JP4702898B2 - Method for producing quartz glass crucible for pulling silicon single crystal - Google Patents
Method for producing quartz glass crucible for pulling silicon single crystal Download PDFInfo
- Publication number
- JP4702898B2 JP4702898B2 JP2007241002A JP2007241002A JP4702898B2 JP 4702898 B2 JP4702898 B2 JP 4702898B2 JP 2007241002 A JP2007241002 A JP 2007241002A JP 2007241002 A JP2007241002 A JP 2007241002A JP 4702898 B2 JP4702898 B2 JP 4702898B2
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- hydrogen
- silica powder
- single crystal
- glass crucible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/09—Other methods of shaping glass by fusing powdered glass in a shaping mould
- C03B19/095—Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、シリコン単結晶引上げ用石英ガラスルツボの製造方法に関し、さらに詳しくは、高温、減圧下での単結晶引上げ時に発生するルツボ内表面の泡膨張が抑えられ、剥離石英ガラス片によるシリコン単結晶の有転移がなく、高歩留まりでシリコン単結晶を引上げることができる石英ガラスルツボの製造方法に関するものである。 The present invention relates to a method for producing a quartz glass crucible for pulling a silicon single crystal, and more specifically, foam expansion on the inner surface of the crucible that occurs when pulling a single crystal at a high temperature and under reduced pressure is suppressed, and a silicon single crystal formed by a peeled quartz glass piece The present invention relates to a method for producing a quartz glass crucible that can pull up a silicon single crystal with a high yield without crystal transition.
従来、シリコン単結晶の製造には、いわゆるチョクラルスキー法(CZ法)と呼ばれる方法が広く採用されている。このCZ法は、石英ガラスで製造したルツボ内でシリコン多結晶を溶融し、このシリコン融液にシリコン単結晶の種結晶を浸漬し、ルツボを回転させながら種結晶を徐々に引上げ、シリコン単結晶を種結晶を核として成長させる方法である。前記CZ法で製造される単結晶は、高純度であるとともにシリコンウェーハを歩留よく製造できることが必要で、その製造に使用される石英ガラスルツボとしては泡を含まない内層と泡を含み不透明な外層からなる二重構造の石英ガラスルツボが用いられる。そして、この石英ガラスルツボは、ゾルゲル法で得られた高純度の合成シリカ粉や合成クリストバライト粉、或は高純度化された天然シリカ粉を原料とし、それらを回転型に供給し、型内面に沿って粉体層を形成し内側からアークで加熱溶融して粉体層を石英ガラスルツボ状にしたのち、アークを停止して型の回転を継続しつつ室温まで冷却する、いわゆるアーク回転溶融法で製造されるのが一般的である。前記二重構造の石英ガラスルツボの内層は泡のない透明層であるが、それを用いて減圧、高温下でシリコン単結晶を引き上げると泡が発生し、それが膨張してルツボ内表面が剥離し、剥離した石英片が引上げ中の単結晶に付着し、その部分から転移が起こり高品質のシリコン単結晶を製造できない欠点があった。 Conventionally, a so-called Czochralski method (CZ method) has been widely used for the production of silicon single crystals. In this CZ method, a silicon polycrystal is melted in a crucible made of quartz glass, a silicon single crystal seed crystal is immersed in the silicon melt, and the seed crystal is gradually pulled up while rotating the crucible. Is grown using seed crystals as nuclei. The single crystal produced by the CZ method is required to have a high purity and to be able to produce a silicon wafer with a high yield. As a quartz glass crucible used for the production, an inner layer containing no bubbles and an opaque material including bubbles are opaque. A double-structured quartz glass crucible composed of an outer layer is used. This quartz glass crucible is made from high-purity synthetic silica powder, synthetic cristobalite powder, or highly purified natural silica powder obtained by the sol-gel method. A so-called arc rotation melting method in which a powder layer is formed along the inside and heated and melted by an arc from the inside to form a quartz glass crucible, and then the arc is stopped and cooled to room temperature while continuing to rotate the mold. It is common to be manufactured by. Although the inner layer of the double-structured quartz glass crucible is a transparent layer without bubbles, bubbles are generated when the silicon single crystal is pulled up under reduced pressure and high temperature to expand, and the inner surface of the crucible peels off. However, the peeled quartz piece adheres to the single crystal being pulled, and there is a defect that a high quality silicon single crystal cannot be produced due to the transition from that portion.
