JPH0624997B2 - Optical components for laser light - Google Patents

Optical components for laser light

Info

Publication number
JPH0624997B2
JPH0624997B2 JP1232982A JP23298289A JPH0624997B2 JP H0624997 B2 JPH0624997 B2 JP H0624997B2 JP 1232982 A JP1232982 A JP 1232982A JP 23298289 A JP23298289 A JP 23298289A JP H0624997 B2 JPH0624997 B2 JP H0624997B2
Authority
JP
Japan
Prior art keywords
optical system
laser light
laser
oxygen
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1232982A
Other languages
Japanese (ja)
Other versions
JPH0323236A (en
Inventor
茂 山形
恭一 稲木
利勝 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP1232982A priority Critical patent/JPH0624997B2/en
Publication of JPH0323236A publication Critical patent/JPH0323236A/en
Publication of JPH0624997B2 publication Critical patent/JPH0624997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はレンズ、窓部材、ミラー、プリズム、フィル
タ、エタロン板、その他のレーザ光用光学系に係り、特
に略400nm 以下の特定波長域で使用されるレーザ光用光
学系部材に関する。
The present invention relates to a lens, a window member, a mirror, a prism, a filter, an etalon plate, and other optical systems for laser light, and particularly in a specific wavelength range of about 400 nm or less. The present invention relates to a laser beam optical system member used.

「従来の技術」 近年LSI の微細化、高集積化に伴ない例えばウエハ上に
回路パターンを描画するリソグラフィ技術においてもサ
ブミクロン単位の描画技術の開発が急がれているが、最
近の光学系、光源、フォトレジスト等の着実な進歩から
みてやはり光リソグラフィーが主流になるものと推定さ
れるが、光リソグラフィーの欠点として露光波長が大き
いため、回折により想像力が制限されるという問題があ
り、その解決策として光の短波長化が検討されている。
"Conventional technology" With the recent miniaturization and high integration of LSIs, development of submicron drawing technology is urgently required for lithography technology for drawing circuit patterns on wafers, for example. It is estimated that optical lithography will be the mainstream from the steady progress of light sources, photoresists, etc., but the drawback of optical lithography is that it has a large exposure wavelength, which limits the imagination due to diffraction. As a solution, shortening the wavelength of light is being studied.

しかしながら、光の短波長化を図る為に400 nm以下の紫
外線を用いた場合は、従来の光学ガラスを用いたレンズ
では使用波長が354nm ( i線)付近より光透過率が急激
に低下して、言い変えれば光吸収による発熱が生じ、該
レンズの焦点位置やその他の特性を狂わせることにな
る。
However, when ultraviolet rays of 400 nm or less are used to shorten the wavelength of light, the light transmittance of the lens using conventional optical glass drops sharply from around the working wavelength of 354 nm (i-line). In other words, heat is generated due to light absorption, and the focal position and other characteristics of the lens are disturbed.

この為、レンズ材料を従来の光学ガラスから石英ガラス
に代えるとともに、石英ガラスを用いた場合における色
収差の発生を防止する為にスペクトル巾の狭いレーザ光
を使うことが考えられ、特に該レーザの中でも最も完成
度の高いものがエキシマレーザである。
For this reason, it is conceivable to replace the conventional optical glass with quartz glass as the lens material and to use a laser beam having a narrow spectrum width in order to prevent the occurrence of chromatic aberration when quartz glass is used. The excimer laser has the highest degree of perfection.

しかしながら前記エキシマレーザ光は従来使用されてき
た光源に比較して極めてパワーが大であり而もKrF(248n
m),XeCl(308nm),ArF(193nm)等の発振波長が略350 nm以
下の短波長レーザ光を用いた場合を、例え前記レーザ光
用光学系部材に石英ガラスを用いて製作したとしても前
記レーザ光が長時間照射されるとレンズ等の光学系がダ
メージを受け、透過率の低下、絶対屈折率の上昇、屈折
率分布の変動や蛍光が発生し、特にエネルギー密度が高
い場合は最終的にクラックが発生するという問題が生じ
る。
However, the excimer laser light has extremely large power as compared with the conventionally used light source, and the KrF (248n
m), XeCl (308 nm), ArF (193 nm) or the like using a short-wavelength laser light with an oscillation wavelength of about 350 nm or less, even if quartz glass is used for the laser light optical system member. When the laser light is irradiated for a long time, the optical system such as a lens is damaged, and the transmittance is decreased, the absolute refractive index is increased, the refractive index distribution is changed, and fluorescence is generated. There is a problem that a crack is generated.

