JPH06199539A - Optical quartz glass member for excimer laser and production thereof - Google Patents

Optical quartz glass member for excimer laser and production thereof

Info

Publication number
JPH06199539A
JPH06199539A JP36211092A JP36211092A JPH06199539A JP H06199539 A JPH06199539 A JP H06199539A JP 36211092 A JP36211092 A JP 36211092A JP 36211092 A JP36211092 A JP 36211092A JP H06199539 A JPH06199539 A JP H06199539A
Authority
JP
Japan
Prior art keywords
quartz glass
excimer laser
less
hydroxyl group
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36211092A
Other languages
Japanese (ja)
Other versions
JP2784708B2 (en
Inventor
Akira Fujinoki
朗 藤ノ木
Tatsuhiro Sato
龍弘 佐藤
Toshikatsu Matsutani
利勝 松谷
Hiroyuki Nishimura
裕幸 西村
Toshiki Mori
利樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP36211092A priority Critical patent/JP2784708B2/en
Publication of JPH06199539A publication Critical patent/JPH06199539A/en
Application granted granted Critical
Publication of JP2784708B2 publication Critical patent/JP2784708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To provide a quartz glass optical member stable in optical characteristics such as transmissivity and refractive index to the irradiation of excimer laser beam having high energy density and capable of completely recovering the optical characteristics by simple heat treating. CONSTITUTION:The quartz glass is <=300ppm in hydroxyl group content, <=50ppm in chlorine content, <=5X10<16> molecule/cm<2> in hydrogen content and >=99.5% in transmissivity to 245nm wave length of ultraviolet ray and is produced by transparently vitrifying a synthetic silica soot body <=20ppm in fluctuation of hydroxyl group content at the time of heat treating in the atmosphere or a gaseous nitrogen atmosphere at 500 deg.C for 10 hours and capable of eliminating the damage caused by the irradiation of >=20mJ/cm<2> high energy excimer laser by heat treating at >=500 deg.C and is used for high energy excimer laser of >=20mJ/cm<2> energy density per irradiation pulse.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高エネルギー密度のエ
キシマレーザー光を利用したアブレーション加工機等に
使用され、例えば、レンズ、プリズム、ウインドー等と
して光学系を構成する石英ガラス光学部材に関し、特
に、照射パルス当りのエネルギー密度が20mJ/cm
以上と高エネルギーのエキシマレーザー光により損わ
れた光学特性を熱処理により復元できる性質を有する石
英ガラス光学部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silica glass optical member used in an ablation machine using high energy density excimer laser light and constituting an optical system as a lens, a prism, a window, etc. , Energy density per irradiation pulse is 20 mJ / cm
The present invention relates to a silica glass optical member having a property of recovering optical characteristics damaged by excimer laser light having a high energy of 2 or more by heat treatment.

【0002】[0002]

【従来の技術】エキシマレーザー光は、フォトンエネル
ギーが、KrFで5.0eV、ArFで6.4eVと高
く、化学結合に相当するエネルギーを有しており、ま
た、パルス当りのエネルギーが非常に強いパルス光であ
るので、光によって直接分子結合を切断するフォトアブ
レーション用の光源として用いられている。このエキシ
マレーザー光を光源にするフォトアブレーションは、例
えば炭酸ガスレーザー光を光源とするフォトアブレーシ
ョンに比べて、熱の発生が無いので、基板の熱変形がな
く、切断面の精度が格段に向上するなどの利点がある。
Excimer laser light has a high photon energy of 5.0 eV for KrF and 6.4 eV for ArF, and has an energy equivalent to a chemical bond, and the energy per pulse is very strong. Since it is pulsed light, it is used as a light source for photoablation in which molecular bonds are directly broken by light. The photoablation using the excimer laser light as a light source does not generate heat as compared with the photoablation using a carbon dioxide gas laser light as a light source, so that there is no thermal deformation of the substrate and the accuracy of the cut surface is significantly improved. There are advantages such as.

【0003】しかしながら、このエキシマレーザー光を
利用したアブレーション加工では、例えば同じエキシマ
レーザー光を利用しているリソグラフィーと比べて格段
にエネルギー密度が高いために、光をデリバリーするた
めに必要な光学系が強烈なエキシマレーザー光によって
損傷してしまう度合が極端に顕著であった。一般的に
は、エキシマレーザー光を用いたアブレーション加工機
に使用される光学系を構成する光学部材として、合成石
英や一部の光学結晶が用いられているが、CaF、M
gF等の光学結晶は、合成石英に比べて高価であり、
また、品質にバラツキが多いために、一般的には合成石
英ガラス材料が用いられている。
However, in the ablation process using the excimer laser light, since the energy density is remarkably high as compared with, for example, the lithography using the same excimer laser light, an optical system required for delivering light is required. The degree of damage by the intense excimer laser light was extremely remarkable. Generally, synthetic quartz or some optical crystals are used as an optical member constituting an optical system used in an ablation processing machine using an excimer laser beam, but CaF 2 , M
Optical crystals such as gF 2 are more expensive than synthetic quartz,
In addition, synthetic quartz glass materials are generally used because of the large variation in quality.

【0004】[0004]

【発明が解決しようとする課題】通常、石英ガラスにエ
キシマレーザー光が照射された場合、E*センターと呼
ばれる常磁性欠陥が生成される。この欠陥は215nm
に吸収のピークを有しているので、この様な欠陥が石英
ガラス中に生成されるとエキシマレーザー光の波長領域
(KrFで248nm、ArFで193nm)における
透過性が低下し、エネルギーが伝わらないばかりでな
く、石英ガラスの温度が上昇して最終的には石英ガラス
が破損してしまう。一方、エキシマレーザー光の照射に
よって、石英ガラスの屈折率が上昇することは知られて
いる。このような屈折率の変化は、一般的にはコンパク
ションと呼ばれる石英ガラスの収縮によって生じると考
えられているが、レンズ等の一部の光学系では、屈折率
が変化してしまうと焦点距離が変わってしまうので、致
命的な問題となる。
Normally, when a quartz glass is irradiated with excimer laser light, a paramagnetic defect called an E * center is generated. This defect is 215nm
Since such a defect is generated in quartz glass, the transmittance in the wavelength region of excimer laser light (248 nm for KrF, 193 nm for ArF) is reduced and energy is not transmitted. Not only that, the temperature of the quartz glass rises and eventually the quartz glass is damaged. On the other hand, it is known that the irradiation of excimer laser light increases the refractive index of quartz glass. Such a change in the refractive index is generally considered to occur due to the contraction of quartz glass called compaction, but in some optical systems such as lenses, if the refractive index changes, the focal length changes. It becomes a fatal problem because it changes.

【0005】実際には、このような光学特性の変化は、
エキシマレーザーの照射エネルギー密度が高ければ高い
ほどその度合が大きく、一般には変化の割合はエネルギ
ー密度の2乗に比例して増大すると考えられている。従
って、エキシマレーザーの強い光エネルギーで直接物質
を除去するようなアブレーション用の光学系において
は、使用されるエキシマレーザーのエネルギー密度も例
えば半導体の光リングラフィーに比べて数10倍も強い
ため、一定時間使用後は、従来の石英ガラスでは、レー
ザーダメージが大きすぎて、使用不能の状態となるた
め、廃棄されている。
In practice, such a change in optical characteristics is
The higher the irradiation energy density of the excimer laser, the greater the degree, and it is generally considered that the rate of change increases in proportion to the square of the energy density. Therefore, in an ablation optical system in which a substance is directly removed by the strong light energy of the excimer laser, the energy density of the excimer laser used is, for example, several ten times stronger than that of the optical lithography of a semiconductor, so that it is constant. After being used for a long time, the conventional quartz glass is discarded because the laser damage is too great to make it unusable.

【0006】このようなエキシマレーザーアブレーショ
ン加工機に用いられる光学系を構成する合成石英ガラス
は、例えば、光リソグラフィー用に用いられる合成石英
ガラス光学系に比べて、屈折率等の均質性は低いもの
の、リソグラフィーの場合の10倍以上の高フルエンス
で使用されるために、はるかに厳しい耐エキシマレーザ
ー特性が要求されている。このような、エキシマレーザ
ー光の照射によって生じる石英ガラスの光学特性の変化
としては、通常、常磁性欠陥の生成による紫外域での透
過率の低下、屈折率の上昇、複屈折の増大、蛍光の発生
と増大が挙げられており、石英ガラス光学部材には、こ
れらのエキシマレーザー光の照射に対する安定性向上が
求められている。
Synthetic quartz glass constituting an optical system used in such an excimer laser ablation processing machine has a lower homogeneity such as a refractive index as compared with, for example, a synthetic quartz glass optical system used for photolithography. In order to be used with a high fluence which is 10 times or more that in the case of lithography, much stricter excimer laser characteristics are required. Such changes in the optical properties of the quartz glass caused by the irradiation of the excimer laser light are usually as follows: decrease in transmittance in the ultraviolet region due to generation of paramagnetic defects, increase in refractive index, increase in birefringence, fluorescence Generation and increase are mentioned, and the quartz glass optical member is required to have improved stability against irradiation with these excimer laser beams.