そこで、上記欠点を解決する石英ガラスルツボとして、ルツボ基体の溶融の際の加熱条件や透明層の形成に使用するシリカ粉を選択してシリコン単結晶引上げ後のルツボ内面1mm以下の泡膨張を抑制する石英ガラスルツボが特許文献1で、また、石英ガラスルツボの内層形成工程の少なくとも一部の期間に、水蒸気をルツボ基体内に導入して製造した石英ガラスルツボが特許文献2で、それぞれ提案されている。しかし、前者の石英ガラスルツボは加熱条件やシリカ粉が特定化され、全ての種類のルツボに適応できない欠点があった。また、後者の場合にはルツボ全体のOH基濃度が上昇し石英ガラスの粘度が低下し易いという問題があった。
こうした現状に鑑み、本発明者等は、鋭意研究を重ねた結果、水素分子を特定の範囲でドープした非晶質シリカ粉を、石英ガラスルツボの少なくとも内表面層を形成する原料粉として使用することで、シリカ粉や加熱条件を特定化する必要がなく全ての種類のルツボの製造に適応でき、しかもOH基濃度の増大による石英ガラスの粘度の低下もなくルツボ内表面の泡膨張が抑制でき、石英ガラス片の剥離によるシリコン単結晶の有転移が起きず、高歩留でシリコン単結晶が引上げられる石英ガラスルツボが製造できることを見出して、本発明を完成したものである。すなわち In view of the current situation, the present inventors have conducted extensive research, and as a result, used amorphous silica powder doped with hydrogen molecules in a specific range as a raw material powder for forming at least the inner surface layer of the quartz glass crucible. Therefore, it is not necessary to specify the silica powder or heating conditions, and it can be applied to the production of all types of crucibles. Moreover, the foam expansion on the inner surface of the crucible can be suppressed without decreasing the viscosity of the quartz glass due to the increase of OH group concentration. The present invention has been completed by finding that a silica glass crucible in which silicon single crystal can be pulled at a high yield can be produced without causing transition of the silicon single crystal due to separation of the quartz glass piece. Ie
上記目的を達成するため本発明は、シリカ粉を回転モールド内に投入して、遠心力によりルツボ形状に成形したのち、加熱溶融して半透明石英ガラスルツボ基体を形成し、その形成中又は形成後の加熱雰囲気内に、0.1MPa以上〜10MPa以下の水素圧下、300℃〜800℃の温度で加熱処理して得た特定の範囲の濃度の水素ドープ非晶質シリカ粉と水素未ドープ結晶質シリカ粉を混合し供給して、半透明石英ガラスルツボ基体の内面側から少なくとも0.5mmに透明石英ガラス層を形成することを特徴とするシリコン単結晶引上げ用石英ガラスルツボの製造方法に係る。 In order to achieve the above object, the present invention introduces silica powder into a rotating mold, forms it into a crucible shape by centrifugal force, and then heat-melts to form a translucent quartz glass crucible base, which is being formed or formed. A hydrogen-doped amorphous silica powder and a hydrogen-undoped crystal having a specific range of concentration obtained by heat treatment at a temperature of 300 ° C. to 800 ° C. under a hydrogen pressure of 0.1 MPa to 10 MPa in a later heating atmosphere A method for producing a quartz glass crucible for pulling a silicon single crystal, characterized by forming a transparent quartz glass layer at least 0.5 mm from the inner surface side of a translucent quartz glass crucible substrate by mixing and supplying porous silica powder .