そうして前記透過率等の低下の原因の一つは前記石英ガ
ラス中に存在する金属不純物に起因するとされ、この為
前記光学系に天然石英を出発母材とせずに、高純度化さ
れたSiCl等の珪素化合物を用いて、金属元素の混入を
極力排除しながら高純度の合成石英ガラスを形成し、該
合成石英ガラスを母材としてレーザ光用のレンズ等を製
作し、前記欠点の解消を図ったが、尚、高出力で且つ短
波長レーザ光用光学系として満足する結果が得られなか
った。
It is said that one of the causes of the decrease in the transmittance and the like is due to the metal impurities present in the quartz glass. Therefore, the optical system was highly purified without using natural quartz as a starting base material. A silicon compound such as SiCl 4 is used to form a high-purity synthetic quartz glass while eliminating the mixture of metal elements as much as possible, and a lens for laser light is manufactured using the synthetic quartz glass as a base material. Although it was attempted to solve the problem, a satisfactory output as an optical system for high power and short wavelength laser light could not be obtained.

そこで本出願人は、先に前記レンズ等を製造する為の母
材、言い換えればレーザ光学系素体を高純度の合成石英
ガラスで形成するとともに、該ガラス組織中のOH基含有
量を300ppm以上に設定したレーザ光学系素体を提案し
(特願昭62-323882 号、以下第1先願技術という)、そ
して更に本出願人は、前記レーザ光学系素体を形成する
合成石英ガラス組織中に含まれる不純物濃度をより低減
する事により、該ガラス組織中のOH基含有量を100ppmま
で緩和した場合においても所期の効果を達成し得るレー
ザ光学系素体を提案している。(平成元年 5月30日出
願、以下第2先願技術という) 「発明が解決しようとする課題」 しかしながら前記OH基含有量と純度規制を行ったレーザ
光学系素体は、それ自体では確かに耐レーザ性が向上す
るが、該素体を用いてレンズその他の光学系を形成した
場合に必ずしも所望の効果を達成得ない事が判明した。
Therefore, the present applicant has previously formed a base material for manufacturing the lens and the like, in other words, forming the laser optical system element body with high-purity synthetic quartz glass, and the OH group content in the glass structure is 300 ppm or more. (Japanese Patent Application No. 62-323882, hereinafter referred to as the first prior art), and the applicant of the present invention further proposes that the laser optical system element body in the synthetic quartz glass structure forming the laser optical element body is It proposes a laser optical system element body capable of achieving a desired effect even when the OH group content in the glass structure is relaxed to 100 ppm by further reducing the impurity concentration contained in the glass structure. (Applied on May 30, 1989, hereinafter referred to as second prior art) "Problems to be solved by the invention" However, the laser optical system element with the OH group content and purity regulated is certainly in itself. It was found that although the laser resistance is improved, the desired effect cannot always be achieved when a lens or other optical system is formed using the element body.

そこで本発明は前記各先願技術に因るレーザ光学系素体
自体では所期の耐レーザ性を得る事が出来るにも拘ら
ず、該素体を用いてレンズその他の光学系部材を形成し
た場合に何故耐レーザ性が低下するのかその原因を見い
出し、該原因に着目して本発明を創作するに至ったもの
である。
Therefore, in the present invention, although the laser optical system element body according to each of the above prior arts can obtain desired laser resistance, lenses and other optical system members are formed using the element body. In this case, the reason why the laser resistance deteriorates was found, and the present invention was created by focusing on the cause.

即ち本発明は、長時間にわたってエキシマレーザ光を照
射した場合においても透過率の低下や屈折率分布の変動
が生じる事なく耐レーザ性の一層の向上を図ったレーザ
光用光学系部材を提供する事を目的とする。
That is, the present invention provides an optical system member for laser light, which is further improved in laser resistance without causing a decrease in transmittance and a change in refractive index distribution even when irradiated with excimer laser light for a long time. To aim for things.

[課題を解決する為の手段」 本発明に至った過程を順を追って説明する。[Means for Solving the Problems] The process leading to the present invention will be described step by step.

先ず、本発明はOH基濃度が少なくとも 100ppm 以上好
ましくは略300ppm以上含有する高純度合成石英ガラス材
を出発母材として前記レーザ光学系部材を形成した点に
ある事は前記した通りである。
First, as described above, the present invention is characterized in that the laser optical system member is formed by using a high-purity synthetic quartz glass material having an OH group concentration of at least 100 ppm or more, preferably about 300 ppm or more as a starting base material.

