JP3780532B2 - Method for modifying synthetic quartz glass optical body and synthetic quartz glass optical body - Google Patents

Method for modifying synthetic quartz glass optical body and synthetic quartz glass optical body Download PDF

Info

Publication number
JP3780532B2
JP3780532B2 JP06591494A JP6591494A JP3780532B2 JP 3780532 B2 JP3780532 B2 JP 3780532B2 JP 06591494 A JP06591494 A JP 06591494A JP 6591494 A JP6591494 A JP 6591494A JP 3780532 B2 JP3780532 B2 JP 3780532B2
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
optical body
sample
glass optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06591494A
Other languages
Japanese (ja)
Other versions
JPH07277755A (en
Inventor
誠志 藤原
朋美 角
潤 高野
弘之 平岩
弥栄 一条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP06591494A priority Critical patent/JP3780532B2/en
Publication of JPH07277755A publication Critical patent/JPH07277755A/en
Application granted granted Critical
Publication of JP3780532B2 publication Critical patent/JP3780532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for

Description

【0001】
【産業上の利用分野】
光リソグラフィーに代表される紫外線光学系に使用される合成石英ガラス光学体及びその改質方法に関するものである。
【0002】
【従来の技術】
現在、シリコン等のウエハ上に集積回路の微細パターンを露光・転写する光リソグラフィー技術においては、ステッパと呼ばれる露光装置が用いられている。このステッパーの光源は、近年の LSIの高集積化にともなって g線( 436nm)から i線( 365nm)、さらには KrF( 248nm)や ArF( 193nm)エキシマレーザへと短波長化が進められている。
【0003】
一般に、ステッパの照明系あるいは投影レンズとして用いられる光学材料は、i線よりも短い波長領域では光透過率が低下するため、従来の光学ガラスにかえて合成石英ガラスやCaF2(螢石)に代表されるようなフッ化物単結晶を用いることが提案されている。ステッパに搭載される光学系は多数のレンズの組み合わせにより構成されており、たとえレンズ一枚当たりの透過率低下量が小さくとも、それが使用レンズ枚数分だけ積算されてしまい、照射面での光量の低下につながるため、光学材料に対して高透過率化が要求されている。また使用波長が短くなるほど、材料の屈折率自体が急激に大きくなってゆくため、ほんの小さな屈折率の不均質があっても結像性能が極端に悪くなる。
【0004】
このように、紫外線リソグラフィー用の光学材料として用いられている石英ガラスには、紫外線の高透過性と屈折率の高均質性が要求されている。しかし、通常市販されている合成石英ガラスは、初期透過率、均質性、耐紫外線性を始めとする品質が不十分であり、前述したような精密光学機器に使用することはできなかった。このため、これまでに均質化のための二次処理(特公平 3- 17775 号公報,特開昭64- 28240 号公報)や、加圧水素ガス中での熱処理による均質化及び耐レーザー性の向上(特開平 3-109233 号公報)等が提案されている。ところが、通常行われている加熱、加圧等による二次処理では、紫外領域から真空紫外領域にかけて、特に 220nm付近以下での透過率の低下や耐紫外線性の低下があるため、紫外線リソグラフィー用の光学材料としては不適当だった。すなわち、高均質,高透過率,高い耐紫外線性のすべてを満たすものがなかった。
【0005】
また、特開平 5-170466 号公報では、石英ガラス試料を被覆体内で熱処理することにより均質性を向上させる方法が提案されている。さらに、本発明者らは特開平 5-116969 号公報、石英ガラスの製造方法において、「屈折率のばらつきΔn=1×10-5程度の光学的に不均質な石英ガラス」を、SiO2の粉末または塊で作った母型の中で 0〜10kg/cm2の加圧下で熱処理することを特徴とする「Δn= 1×10-6程度以下の光学的に均質な石英ガラス」の製造方法を提案している。この中で、熱処理後は、石英ガラス全体が均一に降温していくことが望ましいが、降温速度が充分に遅い場合でも石英ガラスの外側と内側で降温速度が違うため、降温後に温度分布ができ、それが屈折率分布として現れることを開示した。特に厚み方向(光学素子として用いるときの光軸方向)からみたときの石英ガラス周辺部には等温線の本数は多くなり、この部分に屈折率のばらつきの大きい変質層が形成されることを確認した。そのため、SiO2粉で石英ガラス試料の全面を覆い熱処理することにより、降温時の試料内の温度分布を少なくして均質性を向上させた。
【0006】
しかし、これらの方法においても透過率の維持や耐紫外線性については何ら考慮されておらず、実際これらの方法によれば均質性は向上するが、 220nm付近以下での初期透過率の低下あるいは耐紫外線性の低下が起こるため、紫外線リソグラフィー用の光学材料としては不適当だった。
【0007】
【発明が解決しようとする課題】
前述のとおり、石英ガラスを光学体、特にステッパー等の精密光学機器に用いる場合、非常に高い透過率及び均質性が要求されている。しかし上に述べたような従来の改質方法では、均質性が向上するのと同時に初期透過率の低下が起こった。また、光学体として石英ガラスを用いる場合、使用波長が短くなりエキシマレーザ等のハイパワーな紫外線を照射すると、高濃度のE'センターと呼ばれる欠陥が 215nmに生成し、それに引きずられて使用波長の透過率も低下してしまうこともあった。よって、紫外線リソグラフィー用の光学材料として用いることのできるような高透過率,高均質,高い耐紫外線性を持つ石英ガラスを得ることができなかった。
【0008】
【課題を解決するための手段】
以上のことについて鋭意研究を行った結果、合成石英ガラス光学体の極近傍の処理条件を規定し二次処理することにより、紫外領域で使用可能な光学特性及び高均質性を有する合成石英ガラス光学体が得られることがわかった。そこで本発明は、第一に、3方向に対し脈理が無い透明合成石英ガラス光学体を、酸素を含む気泡を有する石英ガラスで構成された円筒形母型の内部に収容し、前記透明石英ガラス光学体を前記円筒形母型と共に所定温度で熱処理することを特徴とする合成石英ガラス光学体の熱処理方法を提供する(請求項1)
【0009】
また本発明は第二に、請求項1に記載の熱処理方法であって、前記気泡の径が100μm以下、前記気泡の前記円筒形母型に占める体積比率が3%以上、前記気泡に含まれるガス中の酸素分率が10%以上であることを特徴とする合成石英ガラス光学体の熱処理方法を提供する(請求項2)
【0010】
【作用】
