JPH06166528A - Production of ultraviolet-laser resistant optical member - Google Patents

Production of ultraviolet-laser resistant optical member

Info

Publication number
JPH06166528A
JPH06166528A JP34351092A JP34351092A JPH06166528A JP H06166528 A JPH06166528 A JP H06166528A JP 34351092 A JP34351092 A JP 34351092A JP 34351092 A JP34351092 A JP 34351092A JP H06166528 A JPH06166528 A JP H06166528A
Authority
JP
Japan
Prior art keywords
hydrogen
laser
optical member
ultraviolet
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34351092A
Other languages
Japanese (ja)
Other versions
JP2821074B2 (en
Inventor
Akira Fujinoki
朗 藤ノ木
Toshikatsu Matsutani
利勝 松谷
Hiroyuki Nishimura
裕幸 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18362077&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06166528(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP4343510A priority Critical patent/JP2821074B2/en
Publication of JPH06166528A publication Critical patent/JPH06166528A/en
Application granted granted Critical
Publication of JP2821074B2 publication Critical patent/JP2821074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1484Means for supporting, rotating or translating the article being formed
    • C03B19/1492Deposition substrates, e.g. targets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1476Means for heating during or immediately prior to deposition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen

Abstract

PURPOSE:To suppress the dispersion in development of paramagnetic defects in irradiation with laser and obtain an ultraviolet laser-resistant optical member excellent in laser resistance in ultraviolet laser-resistant quartz glass containing hydrogen in transparent glass prepared by directly melting and depositing fine glass particles on a rotating heat-resistant cylindrical core member. CONSTITUTION:This method for producing ultraviolet laser-resistant quartz glass comprises the first step of subjecting a synthetic quartz as a starting preform to the oxidizing heat treatment at a temperature in the region of >=500 to <=1500 deg.C and reducing the hydrogen concentration to <=5X10<16>molecules/cm<3> and the second step of keeping the resultant quartz glass at a temperature in the region of >=300 to <=600 deg.C and including hydrogen at >=1X10<17>molecules/ cm<3> concentration therein in a method for carrying out the flame hydrolysis of a volatile silicon compound, directly depositing and melting the produced fine silica particles on a rotating substrate, using the prepared synthetic quartz as the staring preform and producing the ultraviolet laser-resistant optical member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外線レーザー、特に
はKrF、ArFエキシマレーザーの照射に対する安定
性に優れた合成石英および合成石英より成る光学部材の
製造方法に関し、特に前記エキシマレーザーを光源とす
るリソグラフィー装置の光学系を構成するレンズ、窓、
プリズム等のエキシマレーザー用合成石英ガラス光学部
材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic quartz and a method for producing an optical member made of synthetic quartz, which is excellent in stability against irradiation of an ultraviolet laser, particularly a KrF or ArF excimer laser. Lens, window,
The present invention relates to a synthetic quartz glass optical member for excimer laser such as a prism.

【0002】[0002]

【従来の技術】近年、LSIの高集積化に伴ない、ウエ
ハー上に集積回路パターンを描画する光リソグラフィー
技術においては、より線幅の短い微細な描画技術が要求
されており、これに対応するために、露光光源の短波長
化が進められてきている。このため、例えばリソグラフ
ィー用ステッパーの光源は従来用いられてきたG線(4
36nm)、i線(365nm)からKrFエキシマレ
ーザー(248nm)、ArFエキシマレーザー(19
3nm)が用いられようとしており、ステッパーに用い
られるレンズには、非常に優れた均質性と紫外線透過性
が要求されてきている。そして前記i線(365nm)
より短い波長領域においては、従来用いられてきた多性
分系光学ガラスでは十分な光透過性が得られないため、
石英ガラス、それも紫外線吸収を極力低減するために不
純物含有量の少ない合成石英ガラス(合成シリカガラ
ス)が用いられている。
2. Description of the Related Art In recent years, with high integration of LSIs, a fine drawing technique having a shorter line width has been required in the photolithography technique for drawing an integrated circuit pattern on a wafer, and it corresponds to this. Therefore, the wavelength of the exposure light source has been shortened. For this reason, for example, the light source of the stepper for lithography is the G line (4
36 nm), i-line (365 nm) to KrF excimer laser (248 nm), ArF excimer laser (19
3 nm) is about to be used, and the lenses used for the stepper are required to have extremely excellent homogeneity and ultraviolet ray transparency. And the i-line (365 nm)
In the shorter wavelength region, since the polychromatic optical glass that has been conventionally used cannot obtain sufficient light transmittance,
Quartz glass, and synthetic silica glass (synthetic silica glass) having a small amount of impurities is used to reduce ultraviolet ray absorption as much as possible.