けだし前記ガラス組織中のOH基濃度を増大する事により
蛍光特性、屈折率、透過率等の耐紫外線特性を向上させ
る事は、本発明者が先に第1先願技術において知見した
技術であり、そして更に第2先願技術において前記石英
ガラス組織中に含まれる不純物濃度を高純度化、より具
体的には金属元素を50ppb 以下にするとともにOH基濃度
を100ppm以上に設定する事により、400nm までの波長域
の紫外線を照射した場合における耐レーザ性を向上させ
る事の出来る旨記載されている。
It is a technique that the present inventor has previously found in the first prior art to improve ultraviolet resistance characteristics such as fluorescence characteristics, refractive index, and transmittance by increasing the OH group concentration in the glass structure. Further, in the second prior application technology, the concentration of impurities contained in the quartz glass structure is highly purified, more specifically, by setting the metal element to 50 ppb or less and the OH group concentration to 100 ppm or more, 400 nm It is described that it is possible to improve the laser resistance when irradiated with ultraviolet rays in the wavelength range up to.

しかしながら一般のレンズ部材を含めてレーザ光用光
学系部材は、前記母材をそのまま切断研磨若しくはコー
テングして所望のレンズを製作するのではなく、前記母
材を一旦加熱処理して内部歪等を除去した後、前記した
加工手段により所望のレンズを製作するものである為
に、例え前記発母材側で耐レーザ性を保証しても前記処
理過程中に生じる不具合により完成部品としてのレーザ
光用光学系部材が、所望の耐レーザ性を得る事が出来な
い場合がある。
However, the laser beam optical system member including a general lens member does not cut and polish or coat the base material as it is to manufacture a desired lens, but heat-treats the base material once to eliminate internal strain or the like. Since the desired lens is manufactured by the above-mentioned processing means after the removal, even if the laser resistance is guaranteed on the base material side, the laser beam as a completed part is not produced due to a defect that occurs during the processing process. There is a case where the optical system member for use cannot obtain desired laser resistance.

特に合成石英ガラス材の場合はその合成方法及び該合成
に用いる原料等が多岐に亙る為に、例えば同一条件で加
熱処理を行っても形成されるガラス組織が異なってしま
い、而も光学ガラスと異なり石英ガラス材の場合は徐冷
点が1120℃と高温である為に前記加熱処理温度を少なく
とも徐冷点前後の高温に設定して加熱処理を行なわなけ
ればならず、これらの理由により前記加熱処理に起因す
る組成変化により耐レーザ性を低下させる種々の問題が
生じる事が予想される。
In particular, in the case of a synthetic quartz glass material, there are a wide variety of synthesizing methods and raw materials used for the synthesizing. Therefore, for example, even if the heat treatment is performed under the same conditions, the glass structure formed is different, and In contrast, in the case of a quartz glass material, the annealing point is as high as 1120 ° C, and therefore the heat treatment temperature must be set to at least a high temperature around the annealing point and the heat treatment must be performed for these reasons. It is expected that various problems that reduce the laser resistance will occur due to the composition change caused by the treatment.

その第1が酸素欠陥の問題である。The first is the problem of oxygen defects.

前記のように高温で加熱処理を行う場合、その合成方法
及び加熱雰囲気条件の相違により酸素欠陥が発生若しく
は残存し、そして本発明は前記合成石英ガラスのガラス
組織(SiO2)中に下記式で示される代表的酸素欠損型欠
陥、あるいは下記式で示される代表的酸素過剰型欠陥
が存在すると、レーザ光照射により光学的特性の劣化を
受け易い事を突き止めた。(特願昭63-21361号参照) そこで本発明の第2の特徴とする所は前記光学系部材
が、そのガラス組織中に酸素欠陥が実質的に存在しない
石英ガラス材である点にある。即ちより具体的には出発
母材に酸素過剰型欠陥が存在する場合は還元性雰囲気で
熱処理する事により、一方出発母材に酸素欠損型欠陥が
存在する場合は酸化雰囲気で熱処理する事により前記酸
素欠陥濃度をいずれも低減させる事が出来、酸素欠陥の
実質的な除去を図る事が出来るものである。
When heat treatment is carried out at a high temperature as described above, oxygen defects are generated or remain due to the difference in the synthesis method and heating atmosphere conditions, and the present invention is represented by the following formula in the glass structure (SiO 2 ) of the synthetic quartz glass. It has been found that the presence of the representative oxygen-deficient type defect shown or the representative oxygen-excessive type defect represented by the following formula is likely to cause deterioration of optical characteristics due to laser light irradiation. (See Japanese Patent Application No. 63-21361) Therefore, the second characteristic of the present invention is that the optical system member is a quartz glass material in which oxygen defects are substantially absent in the glass structure. That is, more specifically, when the starting base material has oxygen-excessive defects, heat treatment is performed in a reducing atmosphere, while when the starting base material has oxygen-deficient defects, heat treatment is performed in an oxidizing atmosphere. The oxygen deficiency concentration can be reduced, and the oxygen deficiency can be substantially removed.

