JPH01212247A - Production of base material for laser optical system - Google Patents

Production of base material for laser optical system

Info

Publication number
JPH01212247A
JPH01212247A JP3505088A JP3505088A JPH01212247A JP H01212247 A JPH01212247 A JP H01212247A JP 3505088 A JP3505088 A JP 3505088A JP 3505088 A JP3505088 A JP 3505088A JP H01212247 A JPH01212247 A JP H01212247A
Authority
JP
Japan
Prior art keywords
base material
quartz glass
optical system
laser
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3505088A
Other languages
Japanese (ja)
Inventor
Shigeru Yamagata
茂 山形
Ryohei Nakamura
良平 中村
Katsuhiko Kenmochi
克彦 剣持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP3505088A priority Critical patent/JPH01212247A/en
Publication of JPH01212247A publication Critical patent/JPH01212247A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass

Abstract

PURPOSE:To obtain a base material for a laser optical system having durability to high-output short-wavelength laser and high quality by subjecting high-purity quartz glass to a heat treatment while passing gaseous hydrogen halide between the inside tube and outside tube of a double tube chamber made of quartz glass. CONSTITUTION:The quartz double tube chamber 2 is installed in a heating furnace 1 and high-purity quartz glass ingots 3 are installed in the chamber 2. While the gaseous hydrogen halide, gaseous halogen or the gas obtd. by diluting the gases with Ar, etc., is passed between the inside tube 21 and outside tube 22 of the chamber 2, the ingots are subjected to a heating treatment at 500-1,300 deg.C to obtain the base material for the optical system used for laser light of about <=400nm wavelength region. The excimer laser resistance is greatly improved if the high-purity quartz glass in which oxygen deficiency type defects exist is subjected to the heat treatment in the same manner as mentioned above while an oxidizing gas is kept passed in the inside tube 22 and if said quartz glass in which oxygen excess type defects exist is subjected to the heat treatment while a reducing gas is kept passed in said tube.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、レーザステッパ装置、レーザ発振装置、レー
ザCVD装置、レーザ核融合装置等に用いるレンズ、窓
部材、ミラー、プリズム、フィルター等のレーザ光学系
母材の製造方法に係り、特に高出力の且つ短波長域のレ
ーザ光に対し耐久性と高品質性を保証し得るレーザ光学
系母材の製造方法に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention is applicable to lasers such as lenses, window members, mirrors, prisms, filters, etc. used in laser stepper devices, laser oscillation devices, laser CVD devices, laser fusion devices, etc. The present invention relates to a method of manufacturing an optical system base material, and particularly to a method of manufacturing a laser optical system base material that can guarantee durability and high quality against high-power laser light in a short wavelength range.

「従来の技術」 近年、ウェハ上に集積回路パターンを描画するリングラ
フィ技術においてもその開発が急速に進み、例えば11
ピツ) DRAMに対応するパターン線巾1#L■、更
には4MビットDRAMに対応するパターン線巾0.8
JL*と、より微細な線幅が描画可能な技術が開発され
つつあり、これらの微細な線幅描画技術は、比較的高輝
度の光源、高感度レジスト、安定した光学材料がそろっ
ている等超微細な線幅描画を行う上で必要な種々の条件
を備えている為に一般に光リソグラフィーにより行われ
ているが、該光リソグラフィーは露光波長が大きいため
、回折により解像力が制限されるという問題がある。
"Prior art" In recent years, the development of phosphorography technology for drawing integrated circuit patterns on wafers has progressed rapidly.
(Pitsu) Pattern line width corresponding to DRAM: 1#L■, furthermore, pattern line width corresponding to 4M bit DRAM: 0.8
JL* and other technologies that can draw finer line widths are being developed, and these fine line width writing technologies require relatively high brightness light sources, highly sensitive resists, stable optical materials, etc. Optical lithography is generally used because it has the various conditions necessary to draw ultra-fine line widths, but the problem with optical lithography is that its resolution is limited by diffraction because the exposure wavelength is large. There is.

かかる問題の解決には、前記光リソグラフィーに用いる
レンズその他の光学系の高NA (開口数)化と光の短
波長化が考えられる。
To solve this problem, it is possible to increase the NA (numerical aperture) of lenses and other optical systems used in the optical lithography and to shorten the wavelength of light.

光学系の高HA化は、HA (開口数)0.4を超える
時代に入っており、又試作品としてHA 0.8のレン
ズも開発されているが、高HA化に伴い焦点深度が浅く
なる為にその解像度の向上を図る為の高HA化には限界
に来ている。
We have entered an era in which high HA optical systems have exceeded HA (numerical aperture) of 0.4, and a prototype lens with an HA of 0.8 has been developed, but as the HA increases, the depth of focus becomes shallower. Therefore, increasing the HA to improve the resolution has reached its limit.