【0007】このような石英ガラスのエキシマレーザー
に対する安定性を向上させるには、石英ガラスに水素を
ドーピングする方法が有効であることが知られている
(米国特許第5,086,352号明細書)。エキシマ
レーザー耐久性向上に関する石英ガラス中の水素濃度の
効果は、水素濃度が高ければ高いほど大きくなり、また
石英ガラスのエキシマレーザー光の照射による損傷は、
エネルギレーザーのエネルギー密度が高ければ高い程激
しくなるので、高エネルギー密度のエキシマレーザー用
の石英ガラスでは、必要な水素濃度は極めて高くなって
しまい、問題である。
In order to improve the stability of such a quartz glass against an excimer laser, it is known that a method of doping hydrogen into the quartz glass is effective (US Pat. No. 5,086,352). ). The effect of the hydrogen concentration in quartz glass on the improvement of excimer laser durability increases as the hydrogen concentration increases, and the damage caused by irradiation of excimer laser light on the quartz glass is
Since the higher the energy density of the energy laser is, the more violent it is, the necessary hydrogen concentration becomes extremely high in the quartz glass for the high energy density excimer laser, which is a problem.

【0008】また、例えばKrFエキシマレーザー光
で、パルス当りのエネルギー密度が500mJ/cm
以上の高エネルギー密度で、長期(例えば、10ショ
ットの照射)に耐えられる石英ガラスを作ろうとすれ
ば、非常な高圧で水素をドーピングすることが必要性で
あり、コスト及び安全性の点から好ましくなく、問題で
ある。例えば、石英ガラスレンズを高エネルギー密度の
エキシマレーザー光の照射に使用する場合、一般的に、
通常の石英ガラスレンズは、数週間から数カ月の単位で
使い捨てられており、問題である。本発明は、従来の石
英ガラス光学部材を高エネルギー密度のエキシマレーザ
ー光の照射に使用する場合に生じる光学特性の低下に係
る問題点を解決することを目的としている。
Further, for example, with KrF excimer laser light, the energy density per pulse is 500 mJ / cm 2.
In order to make a quartz glass with the above high energy density and capable of withstanding a long term (for example, irradiation of 10 8 shots), it is necessary to dope hydrogen with an extremely high pressure, and from the viewpoint of cost and safety. It is not good and it is a problem. For example, when using a quartz glass lens for irradiation of high energy density excimer laser light, in general,
Ordinary quartz glass lenses are a problem because they are thrown away for several weeks to months. It is an object of the present invention to solve the problems associated with the deterioration of optical characteristics that occur when a conventional silica glass optical member is used for irradiation with high energy density excimer laser light.

【0009】[0009]

【課題を解決するための手段】本発明者らは、かかる問
題を解決するために鋭意検討を加えた結果、揮発性珪素
化合物、例えば四塩化珪素等のハロゲン化珪素、又はメ
チルトリメトキシシラン等のアルコキシシランを、酸水
素火炎により分解させて得られた微細なシリカ粉を、回
転する基体上に推積させて、所謂、多孔質シリカ母材と
し、これを真空又は不活性ガス中で透明ガラス化して製
造した石英ガラスの場合、含有されるOH濃度が300
ppm以下、塩素濃度が50ppm以下であって、24
5nmの内部透過率が光路長さ1cm辺り99.5%以
上、かつ水素濃度が5×1016分子/cm以下の石
英ガラスについては、エキシマレーザー光の照射によっ
て吸収の増大する割合が、実用上使用可能範囲内で定常
化する所謂飽和点を有し、しかも、500℃における熱
処理によってOH量の変化が20ppm以下であれば、
500℃以上の温度における熱処理によって、透過率だ
けでなく屈折率の上昇、複屈折の増大、及び再使用した
場合のレーザーに対する安定性もレーザー照射前と同等
のレベルに回復することが判明した。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that volatile silicon compounds such as silicon halides such as silicon tetrachloride or methyltrimethoxysilane. Alkaline silanes are decomposed by oxyhydrogen flame and fine silica powder is deposited on a rotating substrate to form a so-called porous silica matrix, which is transparent in a vacuum or an inert gas. In the case of quartz glass produced by vitrification, the OH concentration contained is 300
24 ppm or less and chlorine concentration of 50 ppm or less
For silica glass having an internal transmittance of 5 nm of 99.5% or more per 1 cm of the optical path length and a hydrogen concentration of 5 × 10 16 molecules / cm 3 or less, the rate of increase in absorption due to irradiation of excimer laser light is practical. If it has a so-called saturation point that becomes steady within the above usable range and the change in the OH amount by heat treatment at 500 ° C. is 20 ppm or less,
It has been found that the heat treatment at a temperature of 500 ° C. or higher restores not only the transmittance but also the refractive index, the birefringence, and the stability to laser when reused to the same level as before laser irradiation.

【0010】本発明は、かかる発見に基づくものであ
り、エキシマレーザーアブレーション加工機に用いられ
る光学系を構成するのに好適な、高エネルギー密度のエ
キシマレーザー光の照射に対して、透過率及び屈折率等
の光学特性が安定で、かつ簡単な熱処理によりそれらの
光学特性が完全に回復可能の石英ガラス光学部材を提供
する事を目的としている。即ち、より具体的にはエキシ
マレーザーアブレーション加工機用の光学系を構成する
レンズ、プリズム、ウインドー等の光学部材に関して、
所定量のエキシマレーザー光の照射を行うことによって
生じた、透過率の低下、屈折率の上昇に示される光学的
なダメージが、400℃乃至800℃の範囲内の温度に
おける簡単な熱処理によって完全にエキシマレーザー照
射前のダメージのない状態に回復できる石英ガラスを提
供するものである。
The present invention is based on such a discovery, and is suitable for constructing an optical system used in an excimer laser ablation processing machine, and has a transmittance and a refraction with respect to irradiation of high energy density excimer laser light. It is an object of the present invention to provide a silica glass optical member having stable optical properties such as a refractive index and capable of completely recovering those optical properties by a simple heat treatment. That is, more specifically, regarding the optical members such as lenses, prisms, and windows that constitute the optical system for the excimer laser ablation processing machine,
The optical damage caused by the irradiation of a predetermined amount of excimer laser light, which is indicated by the decrease in transmittance and the increase in refractive index, is completely eliminated by a simple heat treatment at a temperature in the range of 400 ° C to 800 ° C. It is intended to provide a quartz glass that can be recovered to a state without damage before irradiation with an excimer laser.