そして、酸素欠陥の存在が何故光学特性に悪影響を及ぼ
すかその理由についてはさだかではないが、下記の理由
によるものと推定される。
The reason why the presence of oxygen defects adversely affects the optical characteristics is not critical, but it is presumed that the reason is as follows.

即ちガラス組織中に、不純物に加えて酸素欠陥が存在す
ると、前記ガラス組織を構成する元素間の結合が、理想
的石英ガスの元素間の結合に比較して弱くなり、該レー
ザー光のエネルギーにより結合が切断されやすくなり、
そして石英ガラスの元素間の結合が切断されることによ
り構造的変化を起こし、屈折率を変化させるものと推定
される。又同様に不純物もしくは酸素欠陥の存在が前駆
体となり、レーザー光照射後各種のカラーセンターを形
成し、透過率の低下をもたらし、更に不純物元素の存在
及び前記カラーセンターの形成に伴って、レーザー照射
中の石英ガラスの蛍光波長と強度が決り、これにより蛍
光が発生し易くなるものと思慮される。
That is, in the glass structure, if oxygen defects are present in addition to impurities, the bond between the elements constituting the glass structure becomes weaker than the bond between the elements of the ideal quartz gas, and the energy of the laser light causes The bond is easily broken,
It is presumed that the breaking of the bonds between the elements of the quartz glass causes a structural change and changes the refractive index. Similarly, the presence of impurities or oxygen vacancies serves as a precursor to form various color centers after laser light irradiation, resulting in a decrease in transmittance. Further, the presence of impurity elements and the formation of the color centers causes laser irradiation. It is considered that the fluorescence wavelength and intensity of the quartz glass inside are determined, and this facilitates the generation of fluorescence.

尚本発明における、「実質的に酸素欠陥を存在しない」
とは、Shelby(1980.Journal of Applied Physics,Vol.5
1,pp2589〜2593)法を参考にして前記ガラス組織中の欠
損酸素原子濃度及び過剰酸素原子濃度を測定した場合そ
の測定値が検出限界以下、具体的には理想的なガラス組
織(SiO2)に対し、不足又は過剰の酸素原子数が、ガラス
1g 中おおむね1017個以下であるものが良いと推測され
る。ちなみに酸素過剰型欠陥の場合過剰の酸素原子濃度
1017個(ガラス 1g 当り)は約 3ppm に相当し、又これ
が1019個であると約 300ppmに相当する。
In the present invention, “substantially no oxygen deficiency”
And Shelby (1980.Journal of Applied Physics, Vol. 5
1, pp2589 to 2593) method, the measured value is below the detection limit when the deficient oxygen atom concentration and the excess oxygen atom concentration in the glass structure are measured, specifically, the ideal glass structure (SiO 2 ) In contrast, if the number of oxygen atoms is insufficient or excessive, the glass
It is presumed that 1g or less is preferably 10 17 or less. By the way, in the case of oxygen excess defects, excess oxygen atom concentration
10 17 pieces (per 1 g of glass) correspond to about 3 ppm, and 10 19 pieces correspond to about 300 ppm.

ここでShelby(1980)法による酸素過剰型欠陥の過剰酸素
濃度の測定は、高温で水素と反応させた時に生ずるOH基
の赤外吸収を測定して定量するものであり、酸素欠損型
欠陥の欠損酸素濃度の測定は、高温で酸素ガスと反応さ
せた時減少する 7.6eV(163nm) の吸収ピークを測定して
定量するものである。
Here, the measurement of the excess oxygen concentration of the oxygen excess type defect by the Shelby (1980) method is to measure and quantify the infrared absorption of the OH group generated when reacting with hydrogen at high temperature, and the The deficient oxygen concentration is measured and measured by measuring the absorption peak at 7.6 eV (163 nm), which decreases when reacted with oxygen gas at high temperature.

又、酸素欠損型欠陥の検出は、細野他(1987)による方
法、すなわち石英ガラスサンプルに KrFエキシマレーザ
(248nm) を照射した時発生する 4.3eV(約290nm)の蛍光
を検出することによっても可能である。
The detection of oxygen-deficient defects is performed by Hosono et al. (1987), that is, a KrF excimer laser is applied to a quartz glass sample.
It is also possible by detecting the fluorescence of 4.3 eV (approx. 290 nm) generated when irradiated with (248 nm).