本発明は、高均質性および紫外・真空紫外領域での高透過率および高い耐紫外線性が要求される合成石英ガラス部材を必要とする分野、例えば光リソグラフィー、高精度分光器、レーザ等の精密光学機器で有用とされる。本発明によれば均質性および透過率以外の光学的性質を変えること無しに高純度透明合成石英ガラス光学体を改質することができる。
【0011】
改質を行う合成石英ガラス光学体としては、いずれの方向にも脈理がないものが好ましい。特公平 3- 17775 号公報において、高温(2200〜2400℃),高圧(5〜25atm)で熱処理することにより消失させることができると記載されているが、本発明の方法では、その処理温度・圧力が低いため、脈理を消失させることは困難であることによるためである。更に、その用途を考えると、紫外吸収を起こす原因の一つである金属不純物(Na,K,Li,Ca,Mg,Ti,Cr,Fe,Ni,Cu等)の含有量が極めて少ない、高純度のものが好ましい。特にNaについては、M. Shimbo et. al.,Jpn. J.Appl. Phys. Pt.2, 32(5A), 671-673(1993)にも記載されているように、 180nm近辺で吸収を持つと言われていることから注意しなければならない。次に、改質に使用する母型について述べる。母型は試料となる3方向に対し脈理が無い透明合成石英ガラス光学体を高温で保持する。そこで、母型に用いるSiO2の粉末の形状は、例えば、ゾル-ゲル法により製造された合成石英粉,カレット(粉砕したもの),一旦溶融した塊、のいずれでもよい。なお、一旦溶融したSiO2の塊であれば、熱を加えた時の母型の体積変化が少ないので好ましい。さらに、その他のSiO2と表記される物質、例えばケイ砂,水晶粒子も使用できるが、低い温度で焼結でき、純度も高く、混入する微小の気泡の粒子径も小さく均一であることにより、ゾル-ゲル合成石英粉が望ましい。母型中に混入させる微小気泡の粒子径は、試料周辺の酸素量および試料内部の温度分布に偏りができない程度、好ましくは100μm以下であること、さらには微小気泡の母材に対する含有率を熱処理時の効果及び効率を鑑み、 3%以上にすることが望ましい。また、母型のSiO2にNa、Ca等の不純物が混在していると、これが試料内に拡散し試料が汚染されてしまうため、SiO2の純度は試料と同じかそれ以上であることが望ましい。母型を作成するときの熱処理雰囲気は、母型中に泡となって取り込まれて試料の熱処理時に試料近傍の雰囲気となるが、試料中の酸素欠乏欠陥の生成を抑制させる目的から、酸素分率10%以上とするのが望ましい。
【0012】
処理条件としては、処理する温度(保持時間)は軟化点以上であれば問題ないが、処理時間による生産性を鑑みて軟化点より 150℃以上高いほうが好ましい。絶対値でいうと、一般的には1800〜2200℃程度が好ましい。処理する雰囲気は、ヘリウム,窒素,アルゴン等の不活性ガス若しくはその混合ガス或いは水素,一酸化炭素等の還元性ガスが好ましい。処理する絶対圧力は、 0〜10kg/cm2とするのが好ましい。
【0013】
この時、母型であるSiO2は高温保持されることにより溶融状態になるので、通常は試料と母型を外型に入れる。外型としては高温に耐えられる金属、セラミックス等を用いる具体的には Al2O3,ZrO2あるいはTiB2をコートしたカーボンである。コストはカーボンが最も安く、 Al2O3,ZrO2の順に高くなる。また、カーボンを母型として用いる場合、母型中の微小泡に含まれている酸素ガスと燃焼反応を起こし、炉内にコンタミを引き起こす可能性を考え、母型とカーボンの間に高純度SiO2粉を充填すると効果的である。さらに、熱処理後に外型と母型がはずせなくなるのを防ぐために外型の内壁にカーボンファイバー製のフェルトを用いることもある。
【0014】
従来、均質化を目的としていた加圧,加熱等により行う二次処理(熱処理)は紫外領域から真空紫外領域にかけて、特に 220nm付近以下で透過率の低下があった。その複合作用として耐紫外線性の低下も起こる。その原因は二次処理で生成する Si-Si等 220nm付近以下の波長帯に吸収を持つような構造欠陥の生成にある。特に 180nm近辺に関係している吸収は、 Si-SiやSLPC(シリコンローンペアーセンター)等の還元種やNa等の金属不純物によるコンタミによるものと思われる。これらのうち還元種は、上述の均質化を目的とした加圧,加熱処理時の雰囲気により生成する。一般に、1500℃以上まで昇温できる炉の発熱体としてはカーボンヒータが用いられており、この欠陥種の生成を抑えようとして酸素含有雰囲気で熱処理をすると、熱処理炉の損傷が起こるため、酸素ガスを雰囲気中に含有させることはできなかった。そこで、本発明では、酸素雰囲気の気泡を含ませた母型を使用することにより処理時の試料近傍の酸素分圧を大きくし、これによって Si-Si等の酸素欠乏欠陥の生成を抑制することを可能にした。このほかに生成する構造欠陥として、 Si-O-O-Si等の酸素過剰欠陥が考えられるが、この構造欠陥は最適な酸素分圧下において処理することにより生成を抑制することができる。また、このように処理時の試料近傍の酸素分圧を大きくすることにより、高温・高圧熱処理サンプルにエキシマレーザを照射した時に見られる緑色の発光も抑えることができることがわかった。
【0015】
【実施例】
以下、実施例により詳しく説明するが、本発明はこれらに限られるものではない。
【0016】
【実施例1】
図2は、本実施例を実施するためのシリカ母型製造装置の概略斜視図であり、具体的には2重構造の雰囲気加熱炉で、 Al2O3製のマッフルで仕切られている。この中に静置して使用する Al2O3製外型の中に、母型材料としてゾル−ゲル合成石英粉を充填した。充填後、1900℃,酸素80%+アルゴン20%の混合ガス雰囲気下で熱処理を行うことにより、酸素を80%含む気泡が混入した石英ガラスの塊が得られた。気泡の総体積は石英ガラス塊の体積の 3%以上、気泡径は100μmであった。
【0017】
上記方法により、径 300mm、厚さ 120mmの微小の酸素雰囲気の気泡を含む石英ガラス塊を作り、この石英ガラス塊の中心部から径 250mmの円柱形を切り抜くことにより円筒形のシリカ母型を得た。この母型を、内面にTiB2をコートしたカーボン製外型内にセットした。その後、母型の内側に試料として径 250mm、厚さ 100mmの透明合成石英ガラス光学体をセットした。その際、試料上下部には10mmの酸素雰囲気の気泡を含むシリカ板をセットして試料表面を完全にカバーした。また、母型微小泡中の酸素含有量が大きいため、母型と外型の間にSiO2粉を満たした。
【0018】
用いた試料の初期物性は、 193nmでの10mm内部透過率は99.9%以上、均質性Δn=11.1×10-6で、3方向に対し脈理がなく、含まれる各金属元素の不純物濃度が 20ppb以下の高純度のものであった。外型をカーボンヒータを用いた加熱炉にセット(以上、図1)し、窒素雰囲気、 5.0kg/cm2加圧下で昇温した。1900℃で2時間保持した後、50℃/hで降温していった。この試料を、内部歪を取り除く目的で1100℃,24hrでアニールした後に物性を測定したところ、10mm内部透過率は99.9%以上を維持し、均質性Δnは 0.9×10-6に向上していた。また、この試料に ArFエキシマレーザを 100mJ/cm2・pulseで106pulse照射した時、発光も目視では検出されず、照射後の 193nmにおける10mm内部透過率も99.9%以上を維持していた。これらはいずれも、表1に示すように、母型を使用しなかったり、母型に泡を混入させなかったものと比べて、紫外線リソグラフィー用の光学材料として要求されている品質を十分満たしていた。
【0019】
表1は、本発明実施例1において、未処理試料、母型なしで熱処理した試料、酸素ガスあるいは酸素ガスを含むガスの泡を分散させていない母型を使用して熱処理した試料および本発明実施例1に従い熱処理した試料の物性を、それぞれ比較したものである。
【0020】
【表1】