本発明で使用するシリカ粉としては、結晶質又は非晶質の天然シリカ粉、或はゾルゲル法、水熱合成法、酸水素火炎合成法などで得られた結晶質又は非晶質の合成シリカ粉が挙げられる。これらのシリカ粉は単独でもまた混合物としても用いることができる。前記シリカ粉で非質晶シリカ粉に、0.1MPa以上10MPa以下の水素圧下、300℃〜800℃の温度で加熱処理して水素ドープシリカ粉の水素濃度を5×1017〜8×1019molecules/cm3とし、それに2:1〜1:500の重量比で水素未ドープ結晶質シリカ粉を混合し、平均水素濃度を1×1017〜5×1019molecules/cm3とする。前記混合シリカ粉を用いて石英ガラスルツボの内表面から少なくとも0.5mmに透明石英ガラス層に形成する。この透明石英ガラス層の形成で高温、減圧下でのシリコン単結晶の引上げにおいても内表面に泡膨張の発生がなく、泡膨張による石英片の剥離に起因する単結晶の有転移が起こらずシリコン単結晶を歩留よく製造できる。前記泡膨張は、本発明者らの研究によれば、シリカ粉自体に含まれる、又は内表面層の形成時に溶融雰囲気から取り込まれるガラス構造とは結びつきの弱いフリーの酸素によることがわかっている。そして、シリカ粉中の水素濃度を上記範囲にすることで、ドープした水素分子がフリーな酸素と反応してOH基とし、それがガラス内に固定されて泡膨張が抑制される。その際、若干OH基濃度は増加するが粘度に影響を及ぼすような値ではない。水素濃度が5×1017molecules/cm3未満では水素分子とフリーな酸素との反応が十分に行われず効果がなく、水素濃度が8×1019molecules/cm3を超えると水素分子がガラス構造中の酸素とまで反応し、OH基濃度が高くなり、水が形成され、それに起因する泡膨張が発生する。また、水素ドープシリカ粉で形成された透明石英ガラス層が0.5mm未満では泡膨張の抑制効果が少なく好ましくない。 The silica powder used in the present invention includes crystalline or amorphous natural silica powder, or crystalline or amorphous synthetic silica obtained by a sol-gel method, hydrothermal synthesis method, oxyhydrogen flame synthesis method, or the like. Powder. These silica powders can be used alone or as a mixture. The non TadashiAkira silica powder in the silica powder, 0.1 MPa or more 10MPa or less of the hydrogen pressure, 300 ° C. to 800 ° C. of the temperature at the heat treatment was 5 × 10 the hydrogen concentration of the hydrogen-doped silica powder 17 ~8 × 10 19 molecules / Cm 3, and hydrogen undoped crystalline silica powder in a weight ratio of 2: 1 to 1: 500 is mixed with the mixture to obtain an average hydrogen concentration of 1 × 10 17 to 5 × 10 19 molecules / cm 3 . Using the mixed silica powder, a transparent quartz glass layer is formed at least 0.5 mm from the inner surface of the quartz glass crucible. By forming this transparent quartz glass layer, there is no occurrence of bubble expansion on the inner surface even when pulling up the silicon single crystal under high temperature and reduced pressure, and there is no transition of the single crystal due to separation of the quartz piece due to bubble expansion. Single crystals can be produced with good yield. According to the study by the present inventors, it is known that the bubble expansion is caused by free oxygen which is weakly associated with the glass structure contained in the silica powder itself or taken from the molten atmosphere when forming the inner surface layer. . And by making the hydrogen concentration in silica powder into the above-mentioned range, the doped hydrogen molecule reacts with free oxygen to form OH group, which is fixed in the glass and suppresses bubble expansion. At this time, the OH group concentration slightly increases but is not a value that affects the viscosity. If the hydrogen concentration is less than 5 × 10 17 molecules / cm 3 , the reaction between hydrogen molecules and free oxygen is not sufficiently performed, and there is no effect. If the hydrogen concentration exceeds 8 × 10 19 molecules / cm 3 , the hydrogen molecules have a glass structure. It reacts with the oxygen in it, the OH group concentration becomes high, water is formed, and foam expansion resulting from it occurs. Moreover, if the transparent quartz glass layer formed with hydrogen dope silica powder is less than 0.5 mm, there is little suppression effect of bubble expansion and it is not preferable.
上記水素濃度は、公知のガス放出法で測定されるが、その具体例を照明学会誌第74巻第9号平成2年第27〜32頁に示す。 The hydrogen concentration is measured by a known gas emission method, and a specific example thereof is shown in Illumination Society Vol. 74, No. 9, pp. 27-32, 1990.
本発明で使用する水素ドープ非晶質シリカ粉の製造に使用する水素ガスは純粋な水素ガスでも、また不活性ガスとの混合ガスでもよい。不活性ガスとしては、水素及びシリカガラスと非反応性のガスであれば使用できるが、経済性などから、窒素ガス、ヘリウムガスなどが挙げられる。そして、前記不活性ガスを含む場合、前記水素ガス圧は水素ガス分圧を意味する。また、加熱処理に使用する加熱炉としては、水素ドープの効率の点から加圧処理炉(オートクレーブ炉)が好ましい。前記加熱温度が300℃未満では、十分な水素分子のドープがみられず、泡膨張の抑制効果が期待できず、800℃を超えると、SiO2構造の酸素までOH基化されて好ましくない。また、水素ガス圧が0.1MPa未満では水素ドープ量が少なく泡膨張の抑制効果が期待できず、10MPaを超えると過剰な水素がドープされ、ルツボを作成した際にガラス構造の酸素までOH基化され、水による泡膨張が起こり好ましくない。 The hydrogen gas used in the production of the hydrogen-doped amorphous silica powder used in the present invention may be pure hydrogen gas or a mixed gas with an inert gas. As the inert gas, any gas that is non-reactive with hydrogen and silica glass can be used, but nitrogen gas, helium gas, and the like can be used from the economical viewpoint. And when the said inert gas is included, the said hydrogen gas pressure means hydrogen gas partial pressure. Moreover, as a heating furnace used for heat processing, the pressurization processing furnace (autoclave furnace) is preferable from the point of the efficiency of hydrogen dope. When the heating temperature is less than 300 ° C., sufficient dope of hydrogen molecules is not observed, and the effect of suppressing the bubble expansion cannot be expected. When the heating temperature exceeds 800 ° C., oxygen of SiO 2 structure is OH grouped, which is not preferable. Also, if the hydrogen gas pressure is less than 0.1 MPa, the amount of hydrogen doping is small and the effect of suppressing bubble expansion cannot be expected, and if it exceeds 10 MPa, excess hydrogen is doped, and when creating a crucible, OH groups are added to oxygen in the glass structure. And foam expansion due to water is undesirable.
本発明の製造方法で得たシリコン単結晶用石英ガラスルツボを用いてシリコン単結晶を引き上げたとき、ルツボ内表面に泡膨張の発生がなく、石英ガラス片の剥離が起こることがない。その結果、前記石英ガラス片剥離によるシリコン単結晶の有転移が起こらず、高品質のシリコン単結晶が歩留よく製造できる。 When the silicon single crystal is pulled up using the quartz glass crucible for silicon single crystal obtained by the production method of the present invention, bubble expansion does not occur on the inner surface of the crucible, and separation of the quartz glass piece does not occur. As a result, the transition of the silicon single crystal due to the separation of the quartz glass piece does not occur, and a high-quality silicon single crystal can be manufactured with a high yield.
以下、本発明の実施形態を詳細に説明するが、本発明はこれに限定されるものではない。
Hereinafter, although an embodiment of the present invention is described in detail, the present invention is not limited to this.
本発明のシリコン単結晶引上げ用石英ガラスルツボの製造手段としては、公知の製造手段が使用できるが、特に図1に示すアーク溶融法による製造方法が好ましい。該アーク溶融法では、図1にみるようにシリカ粉を回転モールド1内に投入し、遠心力でルツボ形状に成形したのち、アーク電極6による加熱で溶融し半透明石英ガラスルツボ基体5に形成し、このルツボ基体5の形成中又は形成後の加熱雰囲気内に水素ドープシリカ粉4を粉体供給手段7から供給し、ルツボ基体5内面側に透明石英ガラス層10を形成して製造される。前記水素ドープシリカ粉4として混合粉を使用する場合には、予めVミキサー等で混合して得た混合粉を使用しても、或は、ルツボ製造装置に2つの粉供給手段を設け、加熱雰囲気にシリカ粉を供給する際に、所望の平均水素濃度となるように、それぞれの粉供給手段から水素ドープシリカ粉と未ドープシリカ粉を供給してもよい。 As a means for producing the quartz glass crucible for pulling up the silicon single crystal of the present invention, known production means can be used, but the production method by the arc melting method shown in FIG. 1 is particularly preferable. In the arc melting method, as shown in FIG. 1, silica powder is put into a rotary mold 1 and formed into a crucible shape by centrifugal force, and then melted by heating with an arc electrode 6 to form a translucent quartz glass crucible base 5. Then, the hydrogen-doped silica powder 4 is supplied from the powder supply means 7 in the heating atmosphere during or after the formation of the crucible base 5, and the transparent quartz glass layer 10 is formed on the inner surface side of the crucible base 5. When using mixed powder as the hydrogen-doped silica powder 4, the mixed powder obtained by mixing with a V mixer or the like in advance may be used, or two crucible manufacturing devices are provided with two powder supply means, and a heated atmosphere When supplying silica powder, hydrogen-doped silica powder and undoped silica powder may be supplied from the respective powder supply means so as to obtain a desired average hydrogen concentration.
参考例1
(水素ドープ非晶質シリカ粉の製造)
ゾルゲル法で得られた高純度の合成シリカ粉(粒度100〜350μm)をオートクレーブ炉に入れ、炉内の水素ガス圧を2MPaとし、炉内温度を600℃とし10時間加熱処理した。得られたシリカ粉中の水素濃度は8×1018molecules/cm3であった。
Reference example 1
(Production of hydrogen-doped amorphous silica powder)
High-purity synthetic silica powder (particle size: 100 to 350 μm) obtained by the sol-gel method was placed in an autoclave furnace, the hydrogen gas pressure in the furnace was set to 2 MPa, the temperature in the furnace was set to 600 ° C., and heat treatment was performed for 10 hours. The hydrogen concentration in the obtained silica powder was 8 × 10 18 molecules / cm 3 .