更に、酸素過剰型欠陥の検出は、長澤他(1988)による方
法、すなわち石英ガラスサンプルの紫外線透過率を測定
し、 3.8eV(約325nm)の吸収バンドの存在を検出するこ
とによっても可能である。
Furthermore, oxygen-rich defects can also be detected by the method of Nagasawa et al. (1988), that is, by measuring the ultraviolet transmittance of a quartz glass sample and detecting the presence of an absorption band of 3.8 eV (about 325 nm). .

次に加熱処理における第2の問題が、吸蔵水素の脱ガ
ス化の問題である。
Next, the second problem in heat treatment is the problem of degassing stored hydrogen.

即ち前記したように前記加熱処理温度は高温である為
に、該加熱処理中に前記石英ガラス組織中の吸蔵水素が
脱ガス化し、該水素濃度の低下に起因して加熱処理前に
所定レベル以上に維持していた耐レーザ性能が低下して
しまう事が確認された。
That is, as described above, since the heat treatment temperature is high, the stored hydrogen in the quartz glass structure is degassed during the heat treatment, and due to the decrease in the hydrogen concentration, the hydrogen concentration is higher than a predetermined level before the heat treatment. It was confirmed that the laser resistance performance maintained at was reduced.

そこで本発明の第2の特徴とする所は、水素ガス含有雰
囲気にて加熱処理を行う事により該光学系部材中に水素
ガスを高濃度で吸蔵させた点、より具体的には前記光学
系部材の真空下での1000℃昇温時における水素分子放出
量が少なくとも 1×1020(molecules/m2)以上になるよ
うに水素ガスを含有させた点にある。
Therefore, a second feature of the present invention is that a high-concentration hydrogen gas is occluded in the optical system member by performing a heat treatment in a hydrogen gas-containing atmosphere, and more specifically, the optical system. The point is that hydrogen gas is contained so that the amount of hydrogen molecules released at a temperature of 1000 ° C. under vacuum of the member is at least 1 × 10 20 (molecules / m 2 ).

尚前記水素分子放出量の測定は例えば前記光学系部材40
×20×t1mmに切断し且つ両面を鏡面仕上げしたサンプル
を用意し、該サンプルをセットした石英チャンバー内を
真空雰囲気にした後、4℃/min で1000℃まで昇温させ
た後、該1000℃にて2hr 保持する。その時放出される各
種ガスを四重極型質量分析計に導入してその放出量を測
定すればよい。
The measurement of the amount of released hydrogen molecules is performed by, for example, the optical system member 40.
Prepare a sample cut into × 20 × t1mm and mirror-finished on both sides, place a vacuum atmosphere in the quartz chamber in which the sample is set, raise the temperature to 1000 ° C at 4 ° C / min, and then increase the temperature to 1000 ° C. Hold for 2 hours. The various gases released at that time may be introduced into a quadrupole mass spectrometer to measure the released amount.

尚、真空下での1000℃昇温時における水素分子放出量が
少なくとも1×1020(molecules/m2)以上になるよう
に水素ガスを含有させたとは、水素分子濃度が少なくと
も 5×1016(molecules/m3)濃度以上になるように水
素ガスを含有させた事と等意である。
In addition, hydrogen gas is contained so that the amount of released hydrogen molecules at a temperature rise of 1000 ° C. under vacuum is at least 1 × 10 20 (molecules / m 2 ) or more means that the hydrogen molecule concentration is at least 5 × 10 16 This is equivalent to containing hydrogen gas so that the concentration is higher than (molecules / m 3 ) concentration.

本発明を400nm までの特定波長域のレーザ光に使用さ
れるレーザ光用光学系部材に限定した理由は、波長域が
400nm以上ではフォトエネルギーが小さいので光学特性
の安定性を考慮する必要がない為である。
The reason why the present invention is limited to the optical system member for laser light used for laser light of a specific wavelength range up to 400 nm is that the wavelength range is
This is because it is not necessary to consider the stability of optical characteristics because the photo energy is small above 400 nm.

「実施例」 本発明に至った経過を具体的な実験例に基づいて説明す
る。
[Examples] The process leading to the present invention will be described based on specific experimental examples.