Figure 0003780532
【0021】
【実施例2】
図2に示す装置において、 Al2O3製外型の中に、母型材料としてゾル−ゲル合成石英粉を充填した。充填ののち、1900℃,酸素10%+窒素90%の混合ガス雰囲気下で熱処理を行うことにより、10%の酸素を含む気泡が混入した石英ガラスの塊が得られた。気泡の総体積は石英ガラス塊の体積の 3%以上、気泡径は 80μmであった。
【0022】
上記方法により、径 300mm、厚さ 120mmの微小の酸素雰囲気の気泡を含む石英ガラス塊を作り、この石英ガラス塊の中心部から径 250mmの円柱形を切り抜くことにより円筒形のシリカ母型を得た。この母型を、内面にTiB2をコートしたカーボン製外型内にセットした。その後、母型の内側に試料として径 250mm、厚さ 100mmの透明合成石英ガラス光学体をセットした。その際、試料上下部には10mmの酸素雰囲気の気泡を含むシリカ板をセットして試料表面を完全にカバーした(以上、図1)。
【0023】
用いた試料の初期物性は、 193nmの透過率が98.5%、均質性Δn=3.0×10-6で、3方向に対し脈理がなく、含まれる各金属元素の不純物濃度が 20ppb以下の高純度のものを用い、実施例1と同様の熱処理を行った。処理後の物性を測定したところ、10mm内部透過率は99.9%以上に向上し、均質性Δnは 1.0×10-6に向上した。また、この試料に ArFエキシマレーザを 100mJ/cm2・pulseで106pulse照射した時、発光も目視では検出されず、照射後の 193nmにおける10mm内部透過率も99.9%以上を維持していた。これらはいずれも、表2に示すように、母型を使用しなかったり、母型に泡を混入させなかったものと比べて、紫外線リソグラフィー用の光学材料として要求されている品質を十分満たしていた。
【0024】
表2は、本発明実施例2において、未処理試料、母型なしで熱処理した試料、酸素ガスあるいは酸素ガスを含むガスの泡を分散させていない母型を使用して熱処理した試料および本発明実施例2に従い熱処理した試料の物性を、それぞれ比較したものである。
【0025】
【表2】
Figure 0003780532
【0026】
【実施例3】
図2に示す装置において、TiB2をコートしたカーボン製外型の中に、母型材料としてゾル−ゲル合成石英粉を充填した。充填ののち、1700℃、酸素10%+アルゴン90%の混合ガス雰囲気下で熱処理を行うことにより、酸素を含む気泡が混入した石英ガラスの塊が得られた。気泡の総体積は石英ガラス塊の体積の3%以上、気泡径は 100μm であった。
【0027】
上記方法により、径300mm 、厚さ120mm の微小の酸素雰囲気の気泡を含む石英ガラス塊を作り、この石英ガラス塊の中心部から径 250mmの円柱形を切り抜くことにより円筒形のシリカ母型を得た。その後、母型の内側に試料として径 250mm、厚さ 100mmの透明合成石英ガラス光学体をセットした。その際、試料上下部には10mmの酸素雰囲気の気泡を含むシリカ板をセットし、試料表面を完全にカバーした(以上、図1)。
【0028】
用いた試料の初期物性は、 193nmの透過率が99.9%以上、均質性Δn=4.0×10-6で、3方向に対し脈理がなく、含まれる各金属元素の不純物濃度が 20ppb以下の高純度のものを用い、実施例1と同様の熱処理を行った。処理後の物性を測定したところ、10mm内部透過率は99.9%以上と変わらず、均質性Δnは 1.2×10-6に向上した。また、この試料に ArFエキシマレーザを 100mJ/cm2・pulseで106pulse照射した時、発光も目視では検出されず、照射後の 193nmにおける10mm内部透過率も99.9%以上を維持していた。これらはいずれも、表3に示すように、母型を使用しなかったり、母型に泡を混入させなかったものと比べて、紫外線リソグラフィー用の光学材料として要求されている品質を十分満たしていた。
表3は、本発明実施例3において、未処理試料、母型なしで熱処理した試料、酸素ガスあるいは酸素ガスを含むガスの泡を分散させていない母型を使用して熱処理した試料および本発明実施例3に従い熱処理した試料の物性を、それぞれ比較したものである。
【0029】
【表3】
Figure 0003780532
【0030】
【発明の効果】
以上の通り、本発明によれば、3方向に対し脈理が無い透明合成石英ガラス光学体を、酸素を含む気泡を有する石英ガラスで構成された円筒形母型中で熱処理することにより、不活性ガス若しくは還元性ガス雰囲気下でも合成石英ガラス体へ酸素が供給され、それにより合成石英ガラス光学体の透過率を向上(若しくは保持)することができ、同時に合成石英ガラス光学体全体の光学的均質性を向上させることができた。その結果、波長 193nmの光に対する10mm内部透過率を99.9%以上、かつ屈折率の均質性を 2×10-6以下、かつ ArFエキシマレーザを照射した後の 193nmにおける10mm内部透過率が99.9%を超える合成石英ガラス光学体を得ることができた。
【0031】
さらに、本発明の改質方法によって、合成石英ガラス光学体の耐エキシマレーザ性は低下しなかった。また、変質層の部分はエキシマレーザを照射すると緑色の蛍光を発することがあったが、本発明の改質方法により改質された合成石英ガラス光学体からは蛍光が検出されなかった。
よって、本発明により、 ArFエキシマレーザやその他の紫外領域の光を使用する光学機器に有用な、高品質な合成石英ガラス光学体を得ることができた。
【図面の簡単な説明】
【図1】 本発明一実施例における、酸素ガスあるいは酸素ガスを含むガスを泡として分散させたシリカガラス母型の製造装置の概略斜視図である。
【図2】 本発明一実施例における、合成石英ガラス光学体の熱処理装置の概略斜視図である。
【符号の説明】
1 不活性ガス
2 酸素含有ガス
3 マッフル
4 熱処理炉
5 発熱体
6 外型
7 シリカガラス母型
8 試料[0001]
[Industrial application fields]
The present invention relates to a synthetic quartz glass optical body used in an ultraviolet optical system typified by photolithography and a method for modifying the same.
[0002]
[Prior art]
Currently, an exposure apparatus called a stepper is used in an optical lithography technique that exposes and transfers a fine pattern of an integrated circuit onto a wafer such as silicon. The wavelength of this stepper light source has been shortened from g-line (436 nm) to i-line (365 nm), KrF (248 nm) and ArF (193 nm) excimer lasers as LSIs have been highly integrated in recent years. Yes.
[0003]
In general, optical materials used as stepper illumination systems or projection lenses have a lower light transmittance in the wavelength region shorter than i-line, so synthetic quartz glass or CaF 2 (meteorite) can be used instead of conventional optical glass. It has been proposed to use a fluoride single crystal as typified. The optical system mounted on the stepper is composed of a combination of many lenses. Even if the amount of decrease in transmittance per lens is small, it is integrated by the number of lenses used, and the amount of light on the irradiation surface Therefore, the optical material is required to have a high transmittance. Also, as the wavelength used becomes shorter, the refractive index of the material itself increases abruptly, so that the imaging performance becomes extremely poor even with a small inhomogeneity of the refractive index.
[0004]
Thus, quartz glass used as an optical material for ultraviolet lithography is required to have high ultraviolet transmittance and high homogeneity of refractive index. However, the commercially available synthetic quartz glass has insufficient quality such as initial transmittance, homogeneity, and ultraviolet resistance, and cannot be used for the precision optical instrument as described above. For this reason, secondary treatment for homogenization (JP-B-3-17775, JP-A-64-28240) and heat treatment in pressurized hydrogen gas have improved homogenization and improved laser resistance. (Japanese Patent Laid-Open No. 3-109233) has been proposed. However, in the secondary processing by heating, pressurization, etc. that are usually performed, there is a decrease in transmittance and UV resistance particularly in the vicinity of 220 nm or less from the ultraviolet region to the vacuum ultraviolet region. It was inappropriate as an optical material. In other words, none satisfying all of high homogeneity, high transmittance, and high UV resistance.
[0005]
Japanese Laid-Open Patent Publication No. 5-170466 proposes a method for improving the homogeneity by heat-treating a quartz glass sample in a coating. Furthermore, the present inventors disclosed in Japanese Patent Laid-Open No. 5-116969, a method for producing quartz glass, that “an optically inhomogeneous quartz glass having a refractive index variation Δn = 1 × 10 −5 ” is made of SiO 2 . A method for producing “optically homogeneous quartz glass of about Δn = 1 × 10 −6 or less”, characterized in that heat treatment is performed under pressure of 0 to 10 kg / cm 2 in a matrix made of powder or lump Has proposed. In this, it is desirable to cool the entire quartz glass uniformly after heat treatment, but even if the cooling rate is sufficiently slow, the temperature drop rate is different between the outside and inside of the quartz glass, so the temperature distribution can be made after the temperature drop. Disclosed that it appears as a refractive index profile. In particular, the number of isotherms increases around the quartz glass when viewed from the thickness direction (optical axis direction when used as an optical element), and it is confirmed that an altered layer with a large variation in refractive index is formed in this area. did. Therefore, by covering the entire surface of the quartz glass sample with SiO 2 powder and heat-treating it, the temperature distribution in the sample at the time of temperature reduction was reduced and the homogeneity was improved.
[0006]
However, these methods do not take into consideration the maintenance of transmittance and UV resistance. In fact, these methods improve the homogeneity, but decrease the initial transmittance below 220 nm or less. Since the ultraviolet property is lowered, it is not suitable as an optical material for ultraviolet lithography.
[0007]
[Problems to be solved by the invention]
As described above, when quartz glass is used in optical bodies, particularly precision optical instruments such as steppers, extremely high transmittance and homogeneity are required. However, in the conventional reforming method as described above, the initial transmittance is reduced at the same time as the homogeneity is improved. Also, when quartz glass is used as the optical body, when the wavelength used is shortened and high-power ultraviolet rays such as excimer laser are irradiated, a defect called a high-concentration E 'center is generated at 215 nm, which is dragged by the wavelength of the wavelength used. The transmittance may also be reduced. Therefore, it has not been possible to obtain quartz glass having high transmittance, high homogeneity, and high ultraviolet resistance that can be used as an optical material for ultraviolet lithography.
[0008]
[Means for Solving the Problems]
As a result of earnest research on the above, synthetic quartz glass optics with optical properties and high homogeneity that can be used in the ultraviolet region by prescribing and treating secondary conditions in the vicinity of synthetic quartz glass optical bodies. It turns out that a body is obtained. Accordingly, the present invention firstly accommodates a transparent synthetic quartz glass optical body having no striae in three directions inside a cylindrical matrix made of quartz glass having bubbles containing oxygen, and the transparent quartz A method for heat-treating a synthetic quartz glass optical body, characterized in that the glass optical body is heat-treated at a predetermined temperature together with the cylindrical matrix (claim 1) .
[0009]
In addition, the present invention secondly is the heat treatment method according to claim 1, wherein the bubble has a diameter of 100 μm or less, and a volume ratio of the bubbles to the cylindrical matrix is 3% or more. Provided is a heat treatment method for a synthetic quartz glass optical body, wherein the oxygen fraction in the gas is 10% or more (claim 2) .
[0010]
[Action]
The present invention relates to a field requiring a synthetic quartz glass member that requires high homogeneity, high transmittance in the ultraviolet / vacuum ultraviolet region, and high ultraviolet resistance, such as optical lithography, high-precision spectrometers, and lasers. Useful in optical equipment. According to the present invention, a high-purity transparent synthetic quartz glass optical body can be modified without changing optical properties other than homogeneity and transmittance.
[0011]
As the synthetic quartz glass optical body to be modified, those having no striae in any direction are preferable. In Japanese Patent Publication No. 3-17775, it is described that it can be eliminated by heat treatment at high temperature (2200-2400 ° C.) and high pressure (5-25 atm). This is because it is difficult to eliminate the striae because the pressure is low. Furthermore, considering its application, the content of metal impurities (Na, K, Li, Ca, Mg, Ti, Cr, Fe, Ni, Cu, etc.), which is one of the causes of ultraviolet absorption, is extremely low. Those of purity are preferred. Especially for Na, as described in M. Shimbo et. Al., Jpn. J. Appl. Phys. Pt. 2, 32 (5A), 671-673 (1993), the absorption is near 180 nm. You have to be careful because it is said to have. Next, the matrix used for reforming will be described. The master mold holds a transparent synthetic quartz glass optical body having no striae in three directions as a sample at a high temperature. Therefore, the shape of the SiO 2 powder used for the matrix may be, for example, any of synthetic quartz powder produced by a sol-gel method, cullet (pulverized), and a molten mass once. A lump of SiO 2 once melted is preferable because there is little change in the volume of the matrix when heat is applied. In addition, other substances expressed as SiO 2 , such as silica sand and quartz particles, can be used, but can be sintered at a low temperature, have high purity, and the particle diameter of the minute bubbles to be mixed is small and uniform. Sol-gel synthetic quartz powder is desirable. The particle size of the microbubbles mixed in the matrix is such that the amount of oxygen around the sample and the temperature distribution inside the sample cannot be biased, preferably 100 μm or less, and the content of the microbubbles in the matrix is heat treated. Considering the effect and efficiency of time, it is desirable to make it 3% or more. Also, if impurities such as Na and Ca are mixed in the matrix SiO 2 , this will diffuse into the sample and contaminate the sample, so the purity of SiO 2 may be equal to or higher than that of the sample. desirable. The heat treatment atmosphere when creating the matrix is taken into the matrix as bubbles and becomes the atmosphere in the vicinity of the sample during the heat treatment of the sample, but for the purpose of suppressing the generation of oxygen-deficient defects in the sample, The rate is preferably 10% or more.
[0012]
As processing conditions, there is no problem as long as the processing temperature (holding time) is equal to or higher than the softening point. However, in view of productivity due to processing time, it is preferable that the processing temperature is 150 ° C. or higher. Generally speaking, an absolute value is preferably about 1800 to 2200 ° C. The atmosphere to be treated is preferably an inert gas such as helium, nitrogen or argon, or a mixed gas thereof, or a reducing gas such as hydrogen or carbon monoxide. The absolute pressure to be treated is preferably 0 to 10 kg / cm 2 .
[0013]