【0011】即ち、本発明は、合成シリカスート体を透
明ガラス化して製造した、照射パルス当りのエネルギー
密度が20mJ/cm以上の高エネルギーエキシマレ
ーザー用の光学石英ガラス部材において、石英ガラス
は、水酸基濃度が300ppm以下、塩素濃度が50p
pm以下及び水素濃度が5×1016分子/cm以下
であり、波長245nmの紫外線に対する透過率が9
9.5%以上であり、大気又は窒素ガス雰囲気中で、5
00℃の温度で10時間にわたって熱処理したときの水
酸基濃度の変動量が20ppm以下であり、かつ、20
mJ/cm以上の高エネルギーエキシマレーザーの照
射によりもたらされるダメージが、500℃乃至800
℃の範囲内の温度による熱処理によって解消可能である
ことを特徴とする高エネルギーエキシマレーザー光学用
石英ガラス部材にあり、また、本発明は、合成シリカス
ート体を透明ガラス化して、水酸基濃度が300ppm
以下、塩素濃度が50ppm以下及び水素濃度が5×1
16分子/cm以下であり、波長245nmの紫外
線に対する透過率が99.5%以上である石英ガラスを
製造し、この製造された石英ガラスを、大気又は窒素ガ
ス雰囲気中で、500℃の温度で10時間にわたって熱
処理したときの石英ガラスの水酸基濃度の変動量が20
ppm以下となるまで、大気又は不活性ガス雰囲気中
で、500℃以上の温度で熱処理することを特徴とする
高エネルギーエキシマレーザー光学用石英ガラス部材の
製造方法を要旨とするものである。
That is, the present invention provides an optical quartz glass member for a high energy excimer laser having an energy density per irradiation pulse of 20 mJ / cm 2 or more, which is produced by converting a synthetic silica soot body into a transparent vitreous material, and the quartz glass is a hydroxyl group. Concentration is 300ppm or less, chlorine concentration is 50p
pm or less and a hydrogen concentration of 5 × 10 16 molecules / cm 3 or less, and a transmittance of ultraviolet rays having a wavelength of 245 nm of 9
9.5% or more, 5 in the atmosphere or nitrogen gas atmosphere
When the heat treatment is performed at a temperature of 00 ° C. for 10 hours, the fluctuation amount of the hydroxyl group concentration is 20 ppm or less, and
Damage caused by irradiation with a high energy excimer laser of mJ / cm 2 or more is 500 ° C to 800 ° C.
A quartz glass member for high energy excimer laser optics, which can be eliminated by heat treatment at a temperature in the range of 0 ° C., and the present invention is a transparent silica glass of synthetic silica soot body having a hydroxyl group concentration of 300 ppm.
Below, chlorine concentration is below 50ppm and hydrogen concentration is 5 × 1
Quartz glass having a molecular weight of 0 16 molecules / cm 3 or less and a transmittance of ultraviolet rays having a wavelength of 245 nm of 99.5% or more is manufactured, and the manufactured quartz glass is stored at 500 ° C. in the atmosphere or a nitrogen gas atmosphere. When heat-treated at a temperature for 10 hours, the fluctuation amount of the hydroxyl group concentration of quartz glass is 20
The gist is a method for producing a quartz glass member for high-energy excimer laser optics, which is characterized by performing a heat treatment at a temperature of 500 ° C. or more in the atmosphere or an inert gas atmosphere until the content becomes ppm or less.

【0012】一般に石英ガラス中の水酸基濃度は熱処理
によって変動することが知られており、変動しない部分
の水酸基は、パーマネントOH(permanent
OH)と呼ばれ、また変動する部分のOHは、メタステ
ーブルOH(meta−stable OH)と呼ばれ
ているが(R.W.Lee Physucs andC
hemistry of Glasses Vol.5
No.2 April 1964 pp35−4
3)、石英ガラス中に含まれる両者の割合は、石英ガラ
スの製法や製造条件によって変化する。パーマネントO
HとメタステーブルOHの割合は、水素が関係している
と言われているが、実際には、何が原因で決定されるの
かについてはよく分かっていない。
It is generally known that the concentration of hydroxyl groups in quartz glass varies depending on heat treatment, and the hydroxyl groups in the non-variable portion are permanent OH (permanent).
OH), and OH of the changing part is called meta-stable OH (meta-stable OH) (RW Lee Physucs and C).
chemistry of Glasses Vol. 5
No. 2 April 1964 pp35-4
3), the ratio of both contained in the quartz glass changes depending on the manufacturing method and manufacturing conditions of the quartz glass. Permanent O
The ratio of H to metastable OH is said to be related to hydrogen, but in practice it is not clear what causes it.

【0013】しかしながら、例えば、本発明に示される
ような揮発性珪素化合物を、酸素、水素火炎中で火炎加
水分解し、生成するシリカ微粒子を回転する基体上に推
積させた後、透明ガラス化を行って得られた石英ガラス
においても、このような熱処理による水酸基濃度の変動
はしばしば観察されることが知られている。この水酸基
濃度の変動に関し、本発明者らは、上記のように、大気
又は窒素ガス雰囲気中で、500℃の温度で10時間に
わたって熱処理したときの石英ガラスの水酸基濃度の変
動量が20ppmを越える石英ガラスについては、レー
ザーダメージを回復させる目的で熱処理を行っても、屈
折率の均質性がレーザー照射以前の状態までに回復させ
ることができない。
However, for example, a volatile silicon compound as shown in the present invention is flame-hydrolyzed in an oxygen or hydrogen flame, and the silica fine particles produced are deposited on a rotating substrate, and then vitrified into a transparent glass. It is known that even in the quartz glass obtained by performing the heat treatment, such a change in the hydroxyl group concentration due to the heat treatment is often observed. Regarding the fluctuation of the hydroxyl group concentration, the inventors of the present invention, as described above, have a fluctuation amount of the hydroxyl group concentration of silica glass of more than 20 ppm when heat-treated at a temperature of 500 ° C. for 10 hours in the atmosphere or nitrogen gas atmosphere. Regarding quartz glass, even if heat treatment is performed for the purpose of recovering laser damage, the homogeneity of the refractive index cannot be recovered to the state before laser irradiation.

【0014】レーザー照射に対する光学特性の安定性を
良くし、また、水酸基の変動量を少なくするという観点
からは、水酸基濃度は低ければ低いほど望ましいが、ス
ート法により製造された石英の場合、水酸基の低減を真
空脱水により行うときに、スート重量を増加させると、
石英中に含有される水酸基の量を、脱水ガラス化工程に
おいて、例えば100ppm以下に低減させるには、高
真空を維持したままガラス化しなくてはならず、現実に
は、ポンプ排気能力を非常に大きく設定するか、あるい
は昇温速度を遅くしてゆっくりと透明ガラス化しなくて
はならず、経済性が低下する。また、単純に水酸基濃度
を低減させるために、ハロゲンガス雰囲気でスートを脱
水しながらガラス化する場合には、石英ガラス中に高濃
度でハロゲンが残留するので石英ガラスの光学的特性の
安定を図ることができず、好ましくない。
From the viewpoints of improving the stability of optical properties against laser irradiation and reducing the fluctuation amount of hydroxyl groups, the lower the hydroxyl group concentration is, the more preferable it is. However, in the case of quartz produced by the soot method, hydroxyl groups are When the soot weight is increased when vacuum reduction is performed,
In order to reduce the amount of hydroxyl groups contained in quartz to, for example, 100 ppm or less in the dehydration vitrification step, vitrification must be performed while maintaining a high vacuum, and in reality, the pump exhaust capacity is extremely high. It must be set to a large value, or the temperature rising rate must be slowed to slowly turn it into transparent glass, which reduces the economic efficiency. Further, when the soot is dehydrated and vitrified in a halogen gas atmosphere in order to simply reduce the hydroxyl group concentration, a high concentration of halogen remains in the quartz glass, so that the optical characteristics of the quartz glass are stabilized. It is not possible and is not preferable.

【0015】以上のように、石英ガラス中の不安定な水
酸基量が多いと、エキシマレーザー光の照射、あるいは
熱処理によって水酸基量自体が変動してしまい、そのこ
とによって屈折率の均質性が変化してしまうためと考え
られる。しかしながら、本発明者らは、このような不安
定な水酸基が存在しても、大気又は窒素ガス雰囲気中
で、500℃の温度で10時間にわたって熱処理したと
きの石英ガラスの水酸基濃度の変動量が20ppm以内
であれば、その変化は、実用上ほぼ差し仕えのない範囲
内のものであることを発見した。したがって、実際に
は、前記のように、石英ガラスの水酸基濃度の前記変動
量が20ppm以下に設定できれば、石英ガラス中の水
酸基濃度が、最高300ppmまでは、実質的に石英ガ
ラスの光学的特性のの安定が達成できることを発見し
た。
As described above, when the amount of the unstable hydroxyl group in the quartz glass is large, the amount of the hydroxyl group itself is changed by the irradiation of the excimer laser light or the heat treatment, which changes the homogeneity of the refractive index. It is thought to be because it will end up. However, even if such an unstable hydroxyl group is present, the present inventors have found that the fluctuation amount of the hydroxyl group concentration of silica glass when heat-treated at a temperature of 500 ° C. for 10 hours in the atmosphere or a nitrogen gas atmosphere is small. It was discovered that the change was within 20 ppm within a practically unacceptable range. Therefore, in practice, as described above, if the variation amount of the hydroxyl group concentration of the silica glass can be set to 20 ppm or less, the hydroxyl group concentration in the silica glass is up to 300 ppm, the optical characteristics of the silica glass are substantially the same. It has been discovered that stability of can be achieved.