原料四塩化ケイ素を蒸留処理して不純物を除去させた後
テフロンランニング付ステンレス製容器に貯溜した高純
度四塩化ケイ素を用意し、該高純度の四塩化ケイ素原料
を用いてダイレクト法と CVDスート再溶融合成法にて、
3方向脈理フリーでありかつ光使用領域における屈折率
変動幅(△n)を 2×10−6に設定した高純度石英ガラ
スインゴットを各々複数個合成した。そして前記インゴ
ット群よりOH基の含有量が 5ppm 以下、150 ppm(スー
ト法) 400ppm (ダイレクト法)のOH基濃度を有するイ
ンゴットを選出した。
Prepare high-purity silicon tetrachloride stored in a stainless steel container with Teflon running after removing the impurities by distilling the raw material silicon tetrachloride. By the melt synthesis method,
A plurality of high-purity silica glass ingots, each of which is free of striae in three directions and whose fluctuation range (Δn) in the light use region is set to 2 × 10 −6, were synthesized. Then, an ingot having an OH group content of 5 ppm or less and an OH group concentration of 150 ppm (soot method) and 400 ppm (direct method) was selected from the ingot group.

次に、前記各OH基濃度を有するインゴットを雰囲気加熱
炉内の石英ガラスチャンバー内に設置して、第1のイン
ゴット群(実-1〜2 、比-1〜3 )においてはアルゴンガ
スで稀釈した酸素ガス雰囲気下で、又第2のインゴット
群(比-4)においては水素ガス雰囲気下にて1000℃前後
の温度で加熱処理を行う。
Next, the ingots having the respective OH group concentrations were set in a quartz glass chamber in an atmosphere heating furnace, and diluted with argon gas in the first ingot group (actual -1 to 2, ratio -1 to 3). In the oxygen gas atmosphere described above, or in the second ingot group (ratio -4), heat treatment is performed at a temperature of about 1000 ° C. in a hydrogen gas atmosphere.

次に、第1のインゴット群の(実-1〜2 、比-1)につい
てはHCl を加味した水素ガスH雰囲気下にて、各々約
600 〜700 ℃で一定時間保持した後次に約 200℃の温度
以下になるまで一定のプログラムにより徐冷を行い、そ
の後大気放冷を行った。
Next, about (first -1 to 2, ratio -1) of the first ingot group, about 1 to 2 respectively in a hydrogen gas H 2 atmosphere containing HCl.
After holding at 600-700 ° C for a certain period of time, it was then gradually cooled by a certain program until the temperature fell below about 200 ° C, and then air cooling was performed.

そして前記加熱処理を行った各インゴットについてアル
カリ金属元素Li,Na,K,アルカリ土類金属元素Mg,Ca 及び
遷移金属元素Ti,Cr,Fe,Ni,Cuの各元素の含量分析を行っ
てみるに、いずれもアルカリ金属元素が0.05ppm 以下、
アルカリ土類金属元素が0.01ppm 前後、遷移金属元素が
0.01ppm以下と高純度が維持されていた。
Then, for each ingot subjected to the heat treatment, the content analysis of each element of alkali metal elements Li, Na, K, alkaline earth metal elements Mg, Ca and transition metal elements Ti, Cr, Fe, Ni, Cu will be performed. In each case, the alkali metal element is 0.05 ppm or less,
Alkaline earth metal element is around 0.01ppm, transition metal element is
High purity of 0.01ppm or less was maintained.

そして、このようなインゴットの一部を所望サイズに切
断してをShelby(1980)法に基づいて過剰酸素濃度及び欠
損酸素濃度を、又 前記した測定法に基づいて真空下で
の1000℃昇温時における水素分子放出量を測定した結果
を下一覧表に示す。
Then, by cutting a part of such an ingot to a desired size, the excess oxygen concentration and the deficient oxygen concentration are raised based on the Shelby (1980) method, and the temperature is raised to 1000 ° C. under vacuum based on the above-mentioned measurement method. The results of measuring the amount of released hydrogen molecules at that time are shown in the table below.

次に、擬似光学部材として各インゴットから40×30×t1
0 mmの所望の寸法に切断しかつ両面を鏡面仕上げしたエ
キサマレーザ照射実験用試験片を作成し、該試験片に対
して KrFエキシマーレーザ(248nm) を用い、パルス当り
エネルギー密度100,200,400(mJ/cm2・pulse)及び照射パ
ルス数 1×10、 1×10、1×10(pulse) の組合
せから成る照射条件にて照射を行った。
Next, 40 × 30 × t1 from each ingot as a pseudo optical member
An excimer laser irradiation test piece was cut to a desired size of 0 mm and mirror-finished on both sides, and a KrF excimer laser (248 nm) was used for the test piece to obtain an energy density per pulse of 100,200,400 (mJ / cm 2 Pulse) and the number of irradiation pulses 1 × 10 5 , 1 × 10 6 , and 1 × 10 7 (pulse).

そして、前記照射終了後の各試験片について、干渉計に
て屈折率分布変化、透過率計にてソーラリゼーション、
蛍光測定器にて蛍光強度測定を行い、その結果を下記一
覧表に示す。
Then, for each test piece after the end of irradiation, a refractive index distribution change with an interferometer, solarization with a transmittance meter,
The fluorescence intensity was measured with a fluorescence measuring instrument, and the results are shown in the table below.

下記一覧表の比-1より理解される如く、OH基含有量が 5
ppm 以下の場合は、酸素欠陥が検出されず、且つ水素ガ
ス放出量が 1×1020(molecules/m2)以上であっても耐
レーザー性は平均レベル以下であり、又比-2、比-3に示
す如くOH基含有量が 100ppm 以上で且つ酸素欠陥が検出
されない場合であっても水素ガス放出量が 1×1020(mol
ecules/m2) 以下の場合はやはり耐レーザー性は平均レ
ベルであり、更に比-4に示す如くOH基含有量が 100ppm
以上で且つ水素ガス放出量が 1×1020(molecules/m2)
以上であっても且つ酸素欠陥が検出される場合には、耐
レーザー性が悪い事が実証された。
As can be seen from the ratio-1 in the table below, the OH group content is 5
In the case of ppm or less, no oxygen defect is detected, and the laser resistance is below the average level even if the amount of released hydrogen gas is 1 × 10 20 (molecules / m 2 ) or more. As shown in -3, even if the OH group content is 100 ppm or more and no oxygen defects are detected, the hydrogen gas release rate is 1 × 10 20 (mol
ecules / m 2 ) or less, the laser resistance is still at an average level, and the OH group content is 100 ppm as shown in ratio -4.
Above, and the amount of hydrogen gas released is 1 × 10 20 (molecules / m 2 )
Even in the above cases and when oxygen defects were detected, it was proved that the laser resistance was poor.

一方、OH基含有量が 100ppm 以上、酸素欠陥が検出され
ず、且つ水素ガス放出量が 1×1020(molecules/m2) 以
上の資料の耐レーザー性はきわめて高いものであった。
On the other hand, the laser resistance of the materials having an OH group content of 100 ppm or more, no oxygen defects detected, and a hydrogen gas release amount of 1 × 10 20 (molecules / m 2 ) or more was extremely high.

かかる実験結果より本発明の効果が円滑に達成されてい
ることがわかる。
From these experimental results, it can be seen that the effects of the present invention are smoothly achieved.

「発明の効果」 以上記載の如く本発明によれば、酸素欠陥の除去ととも
にOH基と吸蔵水素を効果的に高純度のガラス組織中に混
在させる事により、長時間にわたってエキシマレーザ光
を照射した場合においても透過率の低下や屈折率分布の
変動が生じる事なく耐レーザ性が一層向上し得るレーザ
光用光学系部材を得る事が出来、これにより本発明にの
レーザ光学系部材は、リソグラフィー装置その他の高集
積回路製造装置のみならず、レーザ核融合装置その他の
高出力エキシマレーザーに使用されるレーザ光学系母材
にも十分適用可能である。
"Effects of the Invention" As described above, according to the present invention, excimer laser light is irradiated for a long time by removing oxygen defects and effectively mixing OH groups and stored hydrogen in a high-purity glass structure. Even in such a case, it is possible to obtain an optical system member for laser light which can further improve laser resistance without a decrease in transmittance and a change in refractive index distribution, and thus, the laser optical system member according to the present invention is formed by lithography. The present invention is sufficiently applicable not only to the apparatus and other highly integrated circuit manufacturing apparatus, but also to laser fusion apparatus and other laser optical system base materials used for high-power excimer lasers.

等の種々の著効を有す。It has various remarkable effects.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01S 3/137 8934−4M Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // H01S 3/137 8934-4M

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】略400nm 以下の紫外線波長域のレーザ光に
使用されるレーザ光用光学系部材において、該光学系部
材を、OH基濃度を少なくとも 100ppm 以上含有する高純
度合成石英ガラス材で形成するとともに、該光学系部材
が、そのガラス組織中に酸素欠陥が実質的に存在せず且
つ水素ガスを含有させた石英ガラス材であることを特徴
とするレーザ光用光学系部材
1. An optical system member for laser light used for laser light in an ultraviolet wavelength range of about 400 nm or less, wherein the optical system member is formed of a high-purity synthetic quartz glass material containing an OH group concentration of at least 100 ppm or more. In addition, the optical system member is a quartz glass material containing substantially no oxygen defects in its glass structure and containing hydrogen gas.
【請求項2】前記石英ガラス材中における水素ガス含有
量を、該ガラス材の真空下での1000℃昇温時における水
素分子放出量が少なくとも 1×1020(molecules/m2) 以
上になるように設定した事を特徴とする請求項1)記載の
レーザ光用光学系部材
2. The content of hydrogen gas in the quartz glass material is such that the amount of released hydrogen molecules when the glass material is heated at 1000 ° C. under vacuum is at least 1 × 10 20 (molecules / m 2 ) or more. The optical system member for laser light according to claim 1), characterized in that
JP1232982A 1989-09-11 1989-09-11 Optical components for laser light Expired - Lifetime JPH0624997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232982A JPH0624997B2 (en) 1989-09-11 1989-09-11 Optical components for laser light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232982A JPH0624997B2 (en) 1989-09-11 1989-09-11 Optical components for laser light

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP01154620 Division 1989-06-09 1989-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12044895A Division JP2652847B2 (en) 1995-04-24 1995-04-24 Optical system member for laser beam and optical system member for lithographic apparatus

Publications (2)

Publication Number Publication Date
JPH0323236A JPH0323236A (en) 1991-01-31
JPH0624997B2 true JPH0624997B2 (en) 1994-04-06

Family

ID=16947940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232982A Expired - Lifetime JPH0624997B2 (en) 1989-09-11 1989-09-11 Optical components for laser light

Country Status (1)

Country Link
JP (1) JPH0624997B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648734B2 (en) * 1989-06-19 1994-06-22 信越石英株式会社 Optical components for laser light
DE4206182C2 (en) * 1992-02-28 1996-02-08 Heraeus Quarzglas Component for the transmission of high-energy light and use of the component
US5616159A (en) * 1995-04-14 1997-04-01 Corning Incorporated Method of forming high purity fused silica having high resistance to optical damage
US6333283B1 (en) 1997-05-16 2001-12-25 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
JP2980094B2 (en) * 1997-05-16 1999-11-22 住友電気工業株式会社 Quartz glass article and method for producing the same
DE10308466A1 (en) * 2003-02-21 2004-09-02 Carl Zeiss Smt Ag Producing quartz glass material used in microlithography-projection devices comprises minimizing the amount of peroxide defects in the material
JP5156286B2 (en) * 2007-07-09 2013-03-06 信越石英株式会社 Fibrous photocatalyst and purification device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275604A (en) * 1985-09-30 1987-04-07 Mitsubishi Metal Corp Light transmitting line having resistance to radiant rays
JP2660531B2 (en) * 1988-02-08 1997-10-08 日本石英硝子株式会社 Modification method of synthetic quartz glass
JPH0791084B2 (en) * 1988-09-14 1995-10-04 信越化学工業株式会社 Ultraviolet-resistant synthetic quartz glass and method for producing the same

Also Published As

Publication number Publication date
JPH0323236A (en) 1991-01-31

Similar Documents

Publication Publication Date Title
JP4470479B2 (en) Synthetic quartz glass for optical members and method for producing the same
JP3206916B2 (en) Method for reducing defect concentration, method for producing optical glass for transmitting ultraviolet light, and optical glass for transmitting ultraviolet light
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
JPH09235134A (en) High-purity synthetic silica glass for far ultraviolet ray and production thereof
EP1754689A1 (en) Synthetic quartz glass substrate for excimer lasers and making method
JPH0653593B2 (en) Synthetic silica glass optical body and method for producing the same
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JPH0624997B2 (en) Optical components for laser light
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP3654500B2 (en) Quartz glass material and optical member for F2 excimer laser optical member
EP1456142B1 (en) Fused silica containing aluminum
JP3531870B2 (en) Synthetic quartz glass
JPH0648734B2 (en) Optical components for laser light
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
US6689706B2 (en) Fused silica containing aluminum
JP2652847B2 (en) Optical system member for laser beam and optical system member for lithographic apparatus
JP4085490B2 (en) Synthetic quartz glass for optical members and manufacturing method thereof
JPH06199539A (en) Optical quartz glass member for excimer laser and production thereof
US6835683B2 (en) Quartz glass member and projection aligner
JP3259460B2 (en) Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JPH1067526A (en) Optical quartz glass element
JP4228493B2 (en) Synthetic quartz glass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 16