At this time, since the SiO 2 that is the mother mold is in a molten state by being kept at a high temperature, the sample and the mother mold are usually placed in the outer mold. The outer mold is made of a metal or ceramic that can withstand high temperatures. Specifically, it is carbon coated with Al 2 O 3 , ZrO 2 or TiB 2 . The cost of carbon is the cheapest, with Al 2 O 3 and ZrO 2 increasing in this order. In addition, when carbon is used as a matrix, a high-purity SiO between the matrix and carbon is considered because of the possibility of causing a combustion reaction with oxygen gas contained in the microbubbles in the matrix and causing contamination in the furnace. It is effective to fill with 2 powders. Furthermore, in order to prevent the outer mold and the mother mold from being removed after heat treatment, a carbon fiber felt may be used on the inner wall of the outer mold.
[0014]
Conventionally, the secondary treatment (heat treatment) performed by pressurization, heating, etc. for the purpose of homogenization had a decrease in transmittance from the ultraviolet region to the vacuum ultraviolet region, particularly below about 220 nm. As a combined action, the UV resistance also decreases. The cause is the generation of structural defects such as Si-Si produced by the secondary treatment that have absorption in the wavelength band below 220 nm. In particular, absorption related to around 180 nm is thought to be due to contamination by reducing species such as Si-Si and SLPC (silicon loan pair center) and metal impurities such as Na. Of these, the reducing species are generated in the atmosphere during the pressurization and heat treatment for the purpose of homogenization described above. In general, a carbon heater is used as a heating element of a furnace capable of raising the temperature to 1500 ° C. or higher. When heat treatment is performed in an oxygen-containing atmosphere in order to suppress the generation of this defect species, the heat treatment furnace is damaged. Could not be contained in the atmosphere. Therefore, in the present invention, the oxygen partial pressure in the vicinity of the sample during processing is increased by using a matrix containing bubbles in an oxygen atmosphere, thereby suppressing the generation of oxygen-deficient defects such as Si-Si. Made possible. In addition to this, oxygen-excess defects such as Si-OO-Si can be considered as structural defects to be generated, but the generation of these structural defects can be suppressed by processing under an optimum oxygen partial pressure. Further, it was found that by increasing the oxygen partial pressure in the vicinity of the sample at the time of treatment in this way, it is possible to suppress green light emission that is seen when an excimer laser is irradiated to a high temperature / high pressure heat treated sample.
[0015]
【Example】
Hereinafter, although an Example demonstrates in detail, this invention is not limited to these.
[0016]
[Example 1]
FIG. 2 is a schematic perspective view of an apparatus for producing a silica matrix for carrying out the present embodiment. Specifically, it is a double-structured atmosphere heating furnace partitioned by an Al 2 O 3 muffle. A sol-gel synthetic quartz powder as a matrix material was filled in an outer mold made of Al 2 O 3 to be used in a stationary state. After the filling, heat treatment was performed in a mixed gas atmosphere of 1900 ° C., oxygen 80% + argon 20%, and a quartz glass lump containing bubbles containing oxygen 80% was obtained. The total volume of the bubbles was 3% or more of the volume of the quartz glass block, and the bubble diameter was 100 μm.
[0017]
By the above method, a silica glass block containing 300 mm in diameter and 120 mm in thickness and containing bubbles in a minute oxygen atmosphere is formed, and a cylindrical silica matrix with a diameter of 250 mm is cut out from the center of the quartz glass block to obtain a cylindrical silica matrix. It was. The matrix was set in a carbon-made outer coated with TiB 2 on the inner surface. Thereafter, a transparent synthetic quartz glass optical body having a diameter of 250 mm and a thickness of 100 mm was set as a sample inside the matrix. At that time, silica plates containing 10 mm oxygen atmosphere bubbles were set on the upper and lower parts of the sample to completely cover the sample surface. Moreover, since the oxygen content in the matrix microbubbles was large, SiO 2 powder was filled between the matrix and the outer mold.
[0018]
The initial physical properties of the sample used are as follows: 10 mm internal transmittance at 193 nm is 99.9% or more, homogeneity Δn = 11.1 × 10 −6 , there is no striation in three directions, and the impurity concentration of each contained metal element is 20ppb It was the following high purity. The outer mold was set in a heating furnace using a carbon heater (FIG. 1 above), and the temperature was raised under a nitrogen atmosphere and a pressure of 5.0 kg / cm 2 . After holding at 1900 ° C for 2 hours, the temperature was lowered at 50 ° C / h. When the physical properties of this sample were measured after annealing at 1100 ° C. for 24 hours to remove internal strain, the 10 mm internal transmittance was maintained at 99.9% or more, and the homogeneity Δn was improved to 0.9 × 10 −6 . . When this sample was irradiated with ArF excimer laser at 100 mJ / cm 2 · pulse at 10 6 pulses, no luminescence was detected visually, and the 10 mm internal transmittance at 193 nm after irradiation was maintained at 99.9% or more. As shown in Table 1, each of these sufficiently satisfies the quality required as an optical material for ultraviolet lithography as compared with the case in which the mother die is not used or bubbles are not mixed in the mother die. It was.
[0019]
Table 1 shows an untreated sample, a sample heat-treated without a mother die, a sample heat-treated using a mother die in which bubbles of oxygen gas or gas containing oxygen gas are not dispersed, and the present invention. The physical properties of the samples heat-treated according to Example 1 are respectively compared.
[0020]
[Table 1]
Figure 0003780532
[0021]
[Example 2]
In the apparatus shown in FIG. 2, sol-gel synthetic quartz powder was filled as a matrix material in an outer mold made of Al 2 O 3 . After filling, a quartz glass lump containing bubbles containing 10% oxygen was obtained by heat treatment in a mixed gas atmosphere of 1900 ° C, 10% oxygen + 90% nitrogen. The total volume of the bubbles was 3% or more of the volume of the quartz glass block, and the bubble diameter was 80 μm.
[0022]
By the above method, a silica glass block containing 300 mm in diameter and 120 mm in thickness and containing bubbles in a minute oxygen atmosphere is formed, and a cylindrical silica matrix with a diameter of 250 mm is cut out from the center of the quartz glass block to obtain a cylindrical silica matrix. It was. The matrix was set in a carbon-made outer coated with TiB 2 on the inner surface. Thereafter, a transparent synthetic quartz glass optical body having a diameter of 250 mm and a thickness of 100 mm was set as a sample inside the matrix. At that time, a silica plate containing 10 mm oxygen atmosphere bubbles was set on the upper and lower parts of the sample to completely cover the sample surface (above, FIG. 1).
[0023]
The initial physical properties of the sample used were high purity with a transmittance of 193 nm of 98.5%, homogeneity Δn = 3.0 × 10 -6 , no striations in the three directions, and the impurity concentration of each metal element contained was 20 ppb or less. The same heat treatment as in Example 1 was performed. When the physical properties after the treatment were measured, the 10 mm internal transmittance was improved to 99.9% or more, and the homogeneity Δn was improved to 1.0 × 10 −6 . When this sample was irradiated with ArF excimer laser at 100 mJ / cm 2 · pulse at 10 6 pulses, no luminescence was detected visually, and the 10 mm internal transmittance at 193 nm after irradiation was maintained at 99.9% or more. As shown in Table 2, each of these sufficiently satisfies the quality required as an optical material for ultraviolet lithography, compared to the case where no mother die is used or bubbles are not mixed into the mother die. It was.
[0024]
Table 2 shows an untreated sample, a sample heat-treated without a matrix, a sample heat-treated using a matrix in which bubbles of oxygen gas or gas containing oxygen gas are not dispersed, and the present invention in Example 2 of the present invention. The physical properties of the samples heat-treated according to Example 2 are compared.
[0025]
[Table 2]
Figure 0003780532
[0026]
[Example 3]
In the apparatus shown in FIG. 2, in a carbon-made outer coated with TiB 2, sol as matrix material - filled with gel synthetic silica powder. After the filling, heat treatment was performed in a mixed gas atmosphere of 1700 ° C., 10% oxygen + 90% argon, and a lump of quartz glass mixed with bubbles containing oxygen was obtained. The total volume of the bubbles was 3% or more of the volume of the quartz glass block, and the bubble diameter was 100 μm.
[0027]
By the above method, a quartz glass block containing 300 mm in diameter and 120 mm in thickness and containing bubbles in a minute oxygen atmosphere is formed, and a cylindrical silica matrix is obtained by cutting out a 250 mm diameter column from the center of the quartz glass block. It was. Thereafter, a transparent synthetic quartz glass optical body having a diameter of 250 mm and a thickness of 100 mm was set as a sample inside the matrix. At that time, a silica plate containing 10 mm oxygen atmosphere bubbles was set on the upper and lower parts of the sample to completely cover the sample surface (FIG. 1 above).
[0028]
The initial physical properties of the sample used are as follows: the transmittance at 193 nm is 99.9% or more, the homogeneity Δn = 4.0 × 10 −6 , there is no striation in the three directions, and the impurity concentration of each contained metal element is 20ppb or less. The same heat treatment as in Example 1 was performed using a pure material. When the physical properties after the treatment were measured, the 10 mm internal transmittance was not more than 99.9%, and the homogeneity Δn was improved to 1.2 × 10 −6 . When this sample was irradiated with ArF excimer laser at 100 mJ / cm 2 · pulse at 10 6 pulses, no luminescence was detected visually, and the 10 mm internal transmittance at 193 nm after irradiation was maintained at 99.9% or more. As shown in Table 3, these materials sufficiently satisfy the quality required as an optical material for ultraviolet lithography as compared with the case in which the mother die was not used or bubbles were not mixed in the mother die. It was.
Table 3 shows an untreated sample, a sample heat-treated without a matrix, a sample heat-treated using a matrix in which bubbles of oxygen gas or gas containing oxygen gas are not dispersed, and the present invention in Example 3 of the present invention. The physical properties of the samples heat-treated according to Example 3 are compared.
[0029]
[Table 3]
Figure 0003780532
[0030]
【The invention's effect】
As described above, according to the present invention, a transparent synthetic quartz glass optical body having no striae in the three directions is subjected to heat treatment in a cylindrical matrix made of quartz glass having bubbles containing oxygen. Oxygen is supplied to the synthetic quartz glass body even in an active gas or reducing gas atmosphere, thereby improving (or maintaining) the transmittance of the synthetic quartz glass optical body, and at the same time, the optical properties of the entire synthetic quartz glass optical body. The homogeneity could be improved. As a result, the 10 mm internal transmittance for light with a wavelength of 193 nm is 99.9% or more, the refractive index homogeneity is 2 × 10 -6 or less, and the 10 mm internal transmittance at 193 nm after irradiation with ArF excimer laser is 99.9%. More synthetic quartz glass optical bodies could be obtained.
[0031]
Furthermore, the excimer laser resistance of the synthetic quartz glass optical body was not lowered by the modification method of the present invention. In addition, the part of the altered layer sometimes emitted green fluorescence when irradiated with an excimer laser, but no fluorescence was detected from the synthetic quartz glass optical body modified by the modification method of the present invention.
Therefore, according to the present invention, a high-quality synthetic quartz glass optical body useful for ArF excimer lasers and other optical devices using light in the ultraviolet region can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of an apparatus for producing a silica glass mother mold in which oxygen gas or a gas containing oxygen gas is dispersed as bubbles in an embodiment of the present invention.
FIG. 2 is a schematic perspective view of a heat treatment apparatus for a synthetic quartz glass optical body in one embodiment of the present invention.
[Explanation of symbols]
1 Inert gas 2 Oxygen-containing gas 3 Muffle 4 Heat treatment furnace 5 Heating element 6 Outer mold 7 Silica glass matrix 8 Sample

Claims (2)

3方向に対し脈理が無い透明合成石英ガラス光学体を、酸素を含む気泡を有する石英ガラスで構成された円筒形母型の内部に収容し、前記透明石英ガラス光学体を前記円筒形母型と共に所定温度で熱処理することを特徴とする、波長220nm以下の光を用いる紫外線リソグラフィー用合成石英ガラス光学体の熱処理方法。A transparent synthetic quartz glass optical body having no striae in three directions is accommodated in a cylindrical matrix made of quartz glass having bubbles containing oxygen, and the transparent quartz glass optical body is accommodated in the cylindrical matrix. And a heat treatment method for a synthetic quartz glass optical body for ultraviolet lithography using light having a wavelength of 220 nm or less , wherein the heat treatment is performed at a predetermined temperature. 請求項1に記載の熱処理方法であって、前記気泡の径が100μm以下、前記気泡の前記円筒形母型に占める体積比率が3%以上、前記気泡に含まれるガス中の酸素分率が10%以上であることを特徴とする、波長220nm以下の光を用いる紫外線リソグラフィー用合成石英ガラス光学体の熱処理方法。2. The heat treatment method according to claim 1, wherein the diameter of the bubbles is 100 μm or less, the volume ratio of the bubbles to the cylindrical matrix is 3% or more, and the oxygen content in the gas contained in the bubbles is 10%. % Heat treatment method for synthetic quartz glass optical body for ultraviolet lithography using light having a wavelength of 220 nm or less .
JP06591494A 1994-04-04 1994-04-04 Method for modifying synthetic quartz glass optical body and synthetic quartz glass optical body Expired - Lifetime JP3780532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06591494A JP3780532B2 (en) 1994-04-04 1994-04-04 Method for modifying synthetic quartz glass optical body and synthetic quartz glass optical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06591494A JP3780532B2 (en) 1994-04-04 1994-04-04 Method for modifying synthetic quartz glass optical body and synthetic quartz glass optical body

Publications (2)

Publication Number Publication Date
JPH07277755A JPH07277755A (en) 1995-10-24
JP3780532B2 true JP3780532B2 (en) 2006-05-31

Family

ID=13300722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06591494A Expired - Lifetime JP3780532B2 (en) 1994-04-04 1994-04-04 Method for modifying synthetic quartz glass optical body and synthetic quartz glass optical body

Country Status (1)

Country Link
JP (1) JP3780532B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070137252A1 (en) * 2005-12-21 2007-06-21 Maxon John E Reduced striae low expansion glass and elements, and a method for making same

Also Published As

Publication number Publication date
JPH07277755A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
JP4601022B2 (en) Synthetic quartz glass member for ArF excimer laser lithography
JP3674793B2 (en) Method for producing quartz glass optical member for ultraviolet laser
JP2588447B2 (en) Method of manufacturing quartz glass member for excimer laser
JP4170719B2 (en) Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member
JP4493060B2 (en) Manufacturing method of optical quartz glass for excimer laser
JP4011217B2 (en) Manufacturing method of optical quartz glass for excimer laser
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP3780532B2 (en) Method for modifying synthetic quartz glass optical body and synthetic quartz glass optical body
JPH07187684A (en) Production of quartz glass and quartz glass made by the same
JPH06166522A (en) Production of ultraviolet laser-resistant optical member
JP3071362B2 (en) Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same
JPWO2004092082A1 (en) Method for producing SiO2-TiO2 glass, SiO2-TiO2 glass and exposure apparatus
KR100311068B1 (en) HETHOD FOR PRODUCING SYNTHETIC QUARTZ GLASS FOR USE IN ArF EXCIMER LASER LITHOGRAPHY
JP2001270725A (en) Optical synthetic quartz glass, method for heat-treating the same, and heat-treating apparatus for the same
JPH11116248A (en) Synthetic quartz glass member
JP3715163B2 (en) Synthetic quartz glass member for high-power ArF excimer laser and manufacturing method thereof
WO2002085808A1 (en) Quartz glass member and projection aligner
JP3237043B2 (en) Heat treatment method for quartz glass and synthetic quartz glass
JP4674972B2 (en) Synthetic quartz glass and manufacturing method thereof
JP5208677B2 (en) Method for producing synthetic quartz glass member for ArF excimer laser lithography
JP4159852B2 (en) Synthetic quartz glass material for optical components
JP4744046B2 (en) Method for producing synthetic quartz glass material
TW200420900A (en) Scatter-free UV optical fluoride crystal elements for < 200 nm laser lithography and methods
JP3126188B2 (en) Quartz glass substrate for photomask
JPH02243535A (en) Production of glass matrix for ultraviolet ray

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150317

Year of fee payment: 9

EXPY Cancellation because of completion of term