(石英ガラスルツボの製造)
図1に示す装置を用い、回転モールド1内に純化処理された高純度の天然シリカ粉を投入し、遠心力により石英ガラスルツボ形状に形成し、その内にアーク電極6を挿入し、開口部9をリング状の蓋体8で覆い、アーク電極6によりキャビティー3内を高温ガス雰囲気とし、溶融ガラス化し、冷却して半透明石英ガラスルツボ基体5を作成した。次いでモールド1を回転させながらアーク電極6で半透明石英ガラスルツボ基体5内を高温雰囲気にしたのち、上記に得た水素ドープ非晶質シリカ粉4を少量づつ供給し、半透明石英ガラスルツボ基体5内表面に融合一体化して約2mmの透明石英ガラス層10を形成した。得られた石英ガラスルツボの直径は22インチであった。
(Manufacture of quartz glass crucibles)
Using the apparatus shown in FIG. 1, high-purity natural silica powder is put into a rotary mold 1 and formed into a quartz glass crucible shape by centrifugal force, and an arc electrode 6 is inserted therein, and an opening is formed. 9 was covered with a ring-shaped lid body 8, the inside of the cavity 3 was made into a high-temperature gas atmosphere by the arc electrode 6, melted into glass, and cooled to prepare a translucent quartz glass crucible base 5. Next, after the mold 1 is rotated, the arc-transparent quartz glass crucible base 5 is heated to a high temperature atmosphere by the arc electrode 6 and then the hydrogen-doped amorphous silica powder 4 obtained above is supplied little by little. 5 A transparent quartz glass layer 10 of about 2 mm was formed by fusing and integrating with the inner surface. The diameter of the obtained quartz glass crucible was 22 inches.
参考例2
参考例1の水素ドープ非晶質シリカ粉の製造において、水素分圧を0.1MPa、加熱温度を400℃、処理時間を40時間とした以外実施例1と同様にして水素ドープシリカ粉を製造した。得られた石英粉中の水素濃度は6×1017molecules/cm3であった。
Reference example 2
In the production of the hydrogen-doped amorphous silica powder of Reference Example 1, a hydrogen-doped silica powder was produced in the same manner as in Example 1 except that the hydrogen partial pressure was 0.1 MPa, the heating temperature was 400 ° C., and the treatment time was 40 hours. . The hydrogen concentration in the obtained quartz powder was 6 × 10 17 molecules / cm 3 .
上記水素ドープ非晶質シリカ粉を用いて参考例1と同様にして直径22インチの石英ガラスルツボを作成し、シリコン単結晶を引き上げた。約90時間の操業の後、石英ガラスルツボの透明石英ガラス層を目視で観察したところ、内面近傍には泡膨張が観察されなかった。 A quartz glass crucible having a diameter of 22 inches was prepared using the hydrogen-doped amorphous silica powder in the same manner as in Reference Example 1, and the silicon single crystal was pulled up. After the operation for about 90 hours, the transparent quartz glass layer of the quartz glass crucible was visually observed, and no bubble expansion was observed in the vicinity of the inner surface.
実施例1
参考例1において、透明石英ガラス層を形成するシリカ粉を、水素分圧10MPa、300℃で40時間加熱処理して得た合成シリカ粉(水素濃度8×1019molecules/cm3)と水素未ドープ天然シリカ粉とを約1:400重量比で混合したシリカ粉(平均水素濃度2×1017molecules/cm3)とした以外、参考例1と同様にして直径22インチの石英ガラスルツボを作成し、シリコン単結晶を引き上げた。約90時間の操業の後、石英ガラスルツボの透明石英ガラス層を目視で観察したところ、内面近傍には泡膨張が観察されなかった。
Example 1
In Reference Example 1, the silica powder forming the transparent quartz glass layer was subjected to heat treatment at a hydrogen partial pressure of 10 MPa and 300 ° C. for 40 hours, and the synthetic silica powder (hydrogen concentration 8 × 10 19 molecules / cm 3 ) A quartz glass crucible having a diameter of 22 inches was prepared in the same manner as in Reference Example 1 except that silica powder (average hydrogen concentration 2 × 10 17 molecules / cm 3 ) mixed with dope natural silica powder at a weight ratio of about 1: 400 was used. The silicon single crystal was pulled up. After the operation for about 90 hours, the transparent quartz glass layer of the quartz glass crucible was visually observed, and no bubble expansion was observed in the vicinity of the inner surface.
比較例1
石英ガラス粉として水素未ドープ合成シリカ粉を用いて、参考例1と同様にして22インチの石英ガラスルツボを作成し、シリコン単結晶を引き上げた。約60時間の操業経過後、単結晶に乱れが生じ、引上げを中止した。使用後石英ガラスルツボの透明石英ガラス層を目視で観察したところ、内面近傍に無数の泡膨張が観察された。該石英ガラスの湾曲(r)部を厚さ3.0mmにカットしその断面形状を顕微鏡で観察したところ図3の通りであった。
Comparative Example 1
Using a hydrogen-undoped synthetic silica powder as the quartz glass powder, a 22-inch quartz glass crucible was prepared in the same manner as in Reference Example 1, and the silicon single crystal was pulled up. After about 60 hours of operation, the single crystal was disturbed and the pulling was stopped. When the transparent quartz glass layer of the quartz glass crucible was visually observed after use, countless bubble expansion was observed near the inner surface. The curved (r) portion of the quartz glass was cut to a thickness of 3.0 mm and the cross-sectional shape was observed with a microscope as shown in FIG.
比較例2
参考例1のシリカ粉の処理を、水素圧0.1MPa、加熱温度1000℃で10時間処理した以外参考例1と同様な処理を行った。得られたシリカ粉中の水素濃度は5×1016molecules/cm3であった。このシリカ粉を用いて、参考例1と同様にして22インチの石英ガラスルツボを作成し、シリコン単結晶を引き上げたところ、約70時間の経過後、単結晶に乱れが生じ、引上げを中止した。使用後石英ガラスルツボの透明石英ガラス層を目視で観察したところ、内面近傍に無数の泡膨張が観察された。該石英ガラスの湾曲(r)部を厚さ3.0mmにカットしその断面形状を顕微鏡で観察したところ図4の通りであった。
Comparative Example 2
The same treatment as in Reference Example 1 was performed except that the silica powder of Reference Example 1 was treated at a hydrogen pressure of 0.1 MPa and a heating temperature of 1000 ° C. for 10 hours. The hydrogen concentration in the obtained silica powder was 5 × 10 16 molecules / cm 3 . Using this silica powder, a 22-inch quartz glass crucible was prepared in the same manner as in Reference Example 1, and the silicon single crystal was pulled up. After about 70 hours, the single crystal was disturbed, and the pulling was stopped. . When the transparent quartz glass layer of the quartz glass crucible was visually observed after use, countless bubble expansion was observed near the inner surface. The curved (r) portion of the quartz glass was cut to a thickness of 3.0 mm and the cross-sectional shape was observed with a microscope as shown in FIG.
比較例3
実施例1の水素ドープ非晶質シリカ粉単独を使用し、参考例1と同様にして直径22インチの石英ガラスルツボを作成し、シリコン単結晶を引き上げた。約30時間の経過後、単結晶に乱れが生じ、引上げを中止した。使用後石英ガラスルツボの透明石英ガラス層を目視で観察したところ、内面近傍に巨大な無数の泡膨張が観察された。該石英ガラスの湾曲(r)部を厚さ3.0mmにカットしその断面形状を顕微鏡で観察したところ図5の通りであった。
Comparative Example 3
Using the hydrogen-doped amorphous silica powder alone of Example 1, a quartz glass crucible having a diameter of 22 inches was prepared in the same manner as in Reference Example 1, and the silicon single crystal was pulled up. After about 30 hours, the single crystal was disturbed and the pulling was stopped. When the transparent quartz glass layer of the quartz glass crucible was visually observed after use, enormous countless bubble expansion was observed near the inner surface. The curved (r) portion of the quartz glass was cut to a thickness of 3.0 mm and the cross-sectional shape was observed with a microscope as shown in FIG.
本発明で製造した石英ガラスルツボを使用することで、高温、減圧下での単結晶引上げ時に発生するルツボ内表面の泡膨張が抑えられ、泡膨張に基づく石英ガラス片の剥離によるシリコン単結晶の有転移がなく、高歩留まりでシリコン単結晶を引上げることができる。 By using the quartz glass crucible produced in the present invention, the bubble expansion of the inner surface of the crucible generated when pulling the single crystal under high temperature and reduced pressure is suppressed, and the silicon single crystal is separated by peeling of the quartz glass piece based on the bubble expansion. There is no transition and the silicon single crystal can be pulled with a high yield.
1 回転モールド
2 回転機構
3 キャビティー
4 水素ドープシリカ粉
5 石英ガラスルツボ基体
6 アーク電極
7 粉体供給手段
8 蓋体
9 開口
10 透明石英ガラス層
11 アーク電源
DESCRIPTION OF SYMBOLS 1 Rotation mold 2 Rotation mechanism 3 Cavity 4 Hydrogen dope silica powder 5 Quartz glass crucible base 6 Arc electrode 7 Powder supply means 8 Lid 9 Opening 10 Transparent quartz glass layer 11 Arc power supply
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007241002A JP4702898B2 (en) | 2007-09-18 | 2007-09-18 | Method for producing quartz glass crucible for pulling silicon single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007241002A JP4702898B2 (en) | 2007-09-18 | 2007-09-18 | Method for producing quartz glass crucible for pulling silicon single crystal |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002143642A Division JP4549008B2 (en) | 2002-05-17 | 2002-05-17 | Hydrogen-doped silica powder and quartz glass crucible for pulling silicon single crystal using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007326780A JP2007326780A (en) | 2007-12-20 |
JP4702898B2 true JP4702898B2 (en) | 2011-06-15 |
Family
ID=38927511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007241002A Expired - Lifetime JP4702898B2 (en) | 2007-09-18 | 2007-09-18 | Method for producing quartz glass crucible for pulling silicon single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4702898B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4987029B2 (en) * | 2009-04-02 | 2012-07-25 | ジャパンスーパークォーツ株式会社 | Silica glass crucible for pulling silicon single crystals |
JP4969632B2 (en) | 2009-10-14 | 2012-07-04 | 信越石英株式会社 | Silica powder and silica container and method for producing them |
JP4951057B2 (en) | 2009-12-10 | 2012-06-13 | 信越石英株式会社 | Silica container and method for producing the same |
JP5608258B1 (en) * | 2013-04-15 | 2014-10-15 | 信越石英株式会社 | Silica container for pulling single crystal silicon and manufacturing method thereof |
JP5608257B1 (en) * | 2013-04-08 | 2014-10-15 | 信越石英株式会社 | Silica container for pulling single crystal silicon and manufacturing method thereof |
EP2835452A4 (en) * | 2013-04-08 | 2016-02-24 | Shinetsu Quartz Prod | Silica vessel for pulling up single crystal silicon and process for producing same |
JP7157932B2 (en) | 2019-01-11 | 2022-10-21 | 株式会社Sumco | Silica glass crucible manufacturing apparatus and manufacturing method |
KR20230153383A (en) * | 2021-03-05 | 2023-11-06 | 신에쯔 세끼에이 가부시키가이샤 | Evaluation method and manufacturing method of quartz glass crucible and quartz glass crucible |
CN113213970A (en) * | 2021-04-20 | 2021-08-06 | 广东先导微电子科技有限公司 | PBN crucible boron oxide wetting device, method and application thereof |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05124889A (en) * | 1991-10-31 | 1993-05-21 | Shinetsu Quartz Prod Co Ltd | Quartz glass crucible for pulling up silicon single crystal and its production |
JPH06127971A (en) * | 1992-10-15 | 1994-05-10 | Shinetsu Quartz Prod Co Ltd | Silica glass member for heat treating semiconductor and production thereof |
JPH06166522A (en) * | 1992-11-30 | 1994-06-14 | Shinetsu Quartz Prod Co Ltd | Production of ultraviolet laser-resistant optical member |
JPH0840736A (en) * | 1994-08-03 | 1996-02-13 | Shin Etsu Chem Co Ltd | Synthetic quartz glass member for excimer laser optical material and its production |
JPH0848532A (en) * | 1994-08-04 | 1996-02-20 | Shin Etsu Chem Co Ltd | High viscosity synthetic quartz glass member and its production |
JPH08239231A (en) * | 1995-03-02 | 1996-09-17 | Shin Etsu Chem Co Ltd | Production of quartz crucible |
JPH09235134A (en) * | 1995-12-27 | 1997-09-09 | Shinetsu Quartz Prod Co Ltd | High-purity synthetic silica glass for far ultraviolet ray and production thereof |
JP2000044386A (en) * | 1998-05-25 | 2000-02-15 | Shinetsu Quartz Prod Co Ltd | Silica glass crucible for pulling up silicon single crystal and production of the crucible |
JP2000154029A (en) * | 1998-11-16 | 2000-06-06 | Asahi Glass Co Ltd | Synthetic quartz glass for optical member and its production |
JP2001261353A (en) * | 2000-03-17 | 2001-09-26 | Toshiba Ceramics Co Ltd | Synthetic silica glass powder for quartz glass crucible, and method of manufacturing the same, and method of manufacturing quartz glass crucible using synthetic silica glass powder |
JP2001348240A (en) * | 2000-05-31 | 2001-12-18 | Shinetsu Quartz Prod Co Ltd | Method for manufacturing quartz glass crucible |
-
2007
- 2007-09-18 JP JP2007241002A patent/JP4702898B2/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05124889A (en) * | 1991-10-31 | 1993-05-21 | Shinetsu Quartz Prod Co Ltd | Quartz glass crucible for pulling up silicon single crystal and its production |
JPH06127971A (en) * | 1992-10-15 | 1994-05-10 | Shinetsu Quartz Prod Co Ltd | Silica glass member for heat treating semiconductor and production thereof |
JPH06166522A (en) * | 1992-11-30 | 1994-06-14 | Shinetsu Quartz Prod Co Ltd | Production of ultraviolet laser-resistant optical member |
JPH0840736A (en) * | 1994-08-03 | 1996-02-13 | Shin Etsu Chem Co Ltd | Synthetic quartz glass member for excimer laser optical material and its production |
JPH0848532A (en) * | 1994-08-04 | 1996-02-20 | Shin Etsu Chem Co Ltd | High viscosity synthetic quartz glass member and its production |
JPH08239231A (en) * | 1995-03-02 | 1996-09-17 | Shin Etsu Chem Co Ltd | Production of quartz crucible |
JPH09235134A (en) * | 1995-12-27 | 1997-09-09 | Shinetsu Quartz Prod Co Ltd | High-purity synthetic silica glass for far ultraviolet ray and production thereof |
JP2000044386A (en) * | 1998-05-25 | 2000-02-15 | Shinetsu Quartz Prod Co Ltd | Silica glass crucible for pulling up silicon single crystal and production of the crucible |
JP2000154029A (en) * | 1998-11-16 | 2000-06-06 | Asahi Glass Co Ltd | Synthetic quartz glass for optical member and its production |
JP2001261353A (en) * | 2000-03-17 | 2001-09-26 | Toshiba Ceramics Co Ltd | Synthetic silica glass powder for quartz glass crucible, and method of manufacturing the same, and method of manufacturing quartz glass crucible using synthetic silica glass powder |
JP2001348240A (en) * | 2000-05-31 | 2001-12-18 | Shinetsu Quartz Prod Co Ltd | Method for manufacturing quartz glass crucible |
Also Published As
Publication number | Publication date |
---|---|
JP2007326780A (en) | 2007-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4702898B2 (en) | Method for producing quartz glass crucible for pulling silicon single crystal | |
JP4166241B2 (en) | Silica glass crucible for pulling silicon single crystal and method for producing the same | |
US20090165700A1 (en) | Inner crystallization crucible and pulling method using the crucible | |
JP4233059B2 (en) | Silica glass crucible for pulling silicon single crystal and method for producing the same | |
US8163083B2 (en) | Silica glass crucible and method for pulling up silicon single crystal using the same | |
EP2067883B1 (en) | Method for producing a vitreous silica crucible | |
JP4803784B2 (en) | Method for producing quartz glass crucible for pulling silicon single crystal | |
JP2004262690A (en) | Method of manufacturing quartz glass crucible for pulling up silicon single crystal and quartz glass crucible manufactured by the same method | |
JP4549008B2 (en) | Hydrogen-doped silica powder and quartz glass crucible for pulling silicon single crystal using the same | |
JP2018104248A (en) | Quartz glass crucible for pulling silicon single crystal | |
WO2013171937A1 (en) | Silica vessel for drawing up monocrystalline silicon and method for producing same | |
JP4931106B2 (en) | Silica glass crucible | |
JP2010280567A (en) | Method for producing silica glass crucible | |
JP5741163B2 (en) | Quartz glass crucible, method for producing the same, and method for producing silicon single crystal | |
JP2019059652A (en) | Quartz glass crucible for pulling silicon single crystal | |
JP5685894B2 (en) | Quartz glass crucible, method for producing the same, and method for producing silicon single crystal | |
JP2008162865A (en) | Quartz glass crucible | |
WO2004094705A1 (en) | Apparatus for producing fluoride crystal | |
JP4874888B2 (en) | Silica glass crucible for pulling silicon single crystal and method for producing the same | |
JP6713382B2 (en) | Quartz glass crucible manufacturing method and quartz glass crucible | |
JP6659408B2 (en) | Method for producing silica glass crucible for pulling silicon single crystal | |
JP5488519B2 (en) | Quartz glass crucible, method for producing the same, and method for producing silicon single crystal | |
EP2143831B1 (en) | Method for pulling up silicon single crystal using a silica glass crucible. | |
JP2004292214A (en) | Manufacturing method of quartz crucible | |
JP2012017244A (en) | Method for manufacturing quartz glass crucible |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070919 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110304 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4702898 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |