JPH11322352A - Synthetic quartz glass optical member and its production - Google Patents

Synthetic quartz glass optical member and its production

Info

Publication number
JPH11322352A
JPH11322352A JP10129196A JP12919698A JPH11322352A JP H11322352 A JPH11322352 A JP H11322352A JP 10129196 A JP10129196 A JP 10129196A JP 12919698 A JP12919698 A JP 12919698A JP H11322352 A JPH11322352 A JP H11322352A
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
molecules
optical member
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10129196A
Other languages
Japanese (ja)
Other versions
JP4151109B2 (en
Inventor
Yorisuke Ikuta
順亮 生田
Shinya Kikukawa
信也 菊川
Akio Masui
暁夫 増井
Kensho Shimodaira
憲昭 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP12919698A priority Critical patent/JP4151109B2/en
Publication of JPH11322352A publication Critical patent/JPH11322352A/en
Application granted granted Critical
Publication of JP4151109B2 publication Critical patent/JP4151109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

PROBLEM TO BE SOLVED: To suppress the formation of reducing type defects and prevent the transmissivity from deteriorating due to the irradiation with ultraviolet ray laser beams by heat-treating a synthetic quartz glass with a specific hydrogen molecule content at a temperature according to the OH group concentration in the synthetic quartz glass in an atmosphere under a specified hydrogen gas pressure. SOLUTION: A synthetic quartz glass with <5×10<16> molecules/cm<3> content of hydrogen molecules is heat-treated at a temperature TC ( deg.C) defined by the formula TC=370+1.55 [COH] [COH] is the OH group concentration (ppm) in the synthetic quartz glass} according to the OH group concentration in the synthetic quartz glass in an atmosphere under 0.5-30 atm, preferably about 5-30 atm hydrogen gas pressure. Thereby, the content of the hydrogen molecules is increased to >=5×10<16> molecules/cm<3> to produce a synthetic quartz glass optical member at <=100 ppm OH group concentration suitable to applications for irradiating ultraviolet ray laser beams in a wavelength region of 165-185 nm wavelength λ without substantially containing reducing type defects.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に波長400n
m以下の紫外線を光源とする装置の光学部材およびその
製造方法に関し、より詳細にはエキシマレーザ(XeC
l:308nm、KrF:248nm、ArF:193
nm)、低圧水銀ランプ(185nm)、エキシマラン
プ(Xe−Xe:172nm)などによる真空紫外光な
いし紫外光を照射して使用されるレンズやプリズム、窓
材などの光学部品として用いられる合成石英ガラス光学
部材およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
More specifically, the present invention relates to an optical member of a device using ultraviolet light of not more than m and a method of manufacturing the same, and more particularly to an excimer laser (XeC
l: 308 nm, KrF: 248 nm, ArF: 193
synthetic silica glass used as optical components such as lenses, prisms, and window materials used by irradiating vacuum ultraviolet light or ultraviolet light with a low-pressure mercury lamp (185 nm), an excimer lamp (Xe-Xe: 172 nm), or the like. The present invention relates to an optical member and a method for manufacturing the same.

【0002】[0002]

【従来の技術】合成石英ガラスは、近赤外域から真空紫
外域までにわたる広範囲の波長域に亘って透明な材料で
あること、熱膨張係数がきわめて小さく寸法安定性に優
れていること、また、金属不純物をほとんど含有してお
らず高純度であることなどの特徴があるるため、従来の
g線、i線を光源として用いた光学装置の光学部材に主
に用いられてきた。
2. Description of the Related Art Synthetic quartz glass is a transparent material over a wide wavelength range from the near-infrared region to the vacuum ultraviolet region, has a very small thermal expansion coefficient, and has excellent dimensional stability. Since it has characteristics such as high purity and almost no metal impurities, it has been mainly used as an optical member of an optical device using a conventional g-line or i-line as a light source.

【0003】近年、LSIの高集積化に伴い、ウエハ上
に集積回路パターンを描画する光リソグラフィー技術に
おいて、より線幅の短い微細な描画技術が要求されてお
り、これに対応するために露光光源の短波長化が進めら
れている。すなわち、例えばリソグラフィー用ステッパ
の光源には、従来のg線(436nm)、i線(365
nm)から進んで、KrFエキシマレーザ光(248n
m)、またはArFエキシマレーザ光(193nm)が
用いられようとしている。
In recent years, with the increasing integration of LSIs, a finer drawing technique with a smaller line width is required in an optical lithography technique for drawing an integrated circuit pattern on a wafer. Are being shortened. That is, for example, the conventional g-line (436 nm) and i-line (365)
nm) and a KrF excimer laser beam (248 n
m) or ArF excimer laser light (193 nm) is about to be used.

【0004】また、低圧水銀ランプ(185nm)やエ
キシマランプ(Xe−Xe:172nm)は光CVD装
置、オゾン発生装置やシリコンウエハのアッシング、エ
ッチングなどに用いられたり、または今後前記用途に適
用すべく開発が進められているが、これらに用いられる
ランプのガス封入管およびこれらの波長の光を照射して
用いる光学素子にも前記合成石英ガラスを用いる必要が
ある。
[0004] Low-pressure mercury lamps (185 nm) and excimer lamps (Xe-Xe: 172 nm) have been used for photo-CVD equipment, ozone generators, ashing and etching of silicon wafers, or to be applied to the above applications in the future. Although the development is proceeding, it is necessary to use the synthetic quartz glass also for the gas sealing tube of the lamp used for these and the optical element used by irradiating light of these wavelengths.

【0005】これらの光学系に用いられる石英ガラス材
料は、紫外域ないし真空紫外域に亘る波長での光透過性
が要求されるとともに、使用波長での耐光性が高いこと
(光照射後に透過率が低下しないこと)が要求される。
特に耐光性については、例えば、KrFエキシマレーザ
光を400mJ/cm2 ・Pulse、100Hzの条
件にて1×106 ショット照射した前後での248nm
透過率低下量が0.1%/cm以下、214nm透過率
低下量が1.0%/cm以下であることが望まれてい
る。
[0005] The quartz glass material used for these optical systems is required to have a light transmittance at a wavelength ranging from the ultraviolet region to the vacuum ultraviolet region, and has a high light resistance at a used wavelength (transmittance after light irradiation). Is not reduced).
In particular, regarding light resistance, for example, 248 nm before and after irradiating 1 × 10 6 shots of KrF excimer laser light under the conditions of 400 mJ / cm 2 · Pulse and 100 Hz.
It is desired that the transmittance decrease is 0.1% / cm or less and the 214 nm transmittance decrease is 1.0% / cm or less.

【0006】従来用いられている合成石英ガラスでは、
例えばKrFエキシマレーザ光(波長248nm)やA
rFエキシマレーザ光(波長193nm)などの高エネ
ルギー光を照射すると、紫外線領域に新たな吸収帯を生
じ、前記エキシマレーザ光を光源とした光学系を構築す
る際の光学部材としては問題があった。すなわち、前記
レーザ光が長時間照射されると、いわゆるE’センター
と呼ばれる略215nmの吸収バンドとNBOHC(非
架橋酸素ラジカル)と呼ばれる略260nmの吸収バン
ドが生成される。
[0006] In the conventionally used synthetic quartz glass,
For example, KrF excimer laser light (wavelength 248 nm) or A
Irradiation with high-energy light such as rF excimer laser light (wavelength 193 nm) generates a new absorption band in the ultraviolet region, and has a problem as an optical member when constructing an optical system using the excimer laser light as a light source. . That is, when the laser light is irradiated for a long time, an absorption band of about 215 nm called so-called E 'center and an absorption band of about 260 nm called NBOHC (non-crosslinked oxygen radical) are generated.

【0007】この吸収帯は、石英ガラス中のガラス構
造、≡Si−Si≡、≡Si−O−O−Si≡などの酸
素欠乏欠陥、酸素過剰欠陥による固有欠陥からレーザ光
照射による光反応が起こり、常磁性欠陥を生成すること
に起因するものと考えられており、これにより、透過率
の低下、絶対屈折率の上昇、屈折率分布の変動や蛍光が
生じる。
[0007] This absorption band is formed by a glass structure in quartz glass, an oxygen deficiency defect such as {Si-Si}, {Si-OO-Si}, and an intrinsic defect due to an oxygen-excess defect. It is thought to be caused by the occurrence of paramagnetic defects, which causes a decrease in transmittance, an increase in absolute refractive index, a change in refractive index distribution, and fluorescence.

【0008】[0008]

【発明が解決しようとする課題】これらの問題点を解決
するための方法として、種々の方法が検討されており、
石英ガラス中に水素分子を何らかの形で含有させればよ
いことが知られている。例えば特開平3−88742に
は、合成石英ガラス中に水素分子を5×1016分子/c
3 以上含有させかつOH基を100ppm以上含有さ
せることにより、紫外線レーザ光照射による透過率低下
を抑制する方法が開示されている。
As a method for solving these problems, various methods have been studied.
It is known that hydrogen molecules may be contained in quartz glass in some form. For example, Japanese Unexamined Patent Publication No. 3-88742 discloses that a synthetic quartz glass contains 5 × 10 16 hydrogen molecules / c.
A method is disclosed in which the transmittance is reduced by ultraviolet laser light irradiation by containing at least m 3 and at least 100 ppm of an OH group.

【0009】石英ガラス中に水素分子を含有させる手段
としては、石英ガラスを水素含有雰囲気下で加熱処理す
ることにより、石英ガラス中に水素分子を拡散、含有さ
せる方法が知られている。例えば特開平6−16652
2には、800〜1000℃前後の高い温度で水素ドー
プを行った場合石英ガラス中に水素による還元型欠陥が
生じるため、水素分圧1気圧以上の雰囲気下で、300
〜600℃の低い温度域に保持することにより、石英ガ
ラス中に水素分子を1×1017分子/cm3 以上含有さ
せる技術が開示されている。ここでは、特に50気圧以
上の高圧下で水素ドープを行うことが好ましいと記載さ
れている。
As a means for containing hydrogen molecules in quartz glass, there is known a method of diffusing and containing hydrogen molecules in quartz glass by subjecting quartz glass to heat treatment in a hydrogen-containing atmosphere. For example, JP-A-6-16652
For example, when hydrogen doping is performed at a high temperature of about 800 to 1000 ° C., reduction defects due to hydrogen are generated in quartz glass.
There is disclosed a technique in which hydrogen molecules are contained in quartz glass at 1 × 10 17 molecules / cm 3 or more by maintaining the temperature in a low temperature range of −600 ° C. Here, it is described that it is particularly preferable to perform hydrogen doping under a high pressure of 50 atm or more.

【0010】この方法では、還元型欠陥の生成を抑える
ため低温で水素含有処理を行う必要があるが、水素分子
の拡散速度が遅いため、試料内部に水素分子の濃度分布
が生じやすい。このように水素分子の濃度分布がある
と、その分布に応じて試料内部で耐光性のばらつきが生
じるため、屈折率分布などが変動する。
In this method, it is necessary to perform a hydrogen-containing treatment at a low temperature in order to suppress the generation of reduced defects. However, since the diffusion rate of hydrogen molecules is low, a concentration distribution of hydrogen molecules easily occurs inside the sample. When the concentration distribution of the hydrogen molecules is present, the light resistance varies within the sample according to the distribution, and the refractive index distribution and the like fluctuate.

【0011】[0011]

【課題を解決するための手段】本発明者らは、かかる問
題を解決するため鋭意研究を行った結果、水素分子を含
有する石英ガラスを加熱処理すると、その処理温度およ
び石英ガラス中のOH基含有量によっては還元型欠陥が
生成することがあり、この還元型欠陥が生成しない臨界
温度が石英ガラス中のOH基濃度と密接に関係している
ことを知見した。すなわち水素分子を含有する石英ガラ
スを高温で加熱処理すると、前記欠陥の前駆体である≡
Si−Si≡や≡Si−Hなどの還元型欠陥が生成し、
耐光性が悪化する。OH基はこれら還元型欠陥の生成を
抑制する作用を有し、石英ガラス中のOH基含有量が多
いほど高温で処理しても還元型欠陥が実質的に生成せ
ず、耐光性に優れた光学部材を得ることができる。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above problems. As a result, when the quartz glass containing hydrogen molecules is heated, the treatment temperature and the OH group in the quartz glass are increased. It has been found that reduced defects may be generated depending on the content, and the critical temperature at which the reduced defects are not generated is closely related to the OH group concentration in the quartz glass. That is, when the quartz glass containing hydrogen molecules is heated at a high temperature, it is a precursor of the defect.
Reduced defects such as Si-Si≡ and ≡Si-H are generated,
Light resistance deteriorates. The OH group has an action of suppressing the generation of these reduced defects, and as the OH group content in the quartz glass increases, substantially no reduced defects are generated even at a high temperature, and the light resistance is excellent. An optical member can be obtained.

【0012】その一方で石英ガラス中のOH基含有量は
波長λが165〜185nmにおける透過率とも関係
し、OH基含有量が多いほど該波長域での透過率は低下
し、吸収端のレッドシフトが生じる。この吸収端のシフ
トは、KrFエキシマレーザやArFエキシマレーザな
どλ≧185nmの波長域で使用される光学部材には問
題がないが、エキシマランプ(Xe−Xe:172n
m)などλ<185nmの波長域で使用される光学部材
においては問題となる。すなわち使用される波長域に応
じて合成石英ガラス中のOH基含有量を調節する必要が
ある。
On the other hand, the OH group content in the quartz glass is also related to the transmittance at a wavelength λ of 165 to 185 nm. As the OH group content increases, the transmittance in this wavelength region decreases, and the red at the absorption edge is reduced. A shift occurs. This shift of the absorption edge has no problem with optical members used in the wavelength range of λ ≧ 185 nm, such as a KrF excimer laser and an ArF excimer laser, but an excimer lamp (Xe-Xe: 172n)
This is a problem for optical members used in the wavelength range of λ <185 nm, such as m). That is, it is necessary to adjust the OH group content in the synthetic quartz glass according to the wavelength range used.

【0013】したがって本発明は、紫外線波長域のレー
ザ光を照射して使用される合成石英ガラス光学部材の製
造方法であって、水素分子の含有量が5×1016分子/
cm3 未満である合成石英ガラスを、水素ガス0.1〜
30気圧の雰囲気下で合成石英ガラス中のOH基濃度に
応じて式1より与えられる温度Tc (℃)以下の温度に
て加熱処理して水素分子を5×1016分子/cm3 以上
含有させる工程を含むことを特徴とする合成石英ガラス
光学部材の製造方法を提供する。 Tc =370+1.55[COH]・・・式1 ただし式1において[COH]は石英ガラス中のOH基濃
度(ppm:重量表示であり本明細書中で同じ)を表
す。
Accordingly, the present invention is a method for producing a synthetic quartz glass optical member used by irradiating a laser beam in the ultraviolet wavelength range, wherein the content of hydrogen molecules is 5 × 10 16 molecules /
The synthetic quartz glass is less than cm 3, hydrogen gas 0.1
Heat treatment at a temperature of not more than the temperature T c (° C.) given by Equation 1 according to the OH group concentration in the synthetic quartz glass in an atmosphere of 30 atm and containing hydrogen molecules at 5 × 10 16 molecules / cm 3 or more A method for manufacturing a synthetic quartz glass optical member, comprising the step of: T c = 370 + 1.55 [C OH] In Equation 1, however the formula 1 [C OH] is the concentration of OH groups in the quartz glass: represents a (ppm is the weight displayed the same herein).

【0014】また本発明は、波長λが165〜185n
mの範囲にある波長域の光を照射して使用される合成石
英ガラス光学部材であって、OH基濃度が100ppm
以下、水素分子の含有量が5×1016分子/cm3 以上
であり、還元型欠陥を実質的に含有しないことを特徴と
する合成石英ガラス光学部材を提供する。
In the present invention, the wavelength λ is 165 to 185 n.
a synthetic quartz glass optical member used by irradiating light in a wavelength range in the range of m, wherein the OH group concentration is 100 ppm
Hereinafter, there is provided a synthetic quartz glass optical member characterized in that the content of hydrogen molecules is 5 × 10 16 molecules / cm 3 or more and substantially does not contain reduced defects.

【0015】ここで還元型欠陥とは、石英ガラス中の≡
Si−Si≡結合および≡Si−H結合のことであり、
これら還元型欠陥を実質的に含有しないとは、以下のよ
うな意味である。すなわち≡Si−Si≡については、
真空紫外域の163nmの吸光度αがα≦1×10
-2(cm-1)(検出限界以下)であることであり、また
≡Si−Hについては、レーザラマンスペクトルの22
50cm-1の散乱ピークにより検出した強度I2250を≡
Si−O−結合を示す800cm-1の散乱ピークの強度
800 で割った値I2250/I800 がI2250/I800 ≦1
×10-4(検出限界以下)であることである。
The term “reduction type defect” used herein means ≡ in quartz glass.
Si—Si≡ bond and ≡Si—H bond,
"Substantially not containing these reduced defects" has the following meaning. That is, for {Si-Si},
The absorbance α at 163 nm in the vacuum ultraviolet region is α ≦ 1 × 10
−2 (cm −1 ) (below the detection limit).
The intensity I 2250 detected by the scattering peak at 50 cm −1 is
The value of I 2250 / I 800 divided by the intensity I 800 of the scattering peak at 800 cm −1 indicating the Si—O— bond is I 2250 / I 800 ≦ 1.
× 10 -4 (below the detection limit).

【0016】また石英ガラス中に水素分子を5×1016
分子/cm3 以上含有させるためには、水素分子の平衡
含有量を考慮して水素ドープ時の水素ガスの圧力は0.
1気圧以上であればよいが、充分な水素を短時間で石英
ガラス中に導入するためには、5気圧以上で行うことが
好ましい。一方、30気圧を超えると、還元型欠陥が生
成するおそれがある。なお、この場合の圧力は分圧でも
よい。すなわち、雰囲気を水素と他の気体、例えばヘリ
ウム、アルゴン、窒素などの不活性気体との混合雰囲気
として、水素の分圧を0.1〜30気圧にしてもよい。
Further, 5 × 10 16 hydrogen molecules are contained in quartz glass.
In order to contain hydrogen molecules / cm 3 or more, the pressure of the hydrogen gas during hydrogen doping should be set to 0.1 in consideration of the equilibrium content of hydrogen molecules.
The pressure may be at least 1 atm, but in order to introduce sufficient hydrogen into the quartz glass in a short time, it is preferable to carry out at 5 atm or more. On the other hand, when the pressure exceeds 30 atm, reduction type defects may be generated. In this case, the pressure may be a partial pressure. That is, the atmosphere may be a mixed atmosphere of hydrogen and another gas, for example, an inert gas such as helium, argon, or nitrogen, and the partial pressure of hydrogen may be 0.1 to 30 atm.

【0017】また本発明による合成石英ガラスは、ステ
ッパレンズその他の光学部材として用いるために、光学
部材として必要な光学特性を与えるための均質化、成
形、およびアニールなどの各加熱処理を行う必要がある
が、これらの加熱処理は水素含有工程の前に行ってもま
たその後に行ってもどちらでもよい。ただしこれらの加
熱処理には800〜1500℃の高温を要するため、前
記水素含有工程で5×1016分子/cm3 以上水素を含
有させたとしても、その後の加熱処理により水素分子含
有量が低下する可能性があるため、水素含有工程以後に
加熱処理を行う場合は、水素ガス0.1〜30気圧の雰
囲気下にて行うことが好ましい。ただし、この場合加熱
処理のための炉を防爆構造とする必要があるなど問題が
あるため、加熱処理後に水素含有工程を実施する方がよ
り好ましい。
Further, since the synthetic quartz glass according to the present invention is used as a stepper lens or other optical members, it is necessary to perform various heat treatments such as homogenization, molding, and annealing to give necessary optical characteristics as optical members. However, these heat treatments may be performed before or after the hydrogen-containing step. However, since these heat treatments require a high temperature of 800 to 1500 ° C., even if hydrogen is contained in the hydrogen-containing step at 5 × 10 16 molecules / cm 3 or more, the subsequent heat treatment reduces the hydrogen molecule content. When heat treatment is performed after the hydrogen-containing step, the heat treatment is preferably performed in an atmosphere of hydrogen gas at 0.1 to 30 atm. However, in this case, since there is a problem that the furnace for the heat treatment needs to have an explosion-proof structure, it is more preferable to perform the hydrogen-containing step after the heat treatment.

【0018】一方、水素分子を5×1016分子/cm3
以上含有させた後に、温度T(℃)で加熱処理をする必
要がある場合は、加熱処理を受ける合成石英ガラスに、
あらかじめ、式2より算出されるOH基濃度[COHc
(ppm)以上のOH基を含有させることにより、熱処
理時の還元型欠陥の生成を抑制できる。 [COHc =(T−370)/1.55・・・式2
On the other hand, 5 × 10 16 molecules / cm 3 of hydrogen molecules
If it is necessary to perform a heat treatment at a temperature T (° C.) after the above content, the synthetic quartz glass to be subjected to the heat treatment may include:
OH group concentration [C OH ] c calculated in advance by Equation 2
By containing an OH group of (ppm) or more, generation of reduced defects during heat treatment can be suppressed. [C OH ] c = (T-370) /1.55 ... Equation 2

【0019】本発明の方法で製造された水素分子の含有
量が1×1017分子/cm3 以上であり、還元型欠陥を
実質的に含有しない合成石英ガラス光学部材のうち、O
H基濃度が100ppm以下のものは、特に185nm
≧λ≧165nmにおける波長域での透過率が高く、か
かる波長域の光を照射して使用する光学部材として適し
ている。OH基濃度が100ppmを超えると、185
nm≧λ≧165nmにおける透過率が低下する傾向が
ある。
Among the synthetic quartz glass optical members having a content of hydrogen molecules of 1 × 10 17 molecules / cm 3 or more and containing substantially no reduced defects, produced by the method of the present invention,
Those having an H group concentration of 100 ppm or less are particularly 185 nm.
It has high transmittance in the wavelength range of ≧ λ ≧ 165 nm, and is suitable as an optical member used by irradiating light in such a wavelength range. When the OH group concentration exceeds 100 ppm, 185
The transmittance at nm ≧ λ ≧ 165 nm tends to decrease.

【0020】[0020]

【実施例】還元型欠陥を実質的に有せずかつ水素分子の
含有量が5×1016分子/cm3未満であり、かつ表1
に示すようなOH基濃度の異なる石英ガラス(サイズ:
30mmφ×10mm)を用意し、表1に示す各条件に
おいて水素ドープを行った。表1に各条件における式1
のTc (℃)を付記する。例1〜9は実施例、例10〜
15は比較例である。得られた合成石英ガラスについて
それぞれ以下の評価を行った。
[Example] Table 1 shows that there is substantially no reduced defect and the content of hydrogen molecules is less than 5 × 10 16 molecules / cm 3.
Quartz glass having different OH group concentrations (size:
30 mmφ × 10 mm) was prepared, and hydrogen doping was performed under the conditions shown in Table 1. Table 1 shows the equation 1 under each condition.
By appending the T c (℃). Examples 1 to 9 are Examples and Examples 10 to 10
Reference numeral 15 is a comparative example. The following evaluations were performed on the obtained synthetic quartz glass.

【0021】(評価1)ラマン分光測定を行い、レーザ
ラマンスペクトルの4160cm-1の散乱ピークにより
検出した強度I4160を≡Si−O−結合を示す800c
-1の散乱ピークの強度I800 で割った値I4160/I
800 から水素分子濃度を評価した(V.S.Khotimchenko,e
t.al.,Z.Prikladnoi Spektroskopii,46(6),987〜997,19
86)。 (評価2)真空紫外分光測定(アクトンリサーチ社製V
TMS−502)を行い163nmの吸光度(α163
から、≡Si−Si≡濃度を評価した。
(Evaluation 1) Raman spectroscopy was carried out, and the intensity I 4160 detected by the scattering peak at 4160 cm −1 in the laser Raman spectrum was 800 c showing ΔSi—O— bond.
value I 4160 / I divided by the intensity I 800 of the scattering peak at m −1
Estimated hydrogen molecule concentration from 800 (VSKhotimchenko, e
t.al., Z.Prikladnoi Spektroskopii, 46 (6), 987-997,19
86). (Evaluation 2) Vacuum ultraviolet spectroscopy (V manufactured by Acton Research Co., Ltd.)
TMS-502) and absorbance at 163 nm (α 163 )
, The {Si-Si} concentration was evaluated.

【0022】(評価3)ラマン分光測定を行い、レーザ
ラマンスペクトルの2250cm-1の散乱ピークにより
検出した強度I2250を≡Si−O−結合を示す800c
-1の散乱ピークの強度I800 で割った値I2250/I
800 から≡Si−H濃度を評価した。 (評価4)KrFレーザ(ラムダフィジーク社製LPX
−100)光をエネルギー密度400mJ/cm2 ・P
ulse、周波数100Hzの条件にて30mmφの面
に垂直に照射した。KrFレーザ光を1×106 ショッ
ト照射した直後の214nmでの透過率を分光光度計
(日立製作所製U−3210)により測定し、214n
mにおける透過率の1cmあたりの低下量(ΔT214
(%/cm))を評価した。 (評価5)真空紫外分光器(アクトンリサーチ社製VT
MS−502)を用いて140nm〜210nmにおけ
る分光透過率を測定した。
(Evaluation 3) Raman spectroscopy was performed, and the intensity I 2250 detected by a scattering peak at 2250 cm −1 in the laser Raman spectrum was determined to be 800c indicating a ≡Si—O— bond.
The value of I 2250 / I divided by the intensity I 800 of the scattering peak at m −1
From 800 , the ΔSi—H concentration was evaluated. (Evaluation 4) KrF laser (LPX manufactured by Lambda Physique)
-100) Light with an energy density of 400 mJ / cm 2 · P
Irradiation was performed perpendicular to a 30 mmφ surface under the conditions of ulse and a frequency of 100 Hz. Immediately after irradiating 1 × 10 6 shots of KrF laser light, the transmittance at 214 nm was measured with a spectrophotometer (U-3210 manufactured by Hitachi, Ltd.).
m per m (ΔT 214
(% / Cm)). (Evaluation 5) Vacuum ultraviolet spectrometer (VT manufactured by Acton Research Co., Ltd.)
MS-502) was used to measure the spectral transmittance at 140 nm to 210 nm.

【0023】以上の評価1〜4の結果を表2に示す。N
Dは検出限界以下であることを示す。この評価により、
本発明の製造方法による石英ガラス光学部材は、高濃度
の水素分子を含有させるために加熱処理を受けるか、ま
たは水素分子を含有した状態で加熱処理を受けているに
もかかわらず、還元型欠陥を実質的に含有しておらず、
紫外線レーザ光を照射しても透過率の低下が少ないこと
がわかる。また評価5については、例2および例5の結
果を図1に示す。この結果より、特にOH基の含有濃度
が100ppmの光学部材は185nm≧λ≧165n
mにおける透過率が高く、かかる波長域の紫外線を照射
して用いる用途に適した光学部材であることがわかる。
Table 2 shows the results of the above evaluations 1-4. N
D indicates that it is below the detection limit. By this evaluation,
The quartz glass optical member according to the manufacturing method of the present invention is subjected to a heat treatment to contain a high concentration of hydrogen molecules, or is subjected to a heat treatment in a state of containing hydrogen molecules, and thus has a reduced defect. Does not substantially contain
It can be seen that the transmittance does not decrease much even when irradiated with ultraviolet laser light. Regarding Evaluation 5, the results of Example 2 and Example 5 are shown in FIG. From this result, in particular, the optical member having an OH group content of 100 ppm is 185 nm ≧ λ ≧ 165 n
It can be seen that the optical member has a high transmittance at m, and is suitable for use by irradiating ultraviolet rays in such a wavelength range.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明によれば、エキシマレーザ光等の
高エネルギー光の照射による透過率の低下が少ない合成
石英ガラス光学部材が得られる。また、185nm≧λ
≧165nmにおける透過率が高く、かかる波長域の紫
外線を照射して用いる用途に適した光学部材が得られ
る。
According to the present invention, a synthetic quartz glass optical member having a small decrease in transmittance due to irradiation with high energy light such as excimer laser light can be obtained. 185 nm ≧ λ
An optical member having a high transmittance at ≧ 165 nm and suitable for use by irradiating with ultraviolet rays in such a wavelength range can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例にかかる合成石英ガラス光学部
材の分光透過率を示すグラフ
FIG. 1 is a graph showing the spectral transmittance of a synthetic quartz glass optical member according to an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下平 憲昭 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Noriaki Shimohira 1150 Hazawacho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Inside Asahi Glass Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】紫外線波長域のレーザ光を照射して使用さ
れる合成石英ガラス光学部材の製造方法であって、水素
分子の含有量が5×1016分子/cm3 未満である合成
石英ガラスを、水素ガス0.1〜30気圧の雰囲気下で
合成石英ガラス中のOH基濃度に応じて式1により与え
られる温度Tc (℃)以下の温度にて加熱処理して水素
分子を5×1016分子/cm3 以上含有させる工程を含
むことを特徴とする合成石英ガラス光学部材の製造方
法。 Tc =370+1.55[COH]・・・式1 ただし式1において[COH]は石英ガラス中のOH基濃
度(ppm)を表す。
1. A method of manufacturing a synthetic quartz glass optical member used by irradiating a laser beam in an ultraviolet wavelength range, wherein the content of hydrogen molecules is less than 5 × 10 16 molecules / cm 3. Is heated at a temperature not higher than the temperature T c (° C.) given by the equation 1 according to the OH group concentration in the synthetic quartz glass in an atmosphere of hydrogen gas at 0.1 to 30 atm to reduce hydrogen molecules to 5 ×. A method for producing a synthetic quartz glass optical member, comprising a step of containing 10 16 molecules / cm 3 or more. T c = 370 + 1.55 [C OH ] Expression 1 In Expression 1, [C OH ] represents the OH group concentration (ppm) in the quartz glass.
【請求項2】紫外線波長域のレーザ光を照射して使用さ
れる合成石英ガラス光学部材の製造方法であって、水素
分子を5×1016分子/cm3 以上含有する合成石英ガ
ラスを温度T(℃)にて加熱処理する工程を有するとと
もに、該加熱処理を受ける合成石英ガラスは、式2より
算出されるOH基濃度[COHc (ppm)以上にOH
基を含有していることを特徴とする合成石英ガラス光学
部材の製造方法。 [COHc =(T−370)/1.55・・・式2
2. A method for producing a synthetic quartz glass optical member which is used by irradiating a laser beam in an ultraviolet wavelength range, wherein a synthetic quartz glass containing hydrogen molecules of 5 × 10 16 molecules / cm 3 or more is heated to a temperature T. (° C.), and the synthetic quartz glass subjected to the heat treatment has an OH group concentration [C OH ] c (ppm) or more calculated by the formula 2 below.
A method for producing a synthetic quartz glass optical member, comprising a base. [C OH ] c = (T-370) /1.55 ... Equation 2
【請求項3】波長λが165〜185nmの範囲にある
波長域の光を照射して使用される合成石英ガラス光学部
材であって、OH基濃度が100ppm以下、水素分子
の含有量が5×1016分子/cm3 以上であり、還元型
欠陥を実質的に含有しないことを特徴とする合成石英ガ
ラス光学部材。
3. A synthetic quartz glass optical member used by irradiating light having a wavelength λ in the range of 165 to 185 nm, wherein the OH group concentration is 100 ppm or less and the content of hydrogen molecules is 5 ×. A synthetic quartz glass optical member characterized in that it has 10 16 molecules / cm 3 or more and does not substantially contain reduced defects.
JP12919698A 1998-05-12 1998-05-12 Synthetic quartz glass optical member and manufacturing method thereof Expired - Lifetime JP4151109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12919698A JP4151109B2 (en) 1998-05-12 1998-05-12 Synthetic quartz glass optical member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12919698A JP4151109B2 (en) 1998-05-12 1998-05-12 Synthetic quartz glass optical member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11322352A true JPH11322352A (en) 1999-11-24
JP4151109B2 JP4151109B2 (en) 2008-09-17

Family

ID=15003528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12919698A Expired - Lifetime JP4151109B2 (en) 1998-05-12 1998-05-12 Synthetic quartz glass optical member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4151109B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053331A (en) * 2000-08-07 2002-02-19 Tosoh Corp SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER, ITS MANUFACTURING METHOD AND USE THEREOF
EP1340722A1 (en) * 2002-01-31 2003-09-03 Heraeus Quarzglas GmbH & Co. KG Synthetic quartz glass material for ArF aligners
EP1088795A4 (en) * 1999-03-25 2004-03-31 Asahi Glass Co Ltd Synthetic quartz glass for optical member, process for producing the same, and method of using the same
JP2004511092A (en) * 2000-10-03 2004-04-08 コーニング インコーポレイテッド Photolithography method and photolithography apparatus
JP2007308365A (en) * 2006-05-17 2007-11-29 Carl Zeiss Smt Ag Method of manufacturing synthetic quartz glass lens having increased h2 content
JP2008535764A (en) * 2005-04-15 2008-09-04 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage
US7534733B2 (en) 2004-02-23 2009-05-19 Corning Incorporated Synthetic silica glass optical material having high resistance to laser induced damage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088795A4 (en) * 1999-03-25 2004-03-31 Asahi Glass Co Ltd Synthetic quartz glass for optical member, process for producing the same, and method of using the same
JP2002053331A (en) * 2000-08-07 2002-02-19 Tosoh Corp SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER, ITS MANUFACTURING METHOD AND USE THEREOF
JP2004511092A (en) * 2000-10-03 2004-04-08 コーニング インコーポレイテッド Photolithography method and photolithography apparatus
EP1340722A1 (en) * 2002-01-31 2003-09-03 Heraeus Quarzglas GmbH & Co. KG Synthetic quartz glass material for ArF aligners
US7534733B2 (en) 2004-02-23 2009-05-19 Corning Incorporated Synthetic silica glass optical material having high resistance to laser induced damage
JP2008535764A (en) * 2005-04-15 2008-09-04 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage
JP2007308365A (en) * 2006-05-17 2007-11-29 Carl Zeiss Smt Ag Method of manufacturing synthetic quartz glass lens having increased h2 content

Also Published As

Publication number Publication date
JP4151109B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
EP1910237B1 (en) Synthetic silica material with low fluence-dependent-transmission and method of making the same
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
JP4529340B2 (en) Synthetic quartz glass and manufacturing method thereof
EP1754689A1 (en) Synthetic quartz glass substrate for excimer lasers and making method
US6339033B2 (en) Silica glass having superior durability against excimer laser beams and method for manufacturing the same
US8402786B2 (en) Synthetic silica glass optical component and process for its production
KR20010052399A (en) Synthetic quartz glass for optical member, process for producing the same, and method of using the same
JP4193358B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JP3654500B2 (en) Quartz glass material and optical member for F2 excimer laser optical member
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP3531870B2 (en) Synthetic quartz glass
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
JP4085490B2 (en) Synthetic quartz glass for optical members and manufacturing method thereof
JP4191935B2 (en) Method for producing synthetic quartz glass member for excimer laser
WO2000039040A1 (en) Synthetic quartz glass and method for preparation thereof
JP4051805B2 (en) Exposure apparatus and photomask
JPH01212247A (en) Production of base material for laser optical system
JPH0624997B2 (en) Optical components for laser light
JPH03101282A (en) Optical system member for laser light
JP2001302275A (en) Optical member made from synthetic quartz glass
JP2003201125A (en) Synthetic quartz glass and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

EXPY Cancellation because of completion of term