【0003】この合成石英ガラスは、通常、紫外線吸収
の原因となる金属不純物の混入を避けるために、化学的
に合成され、蒸留に依って純化された、高純度の発揮性
珪素化合物、例えば四塩化けい素(SiCl4 )等のハ
ロゲン化けい素類、テトラエトキシシラン(Si(OC
254 )、テトラメトキシシラン(Si(OCH3
4)等のアルコキシシラン類、更に例えばメチルトリメ
トキシシシラン(SiCH3(OCH33 )等のアルキ
ルアルコキシシラン類の蒸気を、直接酸水素火炎中に導
入して、酸水素炎にて火炎加水分解させ、ここで分解生
成したガラス微粒子を、直接回転する耐熱性棒状芯部材
上に溶融堆積して成長させることにより、透明なガラス
に製造されている。また、上記ガラス微粒子を直接溶融
堆積せずに、耐熱性棒状芯部材上にそのまま微粒子とし
て堆積せしめ多孔質シリカ母材を形成した後、該多孔質
シリカ母材を電気炉で加熱透明化してシリカガラス体を
得る方法もある。このようにして製造された合成石英ガ
ラスは、極めて高純度で、190nm程度の短波長領域
まで良好な光透過性を示すので、紫外線レーザー光、特
にKrF、ArF等のエキシマレーザー透過材料として
しばしば使用されている。
This synthetic quartz glass usually absorbs ultraviolet rays.
To avoid the inclusion of metallic impurities that may cause
Synthesized to and purified by distillation, high-purity performance
Silicon compounds such as silicon tetrachloride (SiClFour ) Etc.
Rogenated silicons, tetraethoxysilane (Si (OC
2HFive)Four ), Tetramethoxysilane (Si (OCH3)
4) Alkoxysilanes such as
Toxicillsilane (SiCH3(OCH3)3 ) Etc.
Directly introduce vapors of lualkoxysilanes into an oxyhydrogen flame.
Put in, hydrolyze flame with oxyhydrogen flame, decompose here
Heat-resistant rod-shaped core member that directly rotates the formed glass particles
Transparent glass by melt-depositing and growing on top
Is manufactured in. In addition, the above glass particles are directly melted
Without depositing, it is made into fine particles as it is on the heat-resistant rod-shaped core member.
After forming a porous silica matrix,
Heat the silica base material in an electric furnace to make it transparent, and
There is also a way to get it. Synthetic quartz glass manufactured in this way
The lath has a very high purity and is in a short wavelength region of about 190 nm.
Since it shows good light transmission up to
As an excimer laser transmission material such as KrF and ArF
Often used.

【0004】しかしながら、合成石英ガラスの純度を向
上して紫外線レーザーの透過率を向上させる方法は、あ
る程度効果的ではあるものの、KrF、ArF等のエキ
シマレーザーの長期照射に関しては信頼性に欠ける場合
がある。これは、エキシマレーザー光が、寿命が20n
秒程度のパルス光であるため、通常の水銀ランプ等から
放射される紫外線と比べて時間当たりのエネルギーが非
常に高い光であるため、ガラスに加わる負荷が極めて大
きくなるためである。
However, although the method of improving the purity of the synthetic quartz glass to improve the transmittance of the ultraviolet laser is effective to some extent, it may be unreliable in the long-term irradiation with the excimer laser such as KrF or ArF. is there. This is because excimer laser light has a life of 20n.
This is because the pulsed light is of the order of a second, and the energy per hour is much higher than the ultraviolet light emitted from a normal mercury lamp or the like, so that the load applied to the glass becomes extremely large.

【0005】かかる欠点を解消するため本出願人は、前
記シリカガラス体中に水素ガスをドープする事により特
に紫外線レーザー耐性を高める技術(特願平1ー145226、
USP5,086,352)を開示している。これは極めて効果的な
手段で、実際、水素を1×1017分子/cm3 以上含有
させた合成石英ガラスの場合、KrFリソグラフィー用
の光学部材の素材として満足のいく領域に達しており、
工業的にも有効な手段として実施されている。
In order to solve the above drawbacks, the applicant of the present invention has proposed a technique for increasing the ultraviolet laser resistance by doping the silica glass body with hydrogen gas (Japanese Patent Application No. 1-145226,
USP 5,086,352). This is an extremely effective means, and in fact, in the case of synthetic quartz glass containing 1 × 10 17 molecules / cm 3 or more of hydrogen, it has reached a satisfactory range as a material of an optical member for KrF lithography.
It is implemented as an industrially effective means.

【0006】そして前記水素ガスをドープする手段とし
て前記シリカガラスを常圧乃至加圧水素ガス雰囲気中で
加熱する技術を前記出願で開示している。又このような
水素ガスドープ技術は特開平1ー201664号にも開示されて
おり、特に該公報には常圧水素ガス雰囲気下で800〜
1000℃加熱処理する事により前記ガスドープを可能
にした技術が開示されている。
As a means for doping the hydrogen gas, the above-mentioned application discloses a technique for heating the silica glass in a hydrogen gas atmosphere at atmospheric pressure or under pressure. Further, such a hydrogen gas doping technique is disclosed in Japanese Patent Laid-Open No. 1-201664.
A technique that enables the gas doping by heat treatment at 1000 ° C. is disclosed.

【0007】[0007]

【発明が解決しようとする課題】さて前記出願は水素ガ
ス濃度やOH基濃度について着目した技術であるが、本
発明者が、レーザー照射によって発生する常磁性欠陥の
挙動についてより詳細に調べてみると、水素を所定濃度
含有していれば、全ての石英ガラスで常磁性欠陥の生成
が抑制されているわけではなく、素材によってある程度
のバラツキを有することが判明した。そしてこのレーザ
耐性の差は、そのまま光学部材の寿命のバラツキとなる
ために、工業的に不利益を生じる。更に、レーザー照射
によって生じる常磁性欠陥は215nmに吸収のピーク
を有しているために、波長的に比較的離れているKrF
(248nm)レーザーでは、さほど問題とならなかっ
た場合でも、波長的に近いArF(193nm)レーザ
ーの場合には大きな問題となる。
The above-mentioned application is a technique focusing on the hydrogen gas concentration and the OH group concentration, but the present inventor will examine the behavior of paramagnetic defects generated by laser irradiation in more detail. Then, it was found that, if hydrogen is contained in a predetermined concentration, not all quartz glass suppresses the generation of paramagnetic defects, and there is some variation depending on the material. Further, this difference in laser resistance causes a variation in the life of the optical member as it is, which is industrially disadvantageous. Further, since the paramagnetic defect caused by laser irradiation has an absorption peak at 215 nm, KrF relatively distant in terms of wavelength.
Even if the (248 nm) laser is not a serious problem, it is a serious problem in the case of an ArF (193 nm) laser having a wavelength close to that of the laser.