【0016】また、本発明において、石英ガラス中に含
有される水素濃度は、5×1016分子/cm以下で
あることが重要な条件である。これは、水素濃度が5×
1016分子/cm以上であると、エキシマレーザー
光の照射の際に、照射された部分の水酸基濃度が変化し
てしまい、熱処理によって、屈折率分布のダメージが回
復しないばかりでなく、却って、熱処理によって石英ガ
ラス中の水素自体が外部拡散してしまうために、再度レ
ーザーを照射した際に、レーザー耐性が変化してしまう
ことになる。
Further, in the present invention, it is an important condition that the concentration of hydrogen contained in the quartz glass is 5 × 10 16 molecules / cm 3 or less. This has a hydrogen concentration of 5x
If it is 10 16 molecules / cm 3 or more, the concentration of hydroxyl groups in the irradiated portion changes during the irradiation of the excimer laser light, and the heat treatment does not recover the damage of the refractive index distribution. Since hydrogen itself in the quartz glass is outdiffused by the heat treatment, the laser resistance will change when the laser is irradiated again.

【0017】本発明において、石英ガラス中の水素濃度
による水酸基濃度の変動は、水素濃度が5×1016
子/cm以下であれば、事実上問題とならない。本発
明の石英ガラス光学部材においては、500℃以上の単
なる加熱処理によってレーザー照射によって、石英ガラ
スの光学特性の屈折率、蛍光及び光透過性のダメージに
ついて回復することができる。これらの光学特性のダメ
ージが回復できれば、エキシマレーザーによるアブレー
ション用光学部材として、再度使用することができる。
In the present invention, the fluctuation of the hydroxyl group concentration depending on the hydrogen concentration in the quartz glass is practically no problem as long as the hydrogen concentration is 5 × 10 16 molecules / cm 3 or less. In the silica glass optical member of the present invention, the damage of the optical characteristics of the silica glass such as the refractive index, fluorescence and light transmission can be recovered by laser irradiation by a simple heat treatment at 500 ° C. or higher. If the damage of these optical characteristics can be recovered, it can be used again as an optical member for ablation by an excimer laser.

【0018】本発明において、レーザーダメージの回復
のための熱処理の熱処理温度が500℃未満の場合、光
透過率は回復するが、屈折率及び複屈折のダメージを回
復させることができないので、この熱処理の場合、レー
ザーダメージを受けた石英ガラスの光学特性を回復させ
ることができない。一方、加熱温度を500℃以上にす
れば上記光学特性を回復するができる。しかし、加熱温
度を800℃以上の高温とする場合には、冷却工程にお
いて、屈折率分布及び複屈折が変化することがあり、注
意が必要である。即ち、800℃以上の高温における熱
処理を行う場合には、冷却中に屈折率分布が変化した
り、複屈折が導入されたりすることがないように、徐冷
速度を、石英ガラスの形状、大きさ及び加熱温度に応じ
た最適なゆっくりした速度に設定する必要がある。しか
し、500乃至800℃の温度範囲における熱処理によ
る場合は、徐冷速度を厳密に調整しなくても、レーザー
ダメージによる光学特性の変化を完全に回復させること
ができるので好ましい。
In the present invention, when the heat treatment temperature of the heat treatment for recovering the laser damage is less than 500 ° C., the light transmittance is restored, but the damage of the refractive index and the birefringence cannot be restored. In the case of, the optical characteristics of the quartz glass damaged by laser cannot be recovered. On the other hand, if the heating temperature is 500 ° C. or higher, the above optical characteristics can be restored. However, if the heating temperature is set to a high temperature of 800 ° C. or higher, the refractive index distribution and the birefringence may change in the cooling step, so caution is required. That is, when heat treatment is performed at a high temperature of 800 ° C. or higher, the slow cooling rate is set to the shape and size of the quartz glass so that the refractive index distribution does not change or birefringence is introduced during cooling. It is necessary to set the optimum slow speed according to the temperature and heating temperature. However, the heat treatment in the temperature range of 500 to 800 ° C. is preferable because the change in optical characteristics due to laser damage can be completely recovered without strictly adjusting the annealing rate.

【0019】本発明においては、石英ガラスについて、
500℃以上の温度で加熱処理を1回或いは複数回繰り
返すことによって、石英ガラス中の変動し易い水酸基を
安定化させ、石英ガラスの水酸基濃度の変動量を20p
pm以下にすることができる。本発明において、この安
定化処理の温度及び時間は、加熱処理させる試料の大き
さ、該試料中の不安定な水酸基の量によって異なり、本
発明の石英ガラスの場合には、通常、500℃の温度
で、10時間に亘る熱処理を1回行うことでほぼ十分で
ある。
In the present invention, regarding quartz glass,
By repeating the heat treatment once or a plurality of times at a temperature of 500 ° C. or higher, the volatile hydroxyl groups in the quartz glass are stabilized, and the fluctuation amount of the hydroxyl group concentration of the quartz glass is set to 20 p.
It can be pm or less. In the present invention, the temperature and time of this stabilization treatment differ depending on the size of the sample to be heat treated and the amount of unstable hydroxyl groups in the sample, and in the case of the quartz glass of the present invention, it is usually 500 ° C. A single heat treatment for 10 hours at temperature is almost sufficient.

【0020】本発明においては、一回の安定化熱処理
で、水酸基濃度の変動量が20ppm以下とならない場
合には、複数回同様の熱処理を繰り返すことにより、水
酸基濃度の安定化を達成することができることが分かっ
た。この水酸基濃度の安定化処理は、500℃以上の温
度で行うことが必要であり、かつ水素を含有しない雰囲
気で行う場合には、適切な時間を設定することによって
達成することができる。しかし、ダメージ回復の場合と
同様に、熱処理温度が800℃以上であると、屈折率の
均質性及び低い複屈折を維持するためには、降温時即ち
冷却時の温度管理が重要となるので、熱処理温度は80
0℃までとするのが望ましい。
In the present invention, when the fluctuation amount of the hydroxyl group concentration does not become 20 ppm or less in one stabilization heat treatment, the stabilization of the hydroxyl group concentration can be achieved by repeating the same heat treatment a plurality of times. I knew I could do it. This stabilization treatment of the hydroxyl group concentration needs to be performed at a temperature of 500 ° C. or higher, and when performed in an atmosphere containing no hydrogen, it can be achieved by setting an appropriate time. However, as in the case of damage recovery, if the heat treatment temperature is 800 ° C. or higher, in order to maintain the homogeneity of the refractive index and the low birefringence, it is important to control the temperature during cooling, that is, during cooling. Heat treatment temperature is 80
It is desirable to set the temperature to 0 ° C.

【0021】本発明においては、熱処理温度を比較的高
くし、熱処理の保持時間を必要最低限に設定して、加
熱、降温の回数を重ねる方が、熱処理回数を減らして、
熱処理保持時間を相応するように延ばすよりも効果的で
あることが分かった。このようにして不安定水酸基量を
低減させた石英ガラスは、不安定水酸基量がもともと2
0ppm以下の石英ガラスと全く同様にダメージ回復の
熱処理によって、光学特性が回復することができること
が分かった。
In the present invention, the heat treatment temperature is relatively high, the heat treatment holding time is set to the necessary minimum, and the number of times of heating and cooling is repeated to reduce the number of heat treatments.
It has been found to be more effective than lengthening the heat treatment hold time accordingly. Quartz glass in which the amount of unstable hydroxyl groups is reduced in this way is
It was found that the optical characteristics can be recovered by the heat treatment for damage recovery, which is exactly the same as that of the silica glass of 0 ppm or less.

【0022】[0022]

【作用】本発明においては、石英ガラスについて、水酸
基濃度が300ppm以下、塩素濃度が50ppm以下
及び水素濃度が5×1016分子/cm以下であり、
波長245nmの紫外線に対する透過率が99.5%以
上であり、大気又は窒素ガス雰囲気中で、500℃の温
度で10時間にわたって熱処理されたときの水酸基濃度
の変動量が20ppm以下とさせたので、20mJ/c
以上の高エネルギーエキシマレーザーの照射によ
り、石英ガラスにレーザーダメージが形成されても、少
なくとも500℃以上の温度による熱処理によって解消
可能であり、繰り返し使用することができる。
In the present invention, the silica glass has a hydroxyl group concentration of 300 ppm or less, a chlorine concentration of 50 ppm or less, and a hydrogen concentration of 5 × 10 16 molecules / cm 3 or less,
Since the transmittance for ultraviolet rays having a wavelength of 245 nm is 99.5% or more, and the variation amount of the hydroxyl group concentration when heat-treated at a temperature of 500 ° C. for 10 hours in the air or a nitrogen gas atmosphere is 20 ppm or less, 20 mJ / c
Even if laser damage is formed on the quartz glass by irradiation with a high energy excimer laser of m 2 or more, it can be eliminated by heat treatment at a temperature of at least 500 ° C. and can be repeatedly used.