そこで、次に光の短波長化が検討されることになる− しかしながら光の短波長化を図る為に、例えば略400
 nm以下の紫外線を用いた場合は、従来の光学ガラス
を用いたレンズでは使用波長が3B5n+s(i線)付
近より光透過率が急激に低下して、言い変えれば光吸収
と該光吸収による発熱が生じ、該レンズの焦点位置やそ
の他の特性を狂わせることになる。
Therefore, the next consideration was to shorten the wavelength of light. However, in order to shorten the wavelength of light, for example, approximately 400
When ultraviolet rays of nm or less are used, in lenses using conventional optical glass, the light transmittance decreases rapidly when the wavelength used is around 3B5n+s (i-line), and in other words, light absorption and heat generation due to the light absorption occur. occurs, which disturbs the focal position and other characteristics of the lens.

かかる欠点を解消する為に前記レンズ材料を石英ガラス
や蛍石に代える事が提示されているが、該石英ガラス等
を用いた場合通常の紫外線光では光スペクトル巾が広い
ため色収差補正は大変困難である。
In order to eliminate this drawback, it has been proposed to replace the lens material with quartz glass or fluorite, but when using quartz glass or the like, it is very difficult to correct chromatic aberration due to the wide optical spectrum width of normal ultraviolet light. It is.

この為前記石英ガラス等に組み合わせてスペクトル巾の
狭いレーザ光、特に主として紫外域で発振する高出力パ
ルスレーザであるエキシマレーザを使うことが考えられ
、かかるエキシマレーザは発振効率とガス寿命の点から
、 KrF(248n層)、Xe(41(308n*)
 、ArF(193nm)が有利である。
For this reason, it may be possible to use an excimer laser, which is a high-power pulsed laser that oscillates mainly in the ultraviolet region, in combination with a laser beam with a narrow spectrum width, in combination with the quartz glass, etc.; , KrF (248n layer), Xe (41(308n*)
, ArF (193 nm) is advantageous.

しかしながら前記エキシマレーザはいずれも波長が35
0 nm以下の短波長であるが故にこれら光学材料の屈
折率の均一性は従来の水銀灯の紫外線使用波長であるg
線(43Gam)或いは1線(385!III )の場
合に比較して1桁以上高い(Δn中 lXl0−7〜 
IX 10−6 、Δn:屈折率変動幅)ものが要求さ
れているが、前記レンズ材料の内、蛍石については屈折
率の均一性と最大寸法、加工時の吸湿性と機械的強度に
問題が多く残されており、この為短波長域のレーザ光に
対し耐久性と高品質性を保証し得るレーザ光学系母材と
しては石英ガラス以外には見出せない。
However, all of the excimer lasers have a wavelength of 35
Because the wavelength is short, less than 0 nm, the uniformity of the refractive index of these optical materials is equivalent to the wavelength used by conventional mercury lamps.
This is more than an order of magnitude higher than in the case of a line (43Gam) or 1 line (385!III) (lXl0-7 in Δn
IX 10-6, Δn: refractive index variation range), but among the above lens materials, fluorite has problems with refractive index uniformity, maximum dimension, hygroscopicity during processing, and mechanical strength. Therefore, quartz glass is the only material that can be used as a base material for laser optical systems that can guarantee durability and high quality for laser light in the short wavelength range.

「発明が解決しようとする課題」 しかしながら、前記のような短波長域のレーザ光源を用
いた場合、例え石英ガラスを用いてレーザ光学系を製作
したとしても、エキシマレーザのような高出力パルス光
が長時間照射されると時間経過とともに、石英ガラスレ
ンズがダメージを受け、歪が入り複屈折が起こるのみな
らず、前記レーザ光の長時間照射により、透過率の低下
、絶対屈折率の上昇、屈折率分布の変動が起こり、最終
的にクラックが発生するという問題が派生する。
``Problem to be solved by the invention'' However, when using a laser light source in the short wavelength range as described above, even if the laser optical system is manufactured using quartz glass, high-power pulsed light such as excimer laser If the laser beam is irradiated for a long period of time, the quartz glass lens will be damaged and distorted over time, causing birefringence. A problem arises in that the refractive index distribution fluctuates and eventually cracks occur.

特に、エキシマレーザを用いたリソグラフィー用の石英
ガラスレンズに対しては、屈折率変動幅ΔnがlX10
4以下が好ましいとされており、前記のような石英ガラ
スの光学的物性変化が起こると、レンズの光軸、焦点位
置が変動し、微細かつ!!#明パターンの形成が極めて
困難となる。
In particular, for a quartz glass lens for lithography using an excimer laser, the refractive index variation width Δn is lX10
It is said that a value of 4 or less is preferable, and when the above-mentioned changes in the optical properties of quartz glass occur, the optical axis and focal position of the lens change, resulting in fine and! ! #It becomes extremely difficult to form a bright pattern.

又、特に300nm以下の短波長レーザ光が照射される
と従来の光学ガラスより光学的安定性の高い石英ガラス
においても蛍光を発生し、特にエキシマレーザステッパ
のように投影露光型の装置においては、レンズその他の
光学系から蛍光がレーザ光とともにウェハ上のフォトレ
ジストに感応してしまい1g明パターンの形成が困難と
なる。
In addition, when irradiated with short wavelength laser light of 300 nm or less, even silica glass, which has higher optical stability than conventional optical glass, generates fluorescence, especially in projection exposure type equipment such as excimer laser steppers. Fluorescence from lenses and other optical systems is sensitive to the photoresist on the wafer together with laser light, making it difficult to form a 1g bright pattern.

本発明はかかる従来技術の欠点に鑑み、光源の使用波長
が400nm以下、更に限定的には350nm以下の短
波長レーザ光を長時間照射した場合においても、透過率
の低下、絶対屈折率の上昇、屈折率分布の変動更にはク
ラックが発生する事のない、言い変えれば高出力の且つ
短波長域のレーザ光に対しても耐久性と高品質性を保証
し得るレーザ光学系母材の製造方法を提供する事を目的
とする。
In view of the shortcomings of the prior art, the present invention has been developed to reduce transmittance and increase absolute refractive index even when a light source is irradiated with short wavelength laser light of 400 nm or less, more specifically 350 nm or less, for a long time. Manufacture of a base material for a laser optical system that can guarantee durability and high quality even with high output and short wavelength laser beams, without changing the refractive index distribution or cracking. The purpose is to provide a method.

「課題を解決する為の手段」 本発明はかかる技術的課題を達成する為に、下記に記載
するような実験を行いながら思考錯誤を重ねた結果、よ
うやくにして所期の効果を達成し得るレーザ光学系母材
の製造方法を実現するに至ったものである。
"Means for solving the problem" In order to achieve the technical problem, the present invention has finally achieved the desired effect as a result of repeated thought and error while conducting the experiments described below. This has led to the realization of a method for manufacturing a laser optical system base material.

その概要を順序を追って説明する。The outline will be explained step by step.

先ず、短波長レーザ光の照射により発生する石英ガラス
材の透過率の低下等の光学的物性の変化や蛍光の発生は
一般に、前記石英ガラス組織中に存在するLi、Ha、
)Lg、AI 、に、Ca、Ti 、Cr、Mn、Fe
、Go、Ni、Cu、Zn、Ge等の不純物金属元素に
起因するとされていた。
First, changes in optical properties such as a decrease in transmittance of a quartz glass material and generation of fluorescence caused by irradiation with short wavelength laser light are generally caused by Li, Ha,
) Lg, AI, Ca, Ti, Cr, Mn, Fe
, Go, Ni, Cu, Zn, Ge, and other impurity metal elements.

そこで本発明者達は、高純度化された5iCI4等のけ
い素化合物を用いて、酸水素炎分解法等により金属元素
の混入を極力排除しながら極めて高純度の合成石英ガラ
スを形成し、該石英ガラス材を母材として前記短波長レ
ーザ光用のウィンドウ等(試験片)を製作し、前記欠点
の解消を図ったが、なお高出力の短波長レーザ光用光学
系として満足が得られる結果が得られなかった。
Therefore, the present inventors used highly purified silicon compounds such as 5iCI4 to form extremely high-purity synthetic quartz glass by eliminating the contamination of metal elements as much as possible by oxyhydrogen flame decomposition method, etc. A window etc. (test piece) for the short wavelength laser beam was manufactured using quartz glass material as a base material in an attempt to eliminate the above drawbacks, but the result was still satisfactory as an optical system for high output short wavelength laser beam. was not obtained.

その理由を調べる為に、前記合成石英ガラス材のガラス
組織の状況を確認してみるに、金属元素は検出限界以下
であるにも拘らず、該ガラス組織中に内部歪が存在して
いることが確認された。
In order to investigate the reason, we checked the state of the glass structure of the synthetic silica glass material and found that internal strain existed in the glass structure, even though the metal elements were below the detection limit. was confirmed.

次に前記高純度の合成石英ガラスを7ニール処理して歪
を除去した石英ガラス材を母材として前記試験片を製作
して効果確認実験を行った所、尚満足が得°ら′れる結
果が得られなかった。
Next, we fabricated the test piece using a quartz glass material obtained by subjecting the high-purity synthetic quartz glass to a 7-neal treatment to remove distortion as a base material, and conducted an experiment to confirm the effectiveness.The results were still satisfactory. was not obtained.

その理由について調べてみた所前記歪はアニール処理に
より除去されていたが、逆に前記アニール処理中に高純
度の合成石英ガラス組織中の金属元素が増加しており、
母材汚染が生じている事が判明した。
When we investigated the reason for this, we found that the distortion was removed by annealing, but conversely, the metal elements in the high-purity synthetic silica glass structure increased during the annealing.
It was found that the base material was contaminated.

そこで本発明者達は、前記アニールを行う加熱処理炉内
に石英ガラス製の内管と外管とからなる二重管構造のチ
ャンバを配置し、該チャンバ内に前記母材を収納した状
態で7ニール処理を行ったが、尚前記欠点を解消するに
いたらなかった。
Therefore, the present inventors arranged a chamber with a double tube structure consisting of an inner tube and an outer tube made of quartz glass in the heat treatment furnace in which the annealing is performed, and with the base material housed in the chamber. Although 7-neal treatment was performed, the above-mentioned drawbacks could not be solved.

次に1本発明者達は、前記内管と外管との間に種々のガ
スを流しながら実験を重ねていった所、塩化水素ガス等
のハロゲン化合物ガス、塩素ガス等のハロゲンガス、或
はチッ素ガス等の不活性ガスを流しながら加熱処理を行
った場合にのみ。
Next, the inventors conducted repeated experiments while flowing various gases between the inner tube and the outer tube, and found that halogen compound gas such as hydrogen chloride gas, halogen gas such as chlorine gas, Only when heat treatment is performed while flowing an inert gas such as nitrogen gas.

レーザ光学系母材として満足すべき結果が得られた。Satisfactory results were obtained as a base material for laser optical systems.

即ち請求項1)記載の本発明は、石英ガラス製の内管と
外管とからなる二重管構造のチャンバ内に前記母材を収
納した状態で、前記内管と外管と間にハロゲン化合物ガ
ス、ハロゲンガス、又はこれらを含む稀釈ガス、若しく
は不活性ガス、更にはこれらの混合ガスを流しながらを
加熱処理を行う事により、耐久性と高品質性を保証し得
るレーザ光学系母材を提供する事が出来るものである。
That is, in the present invention as described in claim 1), when the base material is housed in a chamber with a double tube structure consisting of an inner tube and an outer tube made of quartz glass, a halogen gas is inserted between the inner tube and the outer tube. Laser optical system base material that can guarantee durability and high quality by performing heat treatment while flowing compound gas, halogen gas, diluent gas containing these, inert gas, or even a mixture of these gases. It is possible to provide the following.

この場合、前記加熱処理の温度は500〜1300℃の
間で任意に選択することが望ましい、けだし500℃よ
り低い温度では酸素欠陥の除去が困難となるし、 13
00℃以上では石英二重管チャンバーの変形の不利が生
じる為である。
In this case, it is desirable that the temperature of the heat treatment is arbitrarily selected between 500 and 1300°C; however, at temperatures lower than 500°C, it becomes difficult to remove oxygen defects.
This is because at temperatures above 00°C, the quartz double tube chamber is disadvantageously deformed.

更に前記発明について補充実験を追加して行った所、前
記石英ガラス製チャンバの内管内を流すガスの種類によ
って、エキシマレーザ特性が変化する事が確認された。
Furthermore, when supplementary experiments were conducted on the invention, it was confirmed that the excimer laser characteristics change depending on the type of gas flowing through the inner tube of the quartz glass chamber.

そこでエキシマレーザ特性が一層良化したもの、悪化し
たちの夫々について分析した所、前記エキシマレーザ特
性が一層良化した母材はいずれも石英ガラス組織(S+
02 )中に存在する酸素欠陥、具体的には下記0式で
示される酸素欠損型欠陥、あるいは下記0式で示される
酸素過剰型欠陥が実質的に除去されている事が確認され
た。
Therefore, we analyzed the materials with improved excimer laser characteristics and those with deteriorated excimer laser characteristics, and found that the base materials with improved excimer laser characteristics all had a silica glass structure (S+
It was confirmed that the oxygen defects present in 02), specifically the oxygen-deficient type defects represented by the following formula 0, or the oxygen-excess type defects represented by the following formula 0, were substantially removed.

従って請求項2)記載の第2発明は、前記請求項1)に
記載した要件に加えて前記内管中に、酸化性又は還元性
のいずれか一又は複数の選択された雰囲気中で、前記母
材を加熱処理する事により、該母材組織中に存在する酸
素欠陥の実質的な除去を図った点を要旨とし、これによ
り耐久性と高品質性を一層保証し得るレーザ光学系母材
を提供する事が出来るものである。
Therefore, the second invention as set forth in claim 2) provides that, in addition to the requirements set forth in claim 1), in the inner tube, the atmosphere is selected from one or more of oxidizing and reducing atmospheres. The main point of the laser optical system base material is that by heat-treating the base material, oxygen defects existing in the base material structure are substantially removed, thereby further guaranteeing durability and high quality. It is possible to provide the following.

尚、酸素欠陥の存在が何故光学特性に悪影響を及ぼすか
その理由についてはさだがではないが、下記の理由によ
るものと推定される。
The reason why the presence of oxygen defects adversely affects the optical properties is not clear, but it is presumed to be due to the following reasons.

即ちガラス組織中に、酸素欠陥が存在すると、前記ガラ
ス組織を構成する元素間の結合が、理想的石英ガラスの
元素間の結合に比較して弱くなり、該レーザ光のエネル
ギーにより結合が切断されやすくなり、そして石英ガラ
スの元素間の結合が切断されることにより密度変化を起
こし、屈折率を変化させるものと推定される。又同様に
酸素欠陥の存在が前駆体となり、レーザ光照射中各種の
カラーセンターを形成し、透過率の低下をもたらし、更
に前記カラーセンターの形成に伴って、蛍光が発生し易
くなるものと思慮される。
That is, when oxygen defects exist in the glass structure, the bonds between the elements constituting the glass structure become weaker than the bonds between the elements of ideal silica glass, and the energy of the laser beam breaks the bonds. It is presumed that the bond between the elements of the silica glass is broken, causing a change in density and a change in the refractive index. Similarly, it is considered that the presence of oxygen defects acts as a precursor and forms various color centers during laser beam irradiation, resulting in a decrease in transmittance, and that fluorescence is more likely to occur as the color centers are formed. be done.

ちなみに酸素欠陥の内、醜素過剰型欠陥は、高温で水素
と反応させた時発生するOH基の赤外吸収ピークの増大
を測定することにより検知出来、又酸素欠損型欠陥は、
真空紫外域?、8eV(IHnm)の吸収ピークの存在
、及び高温で酸素と反応させた時減少する?、8eV吸
収ピークを測定することにより検知出来る。
Incidentally, among oxygen defects, ugliness-excess type defects can be detected by measuring the increase in the infrared absorption peak of OH groups generated when reacting with hydrogen at high temperatures, and oxygen-deficient defects can be detected by measuring the increase in the infrared absorption peak of OH groups generated when reacting with hydrogen at high temperatures.
Vacuum ultraviolet range? , the presence of an absorption peak at 8 eV (IHnm), and decreases when reacted with oxygen at high temperatures? , 8 eV absorption peak.

「実施例」 以下1図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配aなどは特に特
定的な記載がなl、%限りは、この発明の範囲をそれの
みに限定する趣旨ではなく、単なる説明例に過ぎない。
``Example'' A preferred embodiment of the present invention will be described in detail below by way of example with reference to one drawing. However, there are no specific descriptions of the dimensions, materials, shapes, relative arrangements, etc. of the component parts described in this example, and the scope of this invention is not intended to be limited to only the percentages. , is merely an illustrative example.

本発明に至った経過を具体的な実験経過を順を追って詳
細に説明する。
The progress that led to the present invention will be explained in detail in a step-by-step manner through specific experimental progress.

A、請求項りの発明 先ず、原料の四塩化ケイ素を蒸留処理して不純物を除去
させた後テフロンライニング付ステンレス製容器に貯溜
した高純度四塩化ケイ素を用意し、この原料を用いて、
酸水素炎加水分解法により、直接高純度透明石英ガラス
塊を複数個合成する。
A. Claimed invention First, silicon tetrachloride as a raw material is distilled to remove impurities and then high purity silicon tetrachloride stored in a Teflon-lined stainless steel container is prepared, and using this raw material,
Multiple high-purity transparent quartz glass lumps are directly synthesized by oxyhydrogen flame hydrolysis method.

この場合、前記石英ガラス塊においては、いずれの石英
ガラス塊についてもLi、Ha、に、Mg、Ca、Ti
、Cr、Fe、Cu、AI等金金属不純物元素含有量検
出限界以下であった(表2)、尚、前記いずれの石英ガ
ラス塊もOH基含有量は略700ppmであった。
In this case, in any of the quartz glass lumps, Li, Ha, Mg, Ca, Ti
The content of gold metal impurity elements such as Cr, Fe, Cu, and AI was below the detection limit (Table 2).The OH group content of each of the silica glass ingots was approximately 700 ppm.

そして、このようにして形成した高純度合成石英ガラス
塊を通常のアニール炉にて歪除去のため熱処理を行った
vk30X20X1Gmmの寸法に切断し、且つ両面鏡
面仕上げを行ってエキシマレーザ照射実験用試験片を9
側型作し、該9個の試験片に対して248n■(KrF
)の波長域を有するレーザ光について、パルス当りエネ
ルギー密度200,400.floo (mJ/crr
f a pulse)及び照射パルスIX 104 、
IX 105、 I X 1G ’  (pulse)
の組合せから成る照射条件にて照射を行った。
The high-purity synthetic silica glass block thus formed was then heat-treated in a normal annealing furnace to remove strain, cut into dimensions of 30 x 20 x 1 Gmm, and mirror-finished on both sides to produce test pieces for excimer laser irradiation experiments. 9
A side mold was made, and 248n (KrF) was applied to the nine test pieces.
), the energy density per pulse is 200, 400. floo (mJ/crr
f a pulse) and irradiation pulse IX 104 ,
IX 105, IX 1G' (pulse)
Irradiation was performed under irradiation conditions consisting of a combination of.

そして、前記照射終了後の各試験片について干渉計にて
屈折率分布変化、透過率計にてソーラリゼーション、蛍
光測定器にて蛍光強度測定を行った結果、実験結果−覧
表(表1)の実験番号1)に示されるように、高出力の
短波長レーザ光用光学系として満足が得られる結果が得
られなかった。
After the irradiation, each specimen was subjected to changes in refractive index distribution using an interferometer, solarization using a transmittance meter, and fluorescence intensity measurement using a fluorescence measuring device. ) As shown in experiment number 1), no satisfactory results were obtained as an optical system for high-output, short-wavelength laser light.

そこで、前記熱処理後のガラス塊の不純物金属元素分析
を行った結果、表2に示すように加熱処理前のものに比
較して不純物金属元素含有量が大幅に増加している事が
認められた。この理由は、加熱炉の保温材に含まれる不
純物元素が、加熱処理中に石英ガラス塊を汚染している
為である事が想定される。
Therefore, as a result of analyzing the impurity metal elements of the glass lump after the heat treatment, it was found that the content of impurity metal elements was significantly increased compared to that before the heat treatment, as shown in Table 2. . The reason for this is assumed to be that impurity elements contained in the heat insulating material of the heating furnace contaminate the quartz glass lump during the heat treatment.

そこで木発明者達は、第1図に示すような横型円筒形の
加熱炉1内に石英二重管チャンバー2を設欝して該チャ
ンバー2内に、前記加熱処理前の高純度石英ガラス塊3
を設nして約1000℃前後の温度にて加熱処理を行い
、そしてこのようにして形成した加熱処理後のガラス塊
についても前記と同様な手順で試験した所、実験結果−
覧表の実験番号2)に示されるように、尚高出力の短波
長レーザ光用光学系として満足が得られる結果が得られ
なかった。
Therefore, the wood inventors set up a quartz double tube chamber 2 in a horizontal cylindrical heating furnace 1 as shown in FIG. 3
The heat treatment was carried out at a temperature of about 1000°C, and the glass lumps thus formed after the heat treatment were tested in the same manner as above, and the experimental results -
As shown in experiment number 2) in the list, no satisfactory results were obtained as an optical system for high output short wavelength laser light.

次に前記チャンバー2の外管21と内管22の間に、チ
ッ素ガス、アルゴンガスもしくはヘリウムガスで稀釈し
た塩化水素ガス等を流しながら、又その濃度を選択的に
変化させながら、約1000℃前後の温度にて加熱処理
を行った。そしてこのようにして形成した加熱処理後の
ガラス塊についても前記と同様な手順で試験した所、実
験結果−覧表の実験番号4−)5)に示されるように1
石英二重管の間に不活性ガス稀釈した塩化水素を流しな
がら熱処理したサンプルは耐エキシマレーザ性が高く、
高出力の短波長レーザ光用光学系として満足すべき結果
が得られた。
Next, while flowing hydrogen chloride gas diluted with nitrogen gas, argon gas, or helium gas between the outer tube 21 and the inner tube 22 of the chamber 2, and selectively changing the concentration, about 1000 The heat treatment was performed at a temperature of around ℃. The heat-treated glass lump thus formed was also tested in the same manner as above, and as shown in experiment number 4-5) in the list of experimental results, 1.
Samples heat-treated while flowing hydrogen chloride diluted with inert gas between the quartz double tubes have high excimer laser resistance.
Satisfactory results were obtained as an optical system for high-power, short-wavelength laser light.

次に、チャンバー2の外管21と内管22の間に単にチ
ッ素ガスのみを流しながら熱処理した石英ガラス塊につ
いては、多少の耐エキシマレーザ性を有するも、高出力
の短波長レーザ光用光学系としては多少不満足な結果で
あった。(実験番号(尚、前記各サンプルの不純物金属
元素分析を行った結果、実験番号05)では、不純物金
属元素の汚染は認められたかったが、実験番号1)2)
3)では不純物金属元素含有量の増加が認められたが、
その増加の程度は外管2!と内管22の間にチッ素ガス
のみを波しながら熱処理した実験番号3)の増加程度が
最も小さい。
Next, although the quartz glass lump heat-treated while simply flowing nitrogen gas between the outer tube 21 and the inner tube 22 of the chamber 2 has some excimer laser resistance, it is suitable for use with high-power short wavelength laser beams. As an optical system, the results were somewhat unsatisfactory. (In the experiment number (experiment number 05, as a result of the impurity metal element analysis of each sample), contamination with impurity metal elements was detected, but experiment number 1) 2)
In 3), an increase in the content of impurity metal elements was observed;
The degree of increase is 2! Experiment No. 3), in which heat treatment was performed while flowing only nitrogen gas between the inner tube 22 and the inner tube 22, had the smallest increase.

尚、実験番号05)に用いた塩化水素ガスMCIの代り
に塩氷オスCI2を用いて同様の実験を行ったところ、
実験番号4)5)と略同様の優れた結果が得られた。(
実験番号8)?)) B、請求項2)の #素欠損型欠陥が存在するスート再溶融法で合成した高
純度石英ガラスを外管2!と内管22の間に、アルゴン
ガスで稀釈した塩化水素ガスを流しながら、又その内管
22内にアルゴンガスで稀釈した酸素ガス、もしくはア
ルゴンガスで稀釈した水素ガスを流しながら約1000
℃前後の温度にて加熱処理を行った。そしてこのように
して形成した加熱処理後のガラス塊についても前記と同
様な手順で試験した所、下記実験結果−覧表(表3)に
示されるように、実験番号8)に示す酸化性雰囲気にて
熱処理したものは酸素欠陥濃度が実質的に除去され耐エ
キシマレーザ性が大幅に改善させることが出来た。しか
し、実験番号9)に示す還元性雰囲気にて熱処理したも
のは逆に酸素欠陥濃度が増大し耐エキシマレーザ性が悪
化することが明らかとなった。
In addition, when a similar experiment was conducted using salt ice male CI2 instead of the hydrogen chloride gas MCI used in experiment number 05),
Almost the same excellent results as in Experiment No. 4) and 5) were obtained. (
Experiment number 8)? )) B. The outer tube 2 is made of high-purity quartz glass synthesized by the soot remelting method in which #elementary defects exist in claim 2)! and the inner tube 22, while flowing hydrogen chloride gas diluted with argon gas, and flowing oxygen gas diluted with argon gas or hydrogen gas diluted with argon gas into the inner tube 22.
The heat treatment was performed at a temperature of around ℃. The heat-treated glass lump thus formed was also tested in the same manner as above, and as shown in the following experimental results table (Table 3), the oxidizing atmosphere shown in Experiment No. 8) was obtained. The oxygen defect concentration was substantially removed in the heat-treated sample, and the excimer laser resistance was significantly improved. However, it was revealed that when heat treated in the reducing atmosphere shown in Experiment No. 9), the oxygen defect concentration increased and the excimer laser resistance deteriorated.

更に前記効果を確認する為に、酸素過剰型欠陥が存在す
るプラズマ法で合成された高純度石英ガラス塊について
同様な実験を試みた所、前記と逆に還元性雰囲気にて熱
処理したものについては、酸素欠陥濃度を検出限界以下
まで除去する事が出来、耐エキシマレーザ性を大幅に改
善させることが出来たが、酸化性雰囲気にて熱処理した
サンプルは、酸素欠陥濃度が増大し耐エキシマレーザ性
が大幅に悪化することが明らかとなった(実験例10)
11)12))。
Furthermore, in order to confirm the above-mentioned effect, we attempted a similar experiment on a high-purity quartz glass lump synthesized by the plasma method in which oxygen-excess type defects exist. , we were able to remove the oxygen defect concentration to below the detection limit and significantly improve the excimer laser resistance, but samples heat-treated in an oxidizing atmosphere had an increased oxygen defect concentration and the excimer laser resistance decreased. It became clear that the condition worsened significantly (Experiment Example 10)
11)12)).

「発明の効果」 以上記載の如く本発明によれば、高純度の石英ガラス材
を用いつつも該石英ガラス材に特殊な処理を施す事によ
り、高出力の且つ短波長域のレーザ光に対し耐久性と高
品質性を保証し得るレーザ光学系母材の製造方法を提供
し得、而も本発明に基づいて製造されたレーザ光学系母
材は、リソグラフィー装置その他の高集積回路製造装置
のみならず、レーザ核融合装置、レーザ核融合装置その
他の高出力エキシマレーザに使用されるレーザ光学系母
材に゛も十分適用可能である1等の種々の著効を有す。
"Effects of the Invention" As described above, according to the present invention, by using a high-purity quartz glass material and subjecting the quartz glass material to special treatment, it is possible to resist high-power laser light in a short wavelength range. A method for manufacturing a laser optical system base material that can guarantee durability and high quality can be provided, and the laser optical system base material manufactured based on the present invention can only be used in lithography equipment and other highly integrated circuit manufacturing equipment. In addition, it has various outstanding effects, such as the fact that it is fully applicable to laser optical system base materials used in laser fusion devices, laser fusion devices, and other high-power excimer lasers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される加熱処理炉の概略図である
FIG. 1 is a schematic diagram of a heat treatment furnace used in the present invention.

Claims (1)

【特許請求の範囲】 1)略400nm以下の特定波長域のレーザ光に使用さ
れるレーザ光学系母材の製造方法において、高純度石英
ガラス塊を用いてレーザ光学系母材を製造した後、石英
ガラス製の内管と外管とからなる二重管構造のチャンバ
内に前記母材を収納した状態で、前記内管と外管と間に
、ハロゲン化合物ガス、ハロゲンガス、又はこれらを含
む稀釈ガス、若しくは不活性ガスの内、選択された一又
は複数のガスを流しながら加熱処理を行う事を特徴とす
るレーザ光学系母材の製造方法 2)略400nm以下の特定波長域のレーザ光に使用さ
れるレーザ光学系母材の製造方法において、高純度石英
ガラス塊を用いてレーザ光学系母材を製造した後、石英
ガラス製の内管と外管とからなる二重管構造のチャンバ
内に前記母材を収納した状態で、前記内管と外管と間に
はハロゲン化合物ガス、ハロゲンガス、又はこれらを含
む稀釈ガス、若しくは不活性ガスの内、選択された一又
は複数のガスを流しながら、又前記内管中には、酸化性
又は還元性のいずれか一又は複数の選択された雰囲気ガ
スを流しながら加熱処理を行う事を特徴とするレーザ光
学系母材の製造方法
[Claims] 1) In a method for manufacturing a laser optical system base material used for laser light in a specific wavelength range of about 400 nm or less, after manufacturing the laser optical system base material using a high-purity silica glass ingot, The base material is housed in a chamber with a double tube structure consisting of an inner tube and an outer tube made of quartz glass, and a halogen compound gas, a halogen gas, or any of these is contained between the inner tube and the outer tube. A method for manufacturing a laser optical system base material, which is characterized by performing heat treatment while flowing one or more gases selected from diluent gas or inert gas 2) Laser light in a specific wavelength range of about 400 nm or less In the manufacturing method of the laser optical system base material used in With the base material housed inside, one or more gases selected from among a halogen compound gas, a halogen gas, a diluent gas containing these, or an inert gas are provided between the inner tube and the outer tube. A method for producing a laser optical system base material, characterized in that the heat treatment is performed while flowing a selected one or more of oxidizing or reducing atmospheric gases into the inner tube.
JP3505088A 1988-02-19 1988-02-19 Production of base material for laser optical system Pending JPH01212247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3505088A JPH01212247A (en) 1988-02-19 1988-02-19 Production of base material for laser optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3505088A JPH01212247A (en) 1988-02-19 1988-02-19 Production of base material for laser optical system

Publications (1)

Publication Number Publication Date
JPH01212247A true JPH01212247A (en) 1989-08-25

Family

ID=12431211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3505088A Pending JPH01212247A (en) 1988-02-19 1988-02-19 Production of base material for laser optical system

Country Status (1)

Country Link
JP (1) JPH01212247A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264028A (en) * 1988-08-30 1990-03-05 Shin Etsu Chem Co Ltd Synthetic silica glass for resisting ultraviolet light and production thereof
JPH0472685A (en) * 1990-07-13 1992-03-06 Shinetsu Quartz Prod Co Ltd Optical member for ultraviolet laser
EP0483752A2 (en) * 1990-10-30 1992-05-06 Shin-Etsu Quartz Products Co., Ltd. Optical member made of high-purity and transparent synthetic silica glass and method for production thereof and blank thereof
JPH04224131A (en) * 1990-12-26 1992-08-13 Shinetsu Quartz Prod Co Ltd Optical glass
US6761951B2 (en) 2001-12-11 2004-07-13 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass blank
EP1754689A1 (en) 2005-08-11 2007-02-21 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate for excimer lasers and making method
EP2208715A2 (en) 2009-01-19 2010-07-21 Shin-Etsu Chemical Co., Ltd. Method of producing synthetic quartz glass for excimer laser
US7827824B2 (en) 2006-09-07 2010-11-09 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate for excimer lasers and making method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264028A (en) * 1988-08-30 1990-03-05 Shin Etsu Chem Co Ltd Synthetic silica glass for resisting ultraviolet light and production thereof
JPH0733259B2 (en) * 1988-08-30 1995-04-12 信越化学工業株式会社 Ultraviolet-resistant synthetic quartz glass and method for producing the same
JPH0472685A (en) * 1990-07-13 1992-03-06 Shinetsu Quartz Prod Co Ltd Optical member for ultraviolet laser
EP0483752A2 (en) * 1990-10-30 1992-05-06 Shin-Etsu Quartz Products Co., Ltd. Optical member made of high-purity and transparent synthetic silica glass and method for production thereof and blank thereof
JPH04224131A (en) * 1990-12-26 1992-08-13 Shinetsu Quartz Prod Co Ltd Optical glass
US6761951B2 (en) 2001-12-11 2004-07-13 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass blank
EP1754689A1 (en) 2005-08-11 2007-02-21 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate for excimer lasers and making method
US7954340B2 (en) 2005-08-11 2011-06-07 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate for excimer lasers and making method
US7827824B2 (en) 2006-09-07 2010-11-09 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate for excimer lasers and making method
EP2208715A2 (en) 2009-01-19 2010-07-21 Shin-Etsu Chemical Co., Ltd. Method of producing synthetic quartz glass for excimer laser
KR20100084994A (en) 2009-01-19 2010-07-28 신에쓰 가가꾸 고교 가부시끼가이샤 Method of producing synthetic quartz glass for excimer laser
US9067814B2 (en) 2009-01-19 2015-06-30 Shin-Etsu Chemical Co., Ltd. Method of producing synthetic quartz glass for excimer laser

Similar Documents

Publication Publication Date Title
US5707908A (en) Silica glass
US5086352A (en) Optical members and blanks or synthetic silica glass and method for their production
US5325230A (en) Optical members and blanks of synthetic silica glass and method for their production
KR100392127B1 (en) Quartz glass for optical lithography, optical member containing the same, exposure apparatus using the same, and manufacturing method thereof
US6291377B1 (en) Silica glass and its manufacturing method
KR20010039472A (en) Excimer laser and silica glass optical material for the same and its manufacturing method
US6689705B2 (en) Synthetic quartz glass optical material and optical member
JP2014221712A (en) Optical member for photomask and method of manufacturing the same
JPH01212247A (en) Production of base material for laser optical system
JPWO2003091175A1 (en) Synthetic quartz glass for optical members, projection exposure apparatus and projection exposure method
JPH0627014B2 (en) Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JPH06166522A (en) Production of ultraviolet laser-resistant optical member
JPH08259255A (en) Quartz glass for photolithography, optical member including the same, exposing device using the same and its production
US6835683B2 (en) Quartz glass member and projection aligner
JPH03101282A (en) Optical system member for laser light
JPH0323236A (en) Optical member for laser light
JP2566151B2 (en) Method for manufacturing laser optical system base material
JPH1067526A (en) Optical quartz glass element
JPH11322352A (en) Synthetic quartz glass optical member and its production
JPH01197343A (en) Element for producing optical system with laser
JP2002012441A (en) Synthetic quartz glass and its manufacturing method
JP2652847B2 (en) Optical system member for laser beam and optical system member for lithographic apparatus
JPH01167258A (en) Element assembly of laser optical system
JPH0531510B2 (en)