【0008】本発明はかかる従来技術の欠点を解消する
ために、ガラス微粒子を直接回転する耐熱性棒状芯部材
上に溶融堆積してなる透明なガラスに水素を含有させた
耐紫外線レーザ用石英ガラスにおいて、レーザー照射時
の前記常磁性欠陥生成のバラツキを抑制し、より安定し
てレーザー耐性の優れた耐紫外線レーザ用光学部材を提
供する事を目的としている。
In order to solve the above-mentioned drawbacks of the prior art, the present invention uses quartz glass for ultraviolet ray resistant laser in which hydrogen is contained in transparent glass obtained by melting and depositing fine glass particles directly on a heat-resistant rod-shaped core member. In the above, it is an object of the present invention to provide an optical member for an ultraviolet ray resistant laser which suppresses the variation in the generation of the paramagnetic defect at the time of laser irradiation and is more stable and has excellent laser resistance.

【0009】[0009]

【課題を解決するための手段】本発明者らは、かかる問
題を解決するため鋭意研究の結果、ガラス微粒子を溶融
堆積してなる透明なガラスを出発母材とした耐紫外線レ
ーザ用石英ガラスにおいては、水素含有によるレーザー
耐性の向上効果が、水素濃度のみで単純に決められるの
ではなく、前記水素が導入(ドープ)される時点の石英
ガラスの状態、及び水素が導入される温度に依存するこ
とをつきとめ、最適な水素濃度の設定に加えて、水素導
入前の石英ガラスの状態の設定、及び水素の導入温度を
規定することによって、本発明の目的が達成されること
を見出した。即ち、シリカ微粒子を基体上に直接溶融堆
積して得られる合成石英は、酸水素火炎で合成する為
に、製造された段階で既にかなりの濃度の水素が溶存し
ている場合が多く、その濃度も、多い場合には1×10
18分子/cm3 以上の水素を含有している場合がある。
そしてこのような石英ガラスでは、水素が導入される温
度が非常に高いため、合成石英製造時に水素による還元
性の欠陥が生じてしまうことが判明した。このため、こ
の様な石英ガラスではたとえ水素濃度は高いもののエキ
シマレーザーを照射した際にE*センターと呼ばれる2
15nmに吸収ピークを有する欠陥が速やかに生成して
しまい、レーザーの透過率が急激に低下してしまう。
Means for Solving the Problems As a result of intensive research to solve the above problems, the inventors of the present invention have found that in a quartz glass for an ultraviolet laser resistant starting material, transparent glass formed by melting and depositing glass fine particles is used as a starting base material. The effect of improving the laser resistance by containing hydrogen is not simply determined only by the hydrogen concentration, but depends on the state of the quartz glass at the time when the hydrogen is introduced (doped) and the temperature at which the hydrogen is introduced. Therefore, it has been found that the object of the present invention can be achieved by setting the optimum hydrogen concentration, setting the state of the quartz glass before hydrogen introduction, and defining the hydrogen introduction temperature. That is, synthetic quartz obtained by directly fusing and depositing silica fine particles on a substrate is often synthesized with an oxyhydrogen flame, so that a considerable concentration of hydrogen is already dissolved at the stage of production. Also, if there are many, 1 × 10
It may contain hydrogen of 18 molecules / cm 3 or more.
It has been found that, in such a quartz glass, the temperature at which hydrogen is introduced is very high, so that a reducing defect due to hydrogen occurs during the production of synthetic quartz. Therefore, even if such a quartz glass has a high hydrogen concentration, it is called an E * center when irradiated with an excimer laser.
A defect having an absorption peak at 15 nm is promptly generated, and the laser transmittance sharply decreases.

【0010】そこで本発明の第1の特徴とする所は、前
記ハロゲン化けい素類、アルコキシシシラン類、アルキ
ルアルコキシシラン類等から得た出発母材を600℃以
上、1500℃以下の温度領域で酸化熱処理し、水素濃
度を5×1016分子/cm3以下に低減させると同時に
前記した還元性欠陥を低減させることを第1の特徴とす
る。
Therefore, the first feature of the present invention is that the starting base material obtained from the above-mentioned silicon halides, alkoxysilanes, alkylalkoxysilanes, etc., has a temperature range of 600 ° C. or higher and 1500 ° C. or lower. The first feature is to reduce the hydrogen concentration to 5 × 10 16 molecules / cm 3 or less and reduce the above-mentioned reducing defects at the same time.

【0011】一般的には還元性欠陥としては酸素欠損型
欠陥が代表的であるが、この欠陥は245nmの波長領
域に吸収を有しているので、この波長における内部透過
率が、試料1cmあたり99.8%以上であれば実質的
に還元性欠陥は排除できたと見なせることが分かった。
ここにいう内部透過率とは試料厚さ1cm当たりの見か
け透過率を理論透過率で除した値である。又前記還元性
欠陥除去の際に、歪が発生していると均等に水素導入が
出来ないという問題がある。そこで本発明の好ましい実
施例においては、前記還元欠損除去を、酸素を有する雰
囲気で1000℃以上、1500℃以下の温度領域で保
持した後徐冷することにより、歪除去と共に、245n
mの波長の紫外線に対する内部透過率が99.8%以上
でかつ含有される水素濃度が5×1016分子/cm3
下に低減させるようにしている。
Generally, an oxygen deficiency type defect is typical as the reducing defect. Since this defect has absorption in the wavelength region of 245 nm, the internal transmittance at this wavelength is 1 cm per sample. It has been found that it can be considered that the reducing defects can be substantially eliminated if the content is 99.8% or more.
The internal transmittance mentioned here is a value obtained by dividing the apparent transmittance per cm of the sample thickness by the theoretical transmittance. Further, when removing the reducing defects, there is a problem that hydrogen cannot be uniformly introduced if strain is generated. Therefore, in a preferred embodiment of the present invention, the reduction deficiency removal is carried out by keeping the strain in a temperature range of 1000 ° C. or higher and 1500 ° C. or lower in an atmosphere containing oxygen and then gradually cooling the strain to remove 245 n.
The internal transmittance for ultraviolet rays having a wavelength of m is 99.8% or more and the concentration of hydrogen contained is reduced to 5 × 10 16 molecules / cm 3 or less.

【0012】次に第2の工程で水素濃度を1×1017
子/cm3 以上含有せしめる訳であるが、この際ドープ
速度を早めるために、高温域で水素導入を行なうと、新
たな還元性の欠陥が生じることが実験によって判明し
た。そこで本発明は、石英ガラスを水素含有雰囲気下で
300℃以上600℃以下の温度領域に保持して水素濃
度を1×1017分子/cm3 以上含有せしめる事を第2
の特徴とする。即ち、600℃以上の高温で水素ドーピ
ングを行なうと、石英ガラスと水素の反応による還元性
欠陥が生成する事となり、又300℃以下の温度での水
素ドーピングでは、石英ガラスに対する水素ガスの拡散
速度が遅いために工業的に経済的な範囲でのドーピング
が困難になる。即ち本発明は前記第1及び第2の工程に
基づいて製造する事によりレーザー耐性が安定した優れ
た石英ガラスを得ることができる。
Next, in the second step, the hydrogen concentration is made to be 1 × 10 17 molecule / cm 3 or more. At this time, if hydrogen is introduced in the high temperature region to accelerate the doping rate, new reduction is carried out. Experiments have shown that sexual defects occur. Therefore, in the present invention, secondly, the quartz glass is kept in a temperature range of 300 ° C. or more and 600 ° C. or less in a hydrogen-containing atmosphere so that the hydrogen concentration is 1 × 10 17 molecules / cm 3 or more.
It is a feature of. That is, if hydrogen doping is performed at a high temperature of 600 ° C. or higher, reducing defects are generated due to the reaction between quartz glass and hydrogen, and in hydrogen doping at a temperature of 300 ° C. or lower, the diffusion rate of hydrogen gas into the quartz glass is increased. Is slow, which makes doping in an industrially economical range difficult. That is, according to the present invention, an excellent quartz glass having stable laser resistance can be obtained by manufacturing based on the first and second steps.

【0013】尚、本発明で示されているような酸化処理
を施した後、600℃以下の温度で水素をドープさせた
場合は、水素濃度が高いほどレーザーに対する安定性は
増すので、水素ドープの際の水素圧力は高いほど望まし
い。実際には600℃以下の温度領域での水素ドーピン
グには、オートクレープ等の高圧炉内で1気圧以上、好
ましくは50気圧を越える圧力で実施することが望まし
い。
When hydrogen is doped at a temperature of 600 ° C. or lower after the oxidation treatment as shown in the present invention, the higher the hydrogen concentration is, the more stable the laser is. The higher the hydrogen pressure is, the more desirable. Actually, it is desirable to carry out hydrogen doping in a temperature range of 600 ° C. or lower in a high pressure furnace such as an autoclave at a pressure of 1 atm or more, preferably more than 50 atm.

【0014】[0014]

【作用】さて本発明に類似する技術として本出願人が先
に、特願平1ー232928(特開平3-23236)において、OH基
濃度を有するインゴットを酸素ガス雰囲気で加熱処理し
た後、水素ガス雰囲気で約600乃至700℃で加熱処
理する技術を提案している。しかしながら、前記技術
は、単に酸化熱処理により酸素欠損を除去する事を目的
とするもので、一方本発明は石英ガラスと水素の反応に
よって生じる還元性欠陥に着目してその欠陥を排除し、
かつそれら欠陥が再度生成しないように水素ドーピング
を行なうことを特徴としている。
As a technique similar to the present invention, the applicant of the present invention first disclosed in Japanese Patent Application No. 1-232928 (Japanese Patent Laid-Open No. 3-23236) that an ingot having an OH group concentration was heat-treated in an oxygen gas atmosphere, and then hydrogen was added. A technique for heat treatment at about 600 to 700 ° C. in a gas atmosphere is proposed. However, the above-mentioned technique is intended to simply remove oxygen vacancies by oxidative heat treatment, while the present invention focuses on reducing defects generated by the reaction of quartz glass and hydrogen, and eliminates the defects.
Further, it is characterized in that hydrogen doping is performed so that those defects are not generated again.

【0015】更に本出願人は、特願平1ー145226
(特開平3−88742)において、水素ガスをドープ
する手段として前記シリカガラスを常圧乃至加圧水素ガ
ス雰囲気中で200乃至1200℃に加熱する技術を開
示しているが、かかる技術は水素がドープし得る温度範
囲を単に規制しているのに対し、本発明は、水素ドーピ
ングに先だって、還元性欠陥を除去した後に、再度還元
性欠陥が生成しない温度領域で水素ドーピングを行なう
ことを特徴としている。
Further, the applicant of the present invention has filed Japanese Patent Application No. 1-145226.
Japanese Patent Laid-Open No. 3-88742 discloses a technique for heating the silica glass to 200 to 1200 ° C. in a hydrogen gas atmosphere at atmospheric pressure or pressure as a means for doping hydrogen gas. Whereas the temperature range that can be controlled is simply regulated, the present invention is characterized in that, prior to hydrogen doping, after reducing defects are removed, hydrogen doping is performed in a temperature range in which reducing defects are not generated again. .

【0016】即ち、本発明はシリカ微粒子を基体上に直
接溶融堆積して得られる合成石英ガラス中に含まれる還
元性欠陥と水素を先ず除去する工程と、第2の工程で還
元性欠陥が生じないように水素導入させる点を特徴とす
るもので、かかる2つの工程の組合せにより本発明の目
的が円滑に達成し得るものである。
That is, according to the present invention, the reducing defects and hydrogen contained in the synthetic quartz glass obtained by directly melting and depositing the silica fine particles on the substrate are first removed, and the reducing defects are generated in the second step. It is characterized in that hydrogen is introduced so as not to exist, and the object of the present invention can be smoothly achieved by combining the two steps.

【0017】[0017]

【実施例】四塩化珪素を酸素、水素火炎中に導入し、火
炎加水分解して得られる合成シリカ微粒子をそのまま回
転する基体上に堆積、溶融して外径60mm、長さ45
0mmのインゴット状の合成石英ガラス体を得た。得ら
れた合成石英インゴットの両端を研磨し、245nmの
波長における内部透過率を測定したところ、1cm当た
りに換算して99.6%であった。また含有している水
素分子濃度をラマン分光光度計で測定した所、インゴッ
トの中央部で1×1019分子/cm3であった。外周部
では場所によって若干のバラツキを有しているが、2〜
5×1017分子/cm3であった。使用機器は日本分光
工業製NR−1000、励起波長488nmのArレー
ザーで出力は700mW、浜松ホトニクス社製R943
−02ホトマルを使用し、ホトンカウンティングにて測
定を行なった。
EXAMPLE Synthetic silica fine particles obtained by introducing silicon tetrachloride into an oxygen and hydrogen flame and subjecting it to flame hydrolysis were directly deposited on a rotating substrate and melted to give an outer diameter of 60 mm and a length of 45.
A 0 mm ingot-shaped synthetic quartz glass body was obtained. The both ends of the obtained synthetic quartz ingot were polished, and the internal transmittance at a wavelength of 245 nm was measured and found to be 99.6% per cm. The concentration of contained hydrogen molecules was measured by a Raman spectrophotometer to find that it was 1 × 10 19 molecules / cm 3 at the center of the ingot. The outer circumference has some variations depending on the location, but
It was 5 × 10 17 molecules / cm 3 . The equipment used is NR-1000 manufactured by JASCO Corporation, an Ar laser with an excitation wavelength of 488 nm and an output of 700 mW, R943 manufactured by Hamamatsu Photonics.
The measurement was carried out by Photon counting using -02 Photomaru.

【0018】次に前記インゴット(出発母材)から30
×30×200mm3 の大きさのサンプルを2つ作成
し、そのうち1つをクリーンな電気炉内で、1150℃
で200時間、大気雰囲気中にて加熱した。加熱後同様
な方法で水素濃度を測定した所、検出下限である5×1
16分子/cm3 以下に低減し得、且つ245nmにお
ける内部透過率は99.9%/cmであった。このサン
プルを5つに分割し、1つを残して(試料Aー1)、2
×1017分子/cm3前後の水素濃度を得るために、水
素処理炉内で常圧下で300℃、720時間(試料A−
2)、400℃、115時間(試料A−3)、600
℃、39時間(試料A−4)、800℃、15時間(試
料A−5)の夫々水素ドープ処理を行い、一方試料A−
6についてはオートクレーブ内で300℃、100気圧
の水素処理を720時間それぞれ行なった。
Next, 30 from the ingot (starting base metal)
Create two samples of size × 30 × 200mm 3 and put one of them in a clean electric furnace at 1150 ℃
For 200 hours in the air. When the hydrogen concentration was measured by the same method after heating, the detection limit was 5 x 1
0 16 molecules / cm 3 reduced resulting in less and internal transmittance at 245nm was 99.9% / cm. This sample was divided into five, leaving one (Sample A-1), 2
× To obtain 10 17 molecules / cm 3 of hydrogen concentrations before and after, 300 ° C. under normal pressure in a hydrogen treatment furnace, 720 hours (sample A-
2), 400 ° C., 115 hours (Sample A-3), 600
C., 39 hours (Sample A-4), 800.degree. C., 15 hours (Sample A-5) were each subjected to hydrogen doping treatment, while Sample A-
For No. 6, hydrogen treatment at 300 ° C. and 100 atm was carried out in the autoclave for 720 hours.

【0019】そして前記水素処理を行なった試料(A−
2〜5及びA−6)は10×10×40mm3 の形状に
研磨を行ない水素濃度測定を行なった所、試料A−2〜
5はいずれも2×1017分子/cm3前後の水素濃度を
得る事が出来、又A−6については5×1019分子/c
3前後の水素濃度を得る事が出来た。(図1参照)
Then, the sample (A-
2 to 5 and A-6) were subjected to polishing into a shape of 10 × 10 × 40 mm 3 and the hydrogen concentration was measured. Sample A-2 to
5 was able to obtain a hydrogen concentration of about 2 × 10 17 molecules / cm 3 , and A-6 was 5 × 10 19 molecules / c.
It was possible to obtain a hydrogen concentration of around m 3 . (See Figure 1)

【0020】次に前記インゴット(出発母材)から切出
した残りの1つのサンプルについて窒素雰囲気のクリー
ンな電気炉内で1150℃で40時間加熱し水素の外部
拡散を行なった。加熱後同様な方法で水素濃度を測定し
た所、1.9×1017分子/cm3 で、且つ245nm
における内部透過率は99.7%/cmであった。この
試料からレーザ照射サンプル(10×10×40mm
3 )を切出した。(試料B−1) 又前記出発母材のインゴットの外周部より、水素濃度が
2×1017分子/cm 3の部分を切出し、レーザ照射サ
ンプル(試料番号B−2)とした。
Next, cutting out from the ingot (starting base metal)
The remaining one sample was cleaned under nitrogen atmosphere
Outside of hydrogen by heating in an electric furnace at 1150 ° C for 40 hours
Diffusion was performed. After heating, measure the hydrogen concentration by the same method.
1.9x1017Molecule / cm3 And 245 nm
The internal transmittance at 99.7% was 99.7% / cm. this
Laser irradiation sample (10 × 10 × 40mm)
3 ) Was cut out. (Sample B-1) From the outer peripheral portion of the ingot of the starting base material, the hydrogen concentration was
2 x 1017Molecule / cm Cut out the part 3 and laser irradiation
Sample (Sample No. B-2).