【0023】[0023]

【実施例】以下、本発明の実施の態様について、例を挙
げて説明するが、本発明は、以下の説明及び例示によ
り、何ら限定されるものではない。 例1 四塩化珪素を酸水素火炎中に導入して、生成するシリカ
微粒子を回転する基体上に推積させ、重量3kgの多孔
質シリカ母材を形成し、該多孔質シリカ母材を真空炉内
設置し、炉内を10−4torrまで真空排気した後、
1000℃までは20℃/分、1000℃から1500
℃までは10℃/分の昇温速度で真空排気を継続しなが
ら加熱した。更に1500℃で1時間保持した後、冷却
し透明な合成石英ガラスインゴットを得た。該透明石英
インゴットの均質性を向上するための均質化処理、必要
形状に加工する成形処理、歪除去のためのアニール処理
を施した後、屈折率の均質性が3×10−6(633n
mのHe/Neレーザーの干渉縞で測定)の合成石英ガ
ラス成形体を得た。
EXAMPLES The embodiments of the present invention will be described below with reference to examples, but the present invention is not limited by the following description and examples. Example 1 Introducing silicon tetrachloride into an oxyhydrogen flame, depositing the resulting silica fine particles on a rotating substrate to form a porous silica base material having a weight of 3 kg, and using the porous silica base material as a vacuum furnace. Installed inside and evacuated the furnace to 10 -4 torr,
20 ° C / min up to 1000 ° C, 1000 ° C to 1500
The temperature was raised to 10.degree. C. at a heating rate of 10.degree. After further holding at 1500 ° C. for 1 hour, it was cooled to obtain a transparent synthetic quartz glass ingot. After the homogenization treatment for improving the homogeneity of the transparent quartz ingot, the molding treatment for processing into a required shape, and the annealing treatment for removing strain, the homogeneity of the refractive index is 3 × 10 −6 (633n).
m (measured by interference fringe of He / Ne laser).

【0024】得られた合成石英ガラス成形体について、
水酸基(OH基)濃度、塩素濃度、及び水素濃度を測定
したところ、夫々、280ppm、10ppm、1×1
16分子/cmであった。なお、石英ガラスの水酸
基濃度については赤外分光光度計により測定し、塩素濃
度については硝酸銀比濁法により測定し、水素濃度はラ
マン分光光度法により測定した。使用したラマン分光分
光度計は日本分光工業NR1000であり、励起波長4
88nmのArレーザー光で、出力700mW、浜松ホ
トニクス社製のホトマルを使用し、ホトンカウンティン
グ法ひより測定した。更に、245nmの波長の紫外線
に対する透過率を紫外分光光度計にて測定したところ1
cm当たりの内部透過率で99.9%であった。また、
得られた試料の励起波長250nmに対する蛍光スペク
トルを測定したところ、蛍光は観察されなかった。
Regarding the obtained synthetic quartz glass molded body,
When the hydroxyl group (OH group) concentration, chlorine concentration, and hydrogen concentration were measured, they were 280 ppm, 10 ppm, and 1 × 1 respectively.
It was 0 16 molecule / cm 3 . The hydroxyl group concentration of quartz glass was measured by an infrared spectrophotometer, the chlorine concentration was measured by a silver nitrate nephelometry, and the hydrogen concentration was measured by a Raman spectrophotometer. The Raman spectrophotometer used was JASCO NR1000, excitation wavelength 4
Using a 88 nm Ar laser beam, an output of 700 mW, and using a Photomaru manufactured by Hamamatsu Photonics KK, a photon counting method was used to measure. Further, the transmittance for ultraviolet rays having a wavelength of 245 nm was measured by an ultraviolet spectrophotometer to be 1
The internal transmittance per cm was 99.9%. Also,
When the fluorescence spectrum of the obtained sample at an excitation wavelength of 250 nm was measured, no fluorescence was observed.

【0025】該石英ガラス成形体より20mm×30m
m×50mmの試料を3片切り出し、1片を大気雰囲気
下で500℃×10時間の加熱処理を行い水酸基濃度を
測定したところ、水酸基濃度は270ppmであり、加
熱処理前後の水酸基濃度の変動量は10ppmであっ
た。残る2片をKrFエキシマレーザーにてパルス辺り
のエネルギー密度400mJ/cmで5×10ショ
ット照射し、光学特性を測定した。紫外線の透過率で
は、波長215nm及び260nmに吸収が観察され、
照射された部分の屈折率が上昇しているために屈折率分
布が8×10−6と非常に大きくなっており、光学部材
として使用できる範囲の屈折率の均質性が失われている
ことが判った。
20 mm × 30 m from the quartz glass molded body
When three pieces of m × 50 mm sample were cut out and one piece was subjected to heat treatment at 500 ° C. for 10 hours in the air atmosphere to measure the hydroxyl group concentration, the hydroxyl group concentration was 270 ppm, and the fluctuation amount of the hydroxyl group concentration before and after the heat treatment was measured. Was 10 ppm. The remaining two pieces were irradiated with a KrF excimer laser at an energy density of 400 mJ / cm 2 around the pulse for 5 × 10 6 shots, and the optical characteristics were measured. In the ultraviolet transmittance, absorption is observed at wavelengths of 215 nm and 260 nm,
Since the refractive index of the irradiated portion is increased, the refractive index distribution is as large as 8 × 10 −6, and the homogeneity of the refractive index within the range that can be used as an optical member is lost. understood.

【0026】図1にレーザー照射によって紫外部に吸収
が生じている石英ガラスの紫外域の透過率のスペクトル
チャートを示す。また、図2にレーザーが照射された部
分の石英ガラスの屈折率分布を示す。さらに、レーザー
照射した石英ガラス試料について、励起波長250nm
に対する蛍光スペクトルを測定したところ、図3に示す
ように、波長650nmに非常に強い蛍光を有する蛍光
スペクトルチャートが得られた。ここで、レーザー照射
によりダメージが入った石英ガラスついて、その一試料
片を、大気中、500℃×10時間の熱処理を行い、紫
外線の透過率、屈折率分布及び蛍光を測定した。紫外線
透過率の測定では215nm及び260nmの吸収が消
え、屈折率分布も回復した。図4に、その熱処理後の紫
外線透過率スペクトルチャートを示し、図5にその屈折
率分布を示す。さらに、図6の蛍光スペクトルチャート
こ示すように、熱処理によって、蛍光が消失しているこ
とが判る。以上、図1から図6に示されるように、本実
施例における石英ガラス試料については、熱処理により
各石英ガラスの光学特性がレーザー照射前と同等に回復
していることが判る。
FIG. 1 shows a spectrum chart of the transmittance in the ultraviolet region of quartz glass, which is absorbed in the ultraviolet region by laser irradiation. Further, FIG. 2 shows the refractive index distribution of the quartz glass in the portion irradiated with the laser. Furthermore, the excitation wavelength of the quartz glass sample irradiated with laser was 250 nm.
As a result of measuring the fluorescence spectrum with respect to, a fluorescence spectrum chart having very strong fluorescence at a wavelength of 650 nm was obtained as shown in FIG. Here, with respect to the quartz glass damaged by laser irradiation, one sample piece thereof was subjected to heat treatment in the atmosphere at 500 ° C. for 10 hours, and the ultraviolet transmittance, the refractive index distribution, and the fluorescence were measured. In the measurement of the ultraviolet transmittance, the absorption at 215 nm and 260 nm disappeared and the refractive index distribution was restored. FIG. 4 shows a UV transmittance spectrum chart after the heat treatment, and FIG. 5 shows the refractive index distribution. Further, as shown in the fluorescence spectrum chart of FIG. 6, it is found that the fluorescence disappears due to the heat treatment. As described above, as shown in FIG. 1 to FIG. 6, it is understood that the quartz glass samples in the present example have the optical characteristics of each quartz glass restored to the same level as before the laser irradiation by the heat treatment.

【0027】[0027]

【比較例1】次に、実施例でレーザーを照射した石英ガ
ラスの残る1片を大気雰囲気中、400℃×20時間の
熱処理を行い、紫外透過率、屈折率、蛍光の測定を行っ
た。測定結果をそれぞれ図7、図8、図9に示す。透過
率及び蛍光については回復しているものの屈折率の回復
は認められなかった。この結果から、レーザーダメージ
の回復のための熱処理は500℃以上の温度が必要であ
ることが判った。
Comparative Example 1 Next, the remaining piece of quartz glass irradiated with laser in the example was heat-treated at 400 ° C. for 20 hours in the atmosphere, and the ultraviolet transmittance, the refractive index and the fluorescence were measured. The measurement results are shown in FIGS. 7, 8 and 9, respectively. Although the transmittance and the fluorescence were recovered, the recovery of the refractive index was not observed. From this result, it was found that the heat treatment for recovering the laser damage requires a temperature of 500 ° C. or higher.

【0028】[0028]

【比較例2】日をおいて実施例と全く同一の製造条件で
合成石英インゴットを製造し、更に同一条件で石英ガラ
ス成形体を製造した。製造した石英ガラスの屈折率の均
質性は3×10−6であった。得られた合成石英ガラス
成形体に含有される水酸基濃度、塩素濃度、水素濃度を
測定したところ、夫々、280ppm、10ppm、1
×1016分子/cmであった。更に、波長245n
mの波長の紫外線に対する透過率を紫外分光光度計にて
測定したところ1cmあたりの内部透過率で99.9%
であった。また、得られた試料の励起波長250nmに
対する蛍光スペクトルを測定したところ、蛍光は観察さ
れなかった。
COMPARATIVE EXAMPLE 2 A synthetic quartz ingot was manufactured under the same manufacturing conditions as those of the examples, and a quartz glass molded body was manufactured under the same conditions. The homogeneity of the refractive index of the manufactured quartz glass was 3 × 10 −6 . The hydroxyl group concentration, chlorine concentration, and hydrogen concentration contained in the obtained synthetic quartz glass molded body were measured, and they were 280 ppm, 10 ppm, and 1 respectively.
It was × 10 16 molecules / cm 3 . Furthermore, wavelength 245n
The transmittance for ultraviolet light having a wavelength of m was measured with an ultraviolet spectrophotometer, and the internal transmittance per cm was 99.9%.
Met. Further, when the fluorescence spectrum of the obtained sample at an excitation wavelength of 250 nm was measured, no fluorescence was observed.

【0029】該石英ガラス成形体より20mm×30m
m×50mmの試料を2片切り出し、1片を大気雰囲気
下で500℃×10時間の加熱処理を行い水酸基濃度を
測定したところ、250ppmであり、加熱処理前後の
変動量は30ppmであった。残る石英ガラスの試料片
をKrFエキシマレーザーにてパルス辺りのエネルギ密
度400mJ/cmで260×10ショット照射
し、光学特性を測定した。紫外線の透過率では、波長2
15nm及び260nmに吸収が観察され、照射された
部分の屈折率が上昇しているため、屈折率分布が8×1
−6と非常に大きくなり、光学部材として使用できる
範囲の屈折率の均質性が失われていることが判った。
20 mm × 30 m from the quartz glass molded body
Two m × 50 mm samples were cut out, and one piece was subjected to heat treatment at 500 ° C. for 10 hours in an air atmosphere to measure the hydroxyl group concentration. As a result, it was 250 ppm, and the variation before and after the heat treatment was 30 ppm. The remaining quartz glass sample piece was irradiated with a KrF excimer laser at 260 × 10 6 shots at an energy density of 400 mJ / cm 2 around the pulse, and the optical characteristics were measured. For the transmittance of ultraviolet rays, the wavelength is 2
Absorption was observed at 15 nm and 260 nm, and the refractive index of the irradiated portion was increased, so the refractive index distribution was 8 × 1.
0 -6 and becomes very large, it was found that the homogeneity of the refractive index in the range that can be used as an optical member is lost.

【0030】ここで、レーザー照射によってダメージが
入った石英ガラスの試料を大気中、500℃×10時間
の加熱処理を行い、紫外線の透過率、屈折率分布、蛍光
を測定した。紫外線透過率では、波長215nm及び2
60nmの吸収が消え、蛍光についても回復しているも
のの、屈折率分布では干渉縞の湾曲が認められ、屈折率
分布については完全に回復しなかった。図10に屈折率
分布を示す。加熱処理による水酸基濃度の変動量が20
ppm以上であると光学特性が完全には回復していない
ことが判明した。ここで、実施例と比較例では製造条
件、確認された物性値が同一であるにも係わらず、結果
が異なっており、加熱処理におけるOHの変動量のみに
よって両者の差が識別できることが判明した。
Here, a quartz glass sample damaged by laser irradiation was heat-treated in the atmosphere at 500 ° C. for 10 hours, and the ultraviolet transmittance, the refractive index distribution, and the fluorescence were measured. In the ultraviolet transmittance, wavelengths of 215 nm and 2
Although absorption at 60 nm disappeared and fluorescence was recovered, curvature of interference fringes was observed in the refractive index distribution, and the refractive index distribution was not completely recovered. FIG. 10 shows the refractive index distribution. The amount of change in hydroxyl group concentration due to heat treatment is 20
It was found that the optical characteristics were not completely recovered when the content was more than ppm. Here, in the example and the comparative example, the production conditions and the confirmed physical property values were the same, but the results were different, and it was found that the difference between the two can be identified only by the variation amount of OH in the heat treatment. .

【0031】[0031]

【比較例3】実施例と同様の方法にて多孔質シリカ母材
を形成し、該シリカ母材を真空炉内に設置し、炉内を1
0−torrまで真空排気した後、1500℃まで2
0℃/分の昇温速度で真空排気を継続しながら加熱し
た。更に1500℃で1時間保持した後、冷却し透明な
石英インゴットを得た。該透明石英インゴットの均質性
を向上するための均質性処理、必要形状に成型するため
の成型処理、歪除去のためのアニール処理を施した後、
屈折率の均質性が5×10−6の石英ガラス成型体を得
た。得られた石英ガラス成型体に含有される水酸基濃
度、塩素濃度、水素濃度を測定したところ、それぞれ3
80ppm、10ppm、1×10−16分子/cm
であった。また、得られた試料の励起波長250nmに
対する蛍光スペクトルをとったところ、蛍光は観察され
なかった。該石英ガラス成型体より20mm×30mm
×50mmの試料を2片切り出し、1片を大気雰囲気下
で500℃×10時間の加熱処理を行いOH濃度を測定
したところ、360ppmで変動量は20ppmであっ
た。
[Comparative Example 3] A porous silica base material was formed in the same manner as in the example, the silica base material was placed in a vacuum furnace, and the inside of the furnace was set to 1
After evacuated to 0- 3 torr, 2 to 1500 ℃
Heating was performed at a temperature rising rate of 0 ° C./min while continuing evacuation. After further holding at 1500 ° C. for 1 hour, it was cooled to obtain a transparent quartz ingot. After performing homogeneity treatment for improving the homogeneity of the transparent quartz ingot, molding treatment for forming into a required shape, and annealing treatment for removing strain,
A quartz glass molded body having a refractive index homogeneity of 5 × 10 −6 was obtained. When the concentration of hydroxyl group, chlorine concentration, and hydrogen concentration contained in the obtained quartz glass molded body were measured, each was 3
80 ppm, 10 ppm, 1 × 10 −16 molecule / cm 3
Met. Further, when the fluorescence spectrum of the obtained sample at an excitation wavelength of 250 nm was taken, no fluorescence was observed. 20 mm x 30 mm from the quartz glass molded body
Two pieces of a sample of 50 mm were cut out, and one piece was subjected to a heat treatment at 500 ° C. for 10 hours in an air atmosphere to measure the OH concentration. As a result, the OH concentration was 360 ppm, and the fluctuation amount was 20 ppm.

