1 scattering peak and 605 cm -1 scattering peak and 440 cm -1 scattering peak Curve fitting was performed using a quadratic function, and approximation was performed so that the least square error with the actual spectrum was minimized, and the coefficient of each function was determined.
The intensity | strength of each scattering peak was calculated | required using the function calculated | required by the above.
[0026]
(Evaluation 2)
Using a birefringence meter (ADR-150LC, manufactured by Oak Manufacturing Co., Ltd.), the amount of birefringence in the plane of 200 mmφ is measured, and when the amount of birefringence in the plane of 200 mmφ is 10 nm / cm or less, OK is over 10 nm / cm. In some cases, it was judged as NG. The amount of birefringence is an index for measuring the magnitude of distortion. The smaller the value, the better the distortion. The evaluation results are shown in Table 2.
[0027]
(Evaluation 3)
For the synthetic quartz glass of Examples 1 and 6, a sample having a size of 30 mmφ × 10 mmt was further cut out from a size of 200 mmφ × 30 mmt, and light from a KrF excimer laser (LPX-120i manufactured by Lambda Fijik) was used with an energy density of 100 mJ / cm 2 / The sample was irradiated under conditions of pulse, frequency 200 Hz, 3 × 10 6 shots. The transmittance at 190 to 250 nm before and after irradiation was measured, and the change in absorption coefficient due to irradiation was calculated from the transmittance. The smaller the change in absorption coefficient, the better the UV resistance. The change in absorption coefficient before and after irradiation is shown in FIG. In FIG. 1, 2.0E-03 means 2.0 × 10 −3 , and so on.
[0028]
(Evaluation 4)
For the quartz glasses of Examples 1, 8, and 14-17, a sample having a size of 30 mmφ × 10 mmt was cut out in the same manner as in Evaluation 3, and light from the KrF excimer laser used in Evaluation 3 was energy density 100 mJ / cm 2 / pulse, frequency 200 Hz. The sample was irradiated under conditions of 1 × 10 6 shots. When the light from the KrF excimer laser is irradiated, the fluorescence intensity L 650 at 650 nm and the scattered light intensity S 248 at 248 nm are measured using a fiber light guide type spectrophotometer, respectively, and the ratio L 650 / S 248 of both is measured. Was evaluated for fluorescence intensity. The evaluation results are shown in Table 3.
[0029]
[Table 1]
Figure 0004085490
[0030]
[Table 2]
Figure 0004085490
[0031]
[Table 3]
Figure 0004085490
[0032]
【The invention's effect】
According to the present invention, a synthetic quartz glass for an optical member that is less likely to generate an absorption band due to an E ′ center even when irradiated with ultraviolet rays such as an excimer laser and has excellent ultraviolet resistance can be obtained. In addition, according to the manufacturing method of the present invention, the synthetic quartz glass for optical members, which is less likely to generate an absorption band by the E ′ center even when irradiated with ultraviolet rays such as an excimer laser and has excellent ultraviolet resistance, Can be easily obtained with good productivity.
[Brief description of the drawings]
FIG. 1 is a graph showing a change in absorption coefficient before and after irradiation with a KrF excimer laser.

Claims (6)

紫外域から真空紫外域までの光に使用される光学部材用合成石英ガラスの製造方法であって、OH基濃度が100ppm以下の合成石英ガラスを粘度が1014.5ポアズになる温度T1 (℃)以下、かつT1 −200(℃)で示される温度T2 (℃)以上の温度で80時間以上保持し、レーザラマンスペクトルにおける495cm -1 の散乱ピーク強度I 1 、605cm -1 の散乱ピーク強度I 2 、および440cm -1 の散乱ピーク強度I 0 が、I 1 /I 0 ≦0.57、かつI 2 /I 0 ≦0.14の関係を満たす合成石英ガラスとする工程を含むことを特徴とする光学部材用合成石英ガラスの製造方法。A method for producing synthetic quartz glass for optical members used for light from the ultraviolet region to the vacuum ultraviolet region, wherein the synthetic quartz glass having an OH group concentration of 100 ppm or less has a temperature T 1 (° C.) at which the viscosity becomes 10 14.5 poise. The scattering peak intensity I 1 at 495 cm −1 in the laser Raman spectrum is maintained for 80 hours or more at a temperature equal to or higher than the temperature T 2 (° C.) indicated by T 1 -200 (° C.). , Scattering peak intensity I 2 at 605 cm −1 , And a scattering peak intensity I 0 at 440 cm −1 But I 1 / I 0 ≦ 0.57 and I 2 / I 0 The manufacturing method of the synthetic quartz glass for optical members characterized by including the process made into the synthetic quartz glass which satisfy | fills the relationship of <= 0.14 . 前記T2 以上の温度で保持する工程の後、T1 −500(℃)で示される温度T3 (℃)以下の温度まで50℃/hr以下の降温速度で降温する工程をさらに含む請求項1に記載の光学部材用合成石英ガラスの製造方法。The method further includes a step of lowering the temperature at a temperature lowering rate of 50 ° C./hr or less to a temperature of T 3 (° C.) or less indicated by T 1 -500 (° C.) after the step of holding at T 2 or higher. 2. A method for producing a synthetic quartz glass for an optical member according to 1. 合成石英ガラスのOH基濃度が33pm以下である請求項1または請求項2のいずれかに記載の光学部材用合成石英ガラスの製造方法。The method for producing a synthetic quartz glass for an optical member according to claim 1 or 2, wherein the synthetic quartz glass has an OH group concentration of 33 pm or less. 紫外域から真空紫外域までの光に使用される光学部材用合成石英ガラスであって、OH基濃度が100ppm以下であり、レーザラマンスペクトルにおける495cm-1の散乱ピーク強度I1 、60cm-1の散乱ピーク強度I2 、および440cm-1の散乱ピーク強度I0 が、I1 /I0 ≦0.57、かつI2 /I0 ≦0.14の関係を満たすことを特徴とする光学部材用合成石英ガラス。An optical member for a synthetic quartz glass used to light from ultraviolet region to a vacuum ultraviolet region, OH group concentration is at 100ppm or less, the scattering peak intensity of 495cm -1 in the laser Raman spectrum I 1, 60 5 cm -1 An optical member, wherein the scattering peak intensity I 2 and the scattering peak intensity I 0 of 440 cm −1 satisfy the relationship of I 1 / I 0 ≦ 0.57 and I 2 / I 0 ≦ 0.14 Synthetic quartz glass for use. 水素分子濃度が5×1016分子/cm3 以上である請求項4に記載の光学部材用合成石英ガラス。5. The synthetic quartz glass for optical members according to claim 4 , wherein the concentration of hydrogen molecules is 5 × 10 16 molecules / cm 3 or more. 合成石英ガラスのOH基濃度が33pm以下である請求項4または請求項5のいずれかに記載の光学部材用合成石英ガラス。The synthetic quartz glass for optical members according to claim 4 or 5, wherein the synthetic quartz glass has an OH group concentration of 33 pm or less.
JP32552198A 1998-11-16 1998-11-16 Synthetic quartz glass for optical members and manufacturing method thereof Expired - Lifetime JP4085490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32552198A JP4085490B2 (en) 1998-11-16 1998-11-16 Synthetic quartz glass for optical members and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32552198A JP4085490B2 (en) 1998-11-16 1998-11-16 Synthetic quartz glass for optical members and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000154029A JP2000154029A (en) 2000-06-06
JP4085490B2 true JP4085490B2 (en) 2008-05-14

Family

ID=18177812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32552198A Expired - Lifetime JP4085490B2 (en) 1998-11-16 1998-11-16 Synthetic quartz glass for optical members and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4085490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131384A1 (en) 2017-12-25 2019-07-04 Agc株式会社 Evaluation method for thermal expansion properties of titania-containing silica glass body, and manufacturing method for titania-containing silica glass body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941872B2 (en) * 2003-09-02 2012-05-30 日本電気硝子株式会社 Transparent alkali-free glass substrate for liquid crystal display
JP4535497B2 (en) * 2004-12-24 2010-09-01 信越石英株式会社 Method for producing synthetic silica glass with controlled OH group concentration
JP4702898B2 (en) * 2007-09-18 2011-06-15 信越石英株式会社 Method for producing quartz glass crucible for pulling silicon single crystal
JP6107701B2 (en) 2014-02-21 2017-04-05 信越化学工業株式会社 Method for heat treatment of synthetic quartz glass and method for producing synthetic quartz glass substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131384A1 (en) 2017-12-25 2019-07-04 Agc株式会社 Evaluation method for thermal expansion properties of titania-containing silica glass body, and manufacturing method for titania-containing silica glass body

Also Published As

Publication number Publication date
JP2000154029A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
JP4470479B2 (en) Synthetic quartz glass for optical members and method for producing the same
JP4529340B2 (en) Synthetic quartz glass and manufacturing method thereof
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
JP3674793B2 (en) Method for producing quartz glass optical member for ultraviolet laser
US8323856B2 (en) Mask blanks
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP4193358B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP4085490B2 (en) Synthetic quartz glass for optical members and manufacturing method thereof
JPH06166528A (en) Production of ultraviolet-laser resistant optical member
JP3531870B2 (en) Synthetic quartz glass
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP3472234B2 (en) Silica glass optical material for excimer laser and excimer lamp
WO2000039040A1 (en) Synthetic quartz glass and method for preparation thereof
JPH11302025A (en) Synthetic quartz glass optical member and its production
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JPH0624997B2 (en) Optical components for laser light
JP2001180962A (en) Synthesized quartz glass and manufacturing method
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP2003201126A (en) Synthetic quartz glass for optical member and method of manufacturing the same
JP2652847B2 (en) Optical system member for laser beam and optical system member for lithographic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

EXPY Cancellation because of completion of term