【0021】次に耐レーザー特性を評価するために、前
記各試料にArFエキシマレーザー光を照射し常磁性欠
陥(E’センタ)の吸収である215nmにおける吸光
度の変化を測定した。215nmの吸光度は−log
(1cm当たりの内部透過率)を用いて計算した。
Next, in order to evaluate the laser resistance, each sample was irradiated with ArF excimer laser light and the change in absorbance at 215 nm, which is the absorption of a paramagnetic defect (E 'center), was measured. Absorbance at 215 nm is -log
It was calculated using (internal transmittance per cm).

【0022】次に前記透過率の変化を測定する方法につ
いて詳細に説明する。図4は透過率変化測定装置の概略
図で、1はエキシマレーザで、ラムダフィジック社製L
PX2000を用い、パルス当たりのエネルギー密度1
50mJ/cm2p 、100Hzにて、各試料2のレー
ザ照射面に直角にレーザ照射を行うように構成してい
る。透過率測定装置は、紫外線の光源としてD2ランプ
3、その光を215nmに分光する第1のモノクロメー
タ61、ビームスプリッター4を介して入射光の光量を
測定するための第1のホトマル51、及び試料2を挟ん
で第2のモノクロメータ62及び透過してくる光量を測
定するためのホトマル52によって構成されている。D
2ランプ3より照射された光はビームスプリッター4を
介して一部ホトマル51に入射すると共に、他の光はモ
ノクロメータ61により215nmに分光され、試料
2、モノクロメータ62を経てホトマル52に受光さ
れ、ホトマル51と52の受光比により透過率が測定で
きる。ここでホトマル51と52の受光量の計測はエキ
シマレーザーの発振パルスと同期しているために、レー
ザー照射を行ないながら同時に透過率の測定が行なえ
る。
Next, a method for measuring the change in the transmittance will be described in detail. FIG. 4 is a schematic view of a transmittance change measuring device, and 1 is an excimer laser, which is L manufactured by Lambda Physics.
Energy density per pulse 1 using PX2000
The laser irradiation is performed at a right angle to the laser irradiation surface of each sample 2 at 50 mJ / cm 2 p and 100 Hz. The transmittance measuring device includes a D2 lamp 3 as a light source of ultraviolet rays, a first monochromator 61 for splitting the light into 215 nm, a first photomultiplier 51 for measuring the amount of incident light via the beam splitter 4, and It is composed of a second monochromator 62 sandwiching the sample 2 and a photomultiplier 52 for measuring the amount of transmitted light. D
The light emitted from the two lamps 3 is partially incident on the photomultiplier 51 through the beam splitter 4, and the other light is split into 215 nm by the monochromator 61, and is received by the photomultiplier 52 via the sample 2 and the monochromator 62. The transmittance can be measured by the light receiving ratio of Photomarus 51 and 52. Here, since the measurement of the amount of light received by the photomarus 51 and 52 is synchronized with the oscillation pulse of the excimer laser, the transmittance can be measured at the same time while performing laser irradiation.

【0023】そして前記装置を用いて各試料についてレ
ーザ照射方向の側面より各照射パルス毎に、測定を行
い、その内部透過率変化を図2及び図3に示す。尚、測
定した透過率は、照射レーザと同じ193nmの波長で
は、装置が破損してしまうので、E’センタの吸収波長
である215nmの透過率を測定した。けだし、実際に
は215nmの吸光度と、193nmの吸光度の間には
比例関係があるので、前記測定方法によって、実際にレ
ーザ照射中の石英ガラスの内部透光率を得る事が出来
る。
Then, using the above-mentioned apparatus, each sample was measured for each irradiation pulse from the side surface in the laser irradiation direction, and changes in the internal transmittance thereof are shown in FIGS. 2 and 3. As for the measured transmittance, the device was damaged at the same wavelength of 193 nm as the irradiation laser, so the transmittance at 215 nm, which is the absorption wavelength of the E ′ center, was measured. However, since there is actually a proportional relationship between the absorbance at 215 nm and the absorbance at 193 nm, the internal transmittance of the quartz glass during laser irradiation can be actually obtained by the above measuring method.

【0024】図2は水素処理炉内の処理温度の違いに基
づく、試料A−2乃至A−5の内部透過率変化を示し、
本図等より理解される通り、ドープ温度が300乃至4
00℃では好ましい内部透過率を得る事は出来、又60
0℃でも実用上差し支えない範囲の低下であったが、ド
ープ温度が800℃のもの(A−5)については好まし
い耐レーザ評価を得る事が出来なかった。
FIG. 2 shows changes in internal transmittance of Samples A-2 to A-5 based on the difference in processing temperature in the hydrogen treatment furnace.
As can be understood from this figure, the doping temperature is 300 to 4
It is possible to obtain a preferable internal transmittance at 00 ° C, and 60
Even if the temperature was 0 ° C., the reduction was within a practically acceptable range, but a preferable laser resistance evaluation could not be obtained for the one having a doping temperature of 800 ° C. (A-5).

【0025】図3は、水素ドープ前の還元性欠陥の有無
の状態若しくは水素濃度の違いに基づく、試料A−1、
A−6、及びB−1、B−2の内部透過率変化を示し、
本図等より理解される通り還元欠損はないが、水素が導
入されていない試料A−1については、照射パルスに比
例して耐レーザ性が低下している。又還元性欠陥水素が
十分低減していないB−1についてはレーザ照射初期に
おいて、透過率が99%以下に低下してしまい、好まし
い耐レーザ性を維持できない。又、1×1017分子/c
3以上の水素濃度を有していても該水素が還元性欠陥
である出発母材インゴットの試料B−2については、レ
ーザ照射初期において、透過率が98%以下に低下して
しまい、耐レーザ性が更に悪化する。尚、水素含有工程
をオートクレーブ中にて行ったA−6について前記図に
は記載されていないが、1×107ショットの照射にお
いても透過率が全く変化せず、極めてレーザ耐性の強い
安定した耐レーザガラスである事が判明した。
FIG. 3 shows sample A-1, based on the presence or absence of reducing defects before hydrogen doping or the difference in hydrogen concentration.
A-6, B-1 and B-2 show changes in internal transmittance,
As can be understood from this figure and the like, there is no reduction deficiency, but in sample A-1 in which hydrogen is not introduced, the laser resistance is reduced in proportion to the irradiation pulse. Further, with respect to B-1 in which the reducing defect hydrogen has not been sufficiently reduced, the transmittance is lowered to 99% or less at the initial stage of laser irradiation, and preferable laser resistance cannot be maintained. Also, 1 × 10 17 molecule / c
Sample B-2, which is a starting base material ingot in which the hydrogen is a reducing defect even if it has a hydrogen concentration of m 3 or more, has a transmittance of 98% or less at the initial stage of laser irradiation. The laser property is further deteriorated. Although not shown in the figure for A-6 which was subjected to the hydrogen-containing step in an autoclave, the transmittance did not change at all even when irradiated with 1 × 10 7 shots, and the laser resistance was stable and extremely stable. It was found to be laser resistant glass.

【0026】[0026]

【発明の効果】以上記載の如く本発明によれば、ガラス
微粒子を直接回転する耐熱性棒状芯部材上に溶融堆積し
てなる透明なガラスに水素を含有させた耐紫外線レーザ
用石英ガラスにおいて、レーザー照射時の前記常磁欠陥
生成のバラツキを抑制し、より安定してレーザー耐性の
優れた耐紫外線レーザ用石英ガラスを得る事が出来る。
等の種々の著効を有す。
As described above, according to the present invention, a transparent glass obtained by melting and depositing glass fine particles directly on a rotating heat-resistant rod-shaped core member contains quartz in an ultraviolet-resistant quartz glass for ultraviolet laser, It is possible to suppress the variation in the generation of paramagnetic defects during laser irradiation, and more stably obtain a quartz glass for an ultraviolet ray resistant laser having excellent laser resistance.
It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】実験を行った各試料のレーザ評価をまとめた表
図である。
FIG. 1 is a table summarizing laser evaluation of each sample on which an experiment was performed.

【図2】水素処理炉内の処理温度の違いに基づく内部透
過率変化を示すグラフ図である。
FIG. 2 is a graph showing a change in internal transmittance based on a difference in processing temperature in a hydrogen processing furnace.

【図3】水素ドープ前の還元性欠陥の有無の状態若しく
は水素濃度の違いに基づく内部透過率変化を示すグラフ
図である。
FIG. 3 is a graph showing changes in internal transmittance based on the presence or absence of reducing defects before hydrogen doping or the difference in hydrogen concentration.

【図4】透過率変化測定装置の概略図である。FIG. 4 is a schematic diagram of a transmittance change measuring device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 揮発性珪素化合物を火炎加水分解し、生
成するシリカ微粒子をそのまま回転する基体上に溶融・
堆積して得られる合成石英を出発母材として耐紫外線レ
ーザー用光学部材を製造する方法において、 前記出発母材を600℃以上1500℃以下の温度領域
で酸化熱処理し、水素濃度を5×1016分子/cm3
下に低減させる第1の工程と、第1の工程で得られる石
英ガラスを水素含有雰囲気下で300℃以上600℃以
下の温度領域に保持して水素濃度を1×1017分子/c
3 以上含有せしめる第2の工程を含む事を特徴とする
耐紫外線レーザー用光学部材の製造方法。
1. Silica fine particles produced by flame hydrolysis of a volatile silicon compound are directly melted on a rotating substrate.
In the method of manufacturing an optical member for ultraviolet laser resistance using synthetic quartz obtained by deposition as a starting base material, the starting base material is subjected to an oxidative heat treatment in a temperature range of 600 ° C. or higher and 1500 ° C. or lower to obtain a hydrogen concentration of 5 × 10 16. The first step of reducing the number of molecules / cm 3 or less, and the quartz glass obtained in the first step are kept in a temperature range of 300 ° C. or higher and 600 ° C. or lower in a hydrogen-containing atmosphere to make the hydrogen concentration 1 × 10 17 molecules. / C
A method for producing an optical member for an ultraviolet ray resistant laser, comprising a second step of containing m 3 or more.
【請求項2】前記第1の工程が、酸素を有する雰囲気で
1000℃以上、1500℃以下の温度領域で保持した
後徐冷することにより、245nmの波長の紫外線に対
する内部透過率が99.8%/cm以上でかつ含有され
る水素濃度が5×1016分子/cm3 以下に低減した工
程である請求項1記載の耐紫外線レーザー用光学部材の
製造方法。
2. In the first step, the internal transmittance for ultraviolet rays having a wavelength of 245 nm is 99.8 by holding in an atmosphere containing oxygen in a temperature range of 1000 ° C. or more and 1500 ° C. or less and then gradually cooling. The method for producing an optical member for ultraviolet laser resistance according to claim 1, wherein the step is a step in which the hydrogen concentration contained is at least% / cm and the contained hydrogen concentration is reduced to 5 × 10 16 molecules / cm 3 or less.
【請求項3】前記第2の工程を高圧炉内で1気圧以上、
特には50気圧以上の高圧下で行なう事を特徴とする請
求項1記載の耐紫外線レーザー用光学部材の製造方法。
3. The second step, 1 atm or more in a high pressure furnace,
In particular, the method for producing an optical member for an ultraviolet resistant laser according to claim 1, which is carried out under a high pressure of 50 atmospheres or more.
JP4343510A 1992-11-30 1992-11-30 Manufacturing method of optical member for UV resistant laser Expired - Fee Related JP2821074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4343510A JP2821074B2 (en) 1992-11-30 1992-11-30 Manufacturing method of optical member for UV resistant laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4343510A JP2821074B2 (en) 1992-11-30 1992-11-30 Manufacturing method of optical member for UV resistant laser

Publications (2)

Publication Number Publication Date
JPH06166528A true JPH06166528A (en) 1994-06-14
JP2821074B2 JP2821074B2 (en) 1998-11-05

Family

ID=18362077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4343510A Expired - Fee Related JP2821074B2 (en) 1992-11-30 1992-11-30 Manufacturing method of optical member for UV resistant laser

Country Status (1)

Country Link
JP (1) JP2821074B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227827A (en) * 1992-02-07 1994-08-16 Asahi Glass Co Ltd Transparent silica glass and its production
WO1997016382A1 (en) * 1995-10-31 1997-05-09 Heraeus Quarzglas Gmbh Process for producing quartz glass optical body for ultraviolet-emitting lasers and quartz glass body produced according to the process
WO1999038814A1 (en) * 1998-01-30 1999-08-05 Asahi Glass Company Ltd. Synthetic silica glass optical members and process for the production thereof
WO2000039038A1 (en) * 1998-12-25 2000-07-06 Fujinoki, Akira Method for producing optical quartz glass for excimer lasers
EP1036772A3 (en) * 1999-03-17 2001-03-21 Heraeus Quarzglas GmbH & Co. KG Method for producing optical quartz glass for excimer lasers and vertical-type heating furnace
US6619073B2 (en) 1996-03-05 2003-09-16 Corning Incorporated Method of increasing the initial transmittance of optical glass
US6915665B2 (en) 2000-10-31 2005-07-12 Corning Incorporated Method of inducing transmission in optical lithography preforms
JP2008195590A (en) * 2007-02-15 2008-08-28 Sumitomo Electric Ind Ltd Manufacturing process of quartz glass formed article and quartz glass formed article
US8402786B2 (en) 1998-01-30 2013-03-26 Asahi Glass Company, Limited Synthetic silica glass optical component and process for its production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333283B1 (en) 1997-05-16 2001-12-25 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227827A (en) * 1992-02-07 1994-08-16 Asahi Glass Co Ltd Transparent silica glass and its production
WO1997016382A1 (en) * 1995-10-31 1997-05-09 Heraeus Quarzglas Gmbh Process for producing quartz glass optical body for ultraviolet-emitting lasers and quartz glass body produced according to the process
US6619073B2 (en) 1996-03-05 2003-09-16 Corning Incorporated Method of increasing the initial transmittance of optical glass
WO1999038814A1 (en) * 1998-01-30 1999-08-05 Asahi Glass Company Ltd. Synthetic silica glass optical members and process for the production thereof
US8402786B2 (en) 1998-01-30 2013-03-26 Asahi Glass Company, Limited Synthetic silica glass optical component and process for its production
WO2000039038A1 (en) * 1998-12-25 2000-07-06 Fujinoki, Akira Method for producing optical quartz glass for excimer lasers
EP1036772A3 (en) * 1999-03-17 2001-03-21 Heraeus Quarzglas GmbH & Co. KG Method for producing optical quartz glass for excimer lasers and vertical-type heating furnace
US6508084B1 (en) 1999-03-17 2003-01-21 Heraeus Quarzglas Gmbh & Co. Kg Method for producing optical quartz glass for excimer lasers and vertical-type heating furnace
US6915665B2 (en) 2000-10-31 2005-07-12 Corning Incorporated Method of inducing transmission in optical lithography preforms
JP2008195590A (en) * 2007-02-15 2008-08-28 Sumitomo Electric Ind Ltd Manufacturing process of quartz glass formed article and quartz glass formed article

Also Published As

Publication number Publication date
JP2821074B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
JP3674793B2 (en) Method for producing quartz glass optical member for ultraviolet laser
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP2004123420A (en) Synthetic silica glass member for optical use and its manufacturing process
JP3654500B2 (en) Quartz glass material and optical member for F2 excimer laser optical member
JP2000290026A (en) Optical quartz glass member for excimer laser
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
US6630418B2 (en) Fused silica containing aluminum
JP3259460B2 (en) Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member
EP1458651B1 (en) Fused silica having improved index homogeneity
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP4191935B2 (en) Method for producing synthetic quartz glass member for excimer laser
JP4453936B2 (en) Manufacturing method of optical member for excimer laser
JP4085490B2 (en) Synthetic quartz glass for optical members and manufacturing method thereof
JPH06199539A (en) Optical quartz glass member for excimer laser and production thereof
JP4831328B2 (en) Method for manufacturing synthetic quartz glass substrate for excimer laser
JP4085633B2 (en) Synthetic quartz glass for optical components
JPH0624997B2 (en) Optical components for laser light
JPH03101282A (en) Optical system member for laser light
JP2003238195A (en) Synthetic quartz glass member
JP4228493B2 (en) Synthetic quartz glass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090828

LAPS Cancellation because of no payment of annual fees