【0032】残る1片を実施例と同様の条件でレーザー
照射を行い、光学特性を測定した。紫外線の透過率で
は、波長215nm及び260nmに吸収が観察され、
また照射された部分の屈折率分布も1.2×10−5
大きく変化していることが判った。さらに、レーザー照
射した試料の励起波長250nmに対する蛍光スペクト
ルを観察したところ、波長650nmに強い蛍光が観察
された。ここで、レーザー照射によってダメージが入っ
た試料を大気中、500℃×10時間の加熱処理を行
い、紫外線の透過率、屈折率分布、蛍光を測定した。紫
外線の透過率、蛍光は回復したものの、屈折率分布には
僅かではあるが、回復しきっていない部分が観察され
た。レーザー照射による屈折率の変動量が大きすぎるた
め回復しきっていないことが判った。図11に屈折率の
分布を示す。更に、水酸基濃度が300ppmよりも多
い試料では、レーザーダメージの回復以前にレーザー照
射によるダメージが大きすぎるため、本発明の目的は達
していない。
The remaining piece was irradiated with laser under the same conditions as in the example, and the optical characteristics were measured. In the ultraviolet transmittance, absorption is observed at wavelengths of 215 nm and 260 nm,
It was also found that the refractive index distribution of the irradiated portion was significantly changed to 1.2 × 10 −5 . Furthermore, when the fluorescence spectrum of the laser-irradiated sample at an excitation wavelength of 250 nm was observed, strong fluorescence was observed at a wavelength of 650 nm. Here, the sample damaged by the laser irradiation was subjected to heat treatment in the atmosphere at 500 ° C. for 10 hours, and the ultraviolet transmittance, the refractive index distribution, and the fluorescence were measured. Although the transmittance of ultraviolet rays and the fluorescence were recovered, a part of the refractive index distribution which was not completely recovered was observed although it was slight. It was found that the amount of change in the refractive index due to laser irradiation was too large to completely recover. FIG. 11 shows the distribution of refractive index. Further, in a sample having a hydroxyl group concentration of more than 300 ppm, damage due to laser irradiation is too large before recovery of laser damage, and thus the object of the present invention has not been achieved.

【0033】[0033]

【発明の効果】本発明においては、石英ガラスについ
て、水酸基濃度が300ppm以下、塩素濃度が50p
pm以下及び水素濃度が5×1016分子/cm以下
であり、波長245nmの紫外線に対する透過率が9
9.5%以上であり、大気又は窒素ガス雰囲気中で、5
00℃の温度で10時間にわたって熱処理されたときの
水酸基濃度の変動量が20ppm以下とさせたので、高
エネルギーエキシマレーザーの照射によるレーザーダメ
ージを解消して再生可能となり、従来の20mJ/cm
以上の高エネルギーエキシマレーザー用の石英ガラス
光学部材に比して、長期の使用が可能とさせるものであ
り、高価な石英ガラスを有効に利用することができ、例
えば、エキシマレーザーによるアブレーションのコスト
の低減をはかることができる。
In the present invention, quartz glass has a hydroxyl group concentration of 300 ppm or less and a chlorine concentration of 50 p.
pm or less and a hydrogen concentration of 5 × 10 16 molecules / cm 3 or less, and a transmittance of ultraviolet rays having a wavelength of 245 nm of 9
9.5% or more, 5 in the atmosphere or nitrogen gas atmosphere
Since the fluctuation amount of the hydroxyl group concentration when heat-treated at a temperature of 00 ° C. for 10 hours was set to 20 ppm or less, the laser damage due to the irradiation of the high energy excimer laser was eliminated and reproduction was possible, and the conventional 20 mJ / cm 2 was achieved.
Compared with silica glass optical members for high energy excimer lasers of two or more, it enables long-term use and allows expensive silica glass to be effectively used. For example, the cost of ablation by excimer lasers. Can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の石英ガラスについて、レーザ
ー照射後で加熱処理前の蛍光領域における透過率スペク
トルを示す図であり、縦軸に波長(nm)を示し、横軸
に透過率(%)が示す。
FIG. 1 is a diagram showing a transmittance spectrum in a fluorescent region after laser irradiation and before heat treatment for quartz glass of an example of the present invention, in which the vertical axis represents wavelength (nm) and the horizontal axis represents transmittance ( %) Indicates.

【図2】本発明の実施例における石英ガラスのレーザー
照射後で加熱処理前の屈折率分布を示す図である。
FIG. 2 is a diagram showing a refractive index distribution of quartz glass after laser irradiation and before heat treatment in an example of the present invention.

【図3】本発明の実施例における石英ガラスのレーザー
照射後で加熱処理前の蛍光スペクトルを示す図であり、
横軸に波長を示し、縦軸に、励起波長250nmで、2
90nm以下の波長をフィルターカットした蛍光強度
(任意単位)を示す。
FIG. 3 is a diagram showing a fluorescence spectrum of quartz glass after laser irradiation and before heat treatment in an example of the present invention,
The horizontal axis shows the wavelength, and the vertical axis shows the excitation wavelength of 250 nm, which is 2
The fluorescence intensity (arbitrary unit) obtained by filtering the wavelength of 90 nm or less is shown.

【図4】本発明の実施例における石英ガラスのレーザー
照射後で加熱処理後の蛍光領域における透過率スペクト
ルを示す図であり、縦軸に波長(nm)を示し、横軸に
透過率(%)を示す。
FIG. 4 is a diagram showing a transmittance spectrum in a fluorescent region after heat treatment of quartz glass in the example of the present invention after laser irradiation, wherein the vertical axis represents wavelength (nm) and the horizontal axis represents transmittance (%). ) Is shown.

【図5】本発明の実施例における石英ガラスのレーザー
照射後で加熱処理後の屈折率分布を示す図である。
FIG. 5 is a view showing a refractive index distribution after heat treatment after laser irradiation of quartz glass in an example of the present invention.

【図6】本発明の実施例における石英ガラスのレーザー
照射後で加熱処理後の蛍光スペクトルを示す図であり、
横軸に波長を示し、縦軸に、励起波長250nmで、2
90nm以下の波長をフィルターカットした蛍光強度
(任意単位)を示す。
FIG. 6 is a diagram showing a fluorescence spectrum after heat treatment after laser irradiation of quartz glass in an example of the present invention,
The horizontal axis shows the wavelength, and the vertical axis shows the excitation wavelength of 250 nm, which is 2
The fluorescence intensity (arbitrary unit) obtained by filtering the wavelength of 90 nm or less is shown.

【図7】本発明の比較例における石英ガラスのレーザー
照射前で加熱処理後の透過率スペクトルを示す図であ
り、縦軸に波長(nm)を示し、横軸に透過率(%)を
示す。
FIG. 7 is a diagram showing a transmittance spectrum of quartz glass before laser irradiation and after heat treatment in a comparative example of the present invention, in which the vertical axis represents wavelength (nm) and the horizontal axis represents transmittance (%). .

【図8】本発明の比較例における石英ガラスのレーザー
照射後の加熱処理後の屈折率分布を示す図である。
FIG. 8 is a diagram showing a refractive index distribution after heat treatment of a quartz glass after laser irradiation in a comparative example of the present invention.

【図9】本発明の比較例における石英ガラスのレーザー
照射後の熱処理後の蛍光スペクトルを示す図であり、横
軸に波長を示し、縦軸に、励起波長250nmで、29
0nm以下の波長をフィルターカットした蛍光強度(任
意単位)を示す。
FIG. 9 is a diagram showing a fluorescence spectrum after heat treatment of quartz glass in a comparative example of the present invention after laser irradiation, in which the horizontal axis represents wavelength and the vertical axis represents excitation wavelength of 250 nm.
The fluorescence intensity (arbitrary unit) obtained by filtering the wavelength of 0 nm or less is shown.

【図10】本発明の比較例における石英ガラスのレーザ
ー照射後の熱処理後の屈折率分布を示す図である。
FIG. 10 is a diagram showing a refractive index distribution after heat treatment of a quartz glass after laser irradiation in a comparative example of the present invention.

【図11】本発明の比較例における石英ガラスのレーザ
ー照射後の熱処理後の屈折率分布を示す図である。
FIG. 11 is a diagram showing a refractive index distribution after heat treatment after laser irradiation of quartz glass in a comparative example of the present invention.

フロントページの続き (72)発明者 西村 裕幸 福島県郡山市田村町金屋字川久保88 信越 石英株式会社石英技術研究所内 (72)発明者 森 利樹 福島県郡山市田村町金屋字川久保88 信越 石英株式会社石英技術研究所内Front page continuation (72) Hiroyuki Nishimura Inventor Hiroyuki Nishimura, Kanayama, Koriyama, Fukushima 88 Kawakubo, Shin-Etsu Quartz Co., Ltd.Quartz Technology Laboratory Quartz Technology Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 合成シリカスート体を透明ガラス化して
製造した、照射パルス当りのエネルギー密度が20mJ
/cm以上の高エネルギーエキシマレーザー用の光学
石英ガラス部材において、石英ガラスは、水酸基濃度が
300ppm以下、塩素濃度が50ppm以下及び水素
濃度が5×1016分子/cm以下であり、波長24
5nmの紫外線に対する透過率が99.5%以上であ
り、大気又は窒素ガス雰囲気中で、500℃の温度で1
0時間にわたって熱処理されたときの水酸基濃度の変動
量が20ppm以下であり、かつ、20mJ/cm
上の高エネルギーエキシマレーザーの照射によりもたら
されるダメージが、500℃以上の温度による熱処理に
よって解消可能であることを特徴とする高エネルギーエ
キシマレーザー光学用石英ガラス部材。
1. An energy density per irradiation pulse of 20 mJ, which is produced by transparentizing vitreous synthetic silica soot.
In the optical quartz glass member for a high energy excimer laser having a wavelength of 24 / cm 2 or more, the quartz glass has a hydroxyl group concentration of 300 ppm or less, a chlorine concentration of 50 ppm or less, and a hydrogen concentration of 5 × 10 16 molecules / cm 3 or less, and a wavelength of 24
It has a transmittance of 59.5% or more for ultraviolet rays of 5 nm and is 1 at a temperature of 500 ° C. in the atmosphere or a nitrogen gas atmosphere.
The fluctuation amount of the hydroxyl group concentration when heat-treated for 0 hours is 20 ppm or less, and damage caused by irradiation with a high-energy excimer laser of 20 mJ / cm 2 or more can be eliminated by heat treatment at a temperature of 500 ° C. or more. A quartz glass member for high-energy excimer laser optics, which is characterized in that
【請求項2】 合成シリカスート体を透明ガラス化し
て、水酸基濃度が300ppm以下、塩素濃度50pp
m以下及び水素濃度が5×1016分子/cm以下で
あり、波長245nmの紫外線に対する透過率が99.
5%以上である石英ガラスを製造し、この製造された石
英ガラスを、大気又は窒素ガス雰囲気中で、500℃の
温度で10時間にわたって熱処理したときの石英ガラス
の水酸基濃度の変動量が20ppm以下となるまで、大
気又は不活性ガス雰囲気中で、500℃以上の温度で熱
処理することを特徴とする高エネルギーエキシマレーザ
ー光学用石英ガラス部材の製造方法。
2. A synthetic silica soot body is made into a transparent glass so that the hydroxyl group concentration is 300 ppm or less and the chlorine concentration is 50 pp.
m or less, the hydrogen concentration is 5 × 10 16 molecules / cm 3 or less, and the transmittance for ultraviolet light having a wavelength of 245 nm is 99.
A quartz glass having a concentration of 5% or more is produced, and when the produced quartz glass is heat-treated at a temperature of 500 ° C. for 10 hours in an atmosphere or a nitrogen gas atmosphere, the fluctuation amount of the hydroxyl group concentration of the quartz glass is 20 ppm or less. The method for producing a quartz glass member for high energy excimer laser optics, which comprises performing heat treatment at a temperature of 500 ° C. or higher in the atmosphere or an inert gas atmosphere until the temperature becomes
JP36211092A 1992-12-28 1992-12-28 Optical quartz glass member for excimer laser and method for producing the same Expired - Fee Related JP2784708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36211092A JP2784708B2 (en) 1992-12-28 1992-12-28 Optical quartz glass member for excimer laser and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36211092A JP2784708B2 (en) 1992-12-28 1992-12-28 Optical quartz glass member for excimer laser and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06199539A true JPH06199539A (en) 1994-07-19
JP2784708B2 JP2784708B2 (en) 1998-08-06

Family

ID=18475937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36211092A Expired - Fee Related JP2784708B2 (en) 1992-12-28 1992-12-28 Optical quartz glass member for excimer laser and method for producing the same

Country Status (1)

Country Link
JP (1) JP2784708B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707908A (en) * 1995-01-06 1998-01-13 Nikon Corporation Silica glass
WO2000015570A1 (en) * 1998-09-14 2000-03-23 Heraeus Quarzglas Gmbh & Co. Kg Optical component made of silica glass and method for the production thereof
US6143676A (en) * 1997-05-20 2000-11-07 Heraeus Quarzglas Gmbh Synthetic silica glass used with uv-rays and method producing the same
JP2003176141A (en) * 2001-12-06 2003-06-24 Shinetsu Quartz Prod Co Ltd Quartz glass base for optical apparatus, method of manufacturing the same and their use
US6588236B2 (en) 1999-07-12 2003-07-08 Kitagawa Industries Co., Ltd. Method of processing a silica glass fiber by irradiating with UV light and annealing
WO2003091175A1 (en) * 2002-04-23 2003-11-06 Asahi Glass Company, Limited Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
US7534733B2 (en) * 2004-02-23 2009-05-19 Corning Incorporated Synthetic silica glass optical material having high resistance to laser induced damage
JP2016505803A (en) * 2012-10-01 2016-02-25 モーメンティブ・パフォーマンス・マテリアルズ・インク Containers and methods for in-line analysis of protein compositions

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707908A (en) * 1995-01-06 1998-01-13 Nikon Corporation Silica glass
US5908482A (en) * 1995-01-06 1999-06-01 Nikon Corporation Method for producing a silica glass
US6143676A (en) * 1997-05-20 2000-11-07 Heraeus Quarzglas Gmbh Synthetic silica glass used with uv-rays and method producing the same
WO2000015570A1 (en) * 1998-09-14 2000-03-23 Heraeus Quarzglas Gmbh & Co. Kg Optical component made of silica glass and method for the production thereof
US6588236B2 (en) 1999-07-12 2003-07-08 Kitagawa Industries Co., Ltd. Method of processing a silica glass fiber by irradiating with UV light and annealing
JP2003176141A (en) * 2001-12-06 2003-06-24 Shinetsu Quartz Prod Co Ltd Quartz glass base for optical apparatus, method of manufacturing the same and their use
JP4565805B2 (en) * 2001-12-06 2010-10-20 信越石英株式会社 Method for producing quartz glass blank for optical device parts and use thereof
JPWO2003091175A1 (en) * 2002-04-23 2005-09-02 旭硝子株式会社 Synthetic quartz glass for optical members, projection exposure apparatus and projection exposure method
EP1498394A1 (en) * 2002-04-23 2005-01-19 Asahi Glass Company Ltd. Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
EP1498394A4 (en) * 2002-04-23 2006-06-07 Asahi Glass Co Ltd Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
US7368403B2 (en) * 2002-04-23 2008-05-06 Asahi Glass Company, Limited Synthetic quartz glass for optical member, projection exposure apparatus and projection exposure method
CN100389085C (en) * 2002-04-23 2008-05-21 旭硝子株式会社 Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
KR100952093B1 (en) * 2002-04-23 2010-04-13 아사히 가라스 가부시키가이샤 Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
WO2003091175A1 (en) * 2002-04-23 2003-11-06 Asahi Glass Company, Limited Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
US7534733B2 (en) * 2004-02-23 2009-05-19 Corning Incorporated Synthetic silica glass optical material having high resistance to laser induced damage
JP2016505803A (en) * 2012-10-01 2016-02-25 モーメンティブ・パフォーマンス・マテリアルズ・インク Containers and methods for in-line analysis of protein compositions

Also Published As

Publication number Publication date
JP2784708B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
EP1735249B2 (en) Synthetic silica glass optical material and method of producing it
US5086352A (en) Optical members and blanks or synthetic silica glass and method for their production
US5325230A (en) Optical members and blanks of synthetic silica glass and method for their production
US5364433A (en) Optical member of synthetic quartz glass for excimer lasers and method for producing same
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
US6205818B1 (en) Production of fused silica having high resistance to optical damage
US7552601B2 (en) Optical component of quartz glass, method for producing the optical component, and use thereof
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
JP2784708B2 (en) Optical quartz glass member for excimer laser and method for producing the same
JP4778138B2 (en) Quartz glass body for optical components and its manufacturing method
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JPH0627014B2 (en) Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof
JP4323319B2 (en) Fused silica containing aluminum
JPH0616449A (en) Synthetic quartz glass optical member for excimer laser and its production
JPH0829960B2 (en) Ultraviolet laser optical components
JPH0624997B2 (en) Optical components for laser light
JPH03101282A (en) Optical system member for laser light
KR20040075016A (en) Fused silica having improved index homogeneity
JP4177078B2 (en) Synthetic quartz glass material for optical components
JP2652847B2 (en) Optical system member for laser beam and optical system member for lithographic apparatus
JP2000154029A (en) Synthetic quartz glass for optical member and its production
JP4159852B2 (en) Synthetic quartz glass material for optical components
JP2652847C (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090529

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees