JPH02243535A - Production of glass matrix for ultraviolet ray - Google Patents

Production of glass matrix for ultraviolet ray

Info

Publication number
JPH02243535A
JPH02243535A JP6224189A JP6224189A JPH02243535A JP H02243535 A JPH02243535 A JP H02243535A JP 6224189 A JP6224189 A JP 6224189A JP 6224189 A JP6224189 A JP 6224189A JP H02243535 A JPH02243535 A JP H02243535A
Authority
JP
Japan
Prior art keywords
hydrogen
atmosphere
hydrogen chloride
ultraviolet ray
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6224189A
Other languages
Japanese (ja)
Other versions
JPH0531510B2 (en
Inventor
Shigeru Yamagata
茂 山形
Toshikatsu Matsutani
松谷 利勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP6224189A priority Critical patent/JPH02243535A/en
Publication of JPH02243535A publication Critical patent/JPH02243535A/en
Publication of JPH0531510B2 publication Critical patent/JPH0531510B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the subject glass matrix having an excellent ultraviolet ray-resistant characteristic by heat treating a silica glass lump of high purity having a specified OH content in an atmosphere containing hydrogen and hydrogen chloride, slowly cooling the heat treated silica glass lump while maintaining the atmosphere, preventing contamination of impurities and degassing and enabling to take place preferable internal diffusion of hydrogen. CONSTITUTION:A silica glass lump of high purity having >=about 300ppm OH content is heat treated at 1,000-1,200 deg.C, preferably >=1,120 deg.C in an atmosphere containing hydrogen and hydrogen chloride gases (preferably <=30mol% hydrogen chloride and >=70mol% hydrogen) followed by slow cooling to <=400 deg.C, preferably <=200 deg.C while maintaining the atmosphere, thus obtaining the objective glass matrix for ultraviolet ray for production of a lens, a window, a mirror, a prism, a filter, etc., used for laser of 400-200nm wave range.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、紫外光、特に4QOn■以下の波長域のレー
ザ光に使用されるレンズ、ウィンドウ、ミラー、プリズ
ム、フィルター等を製造する為の紫外光用ガラス母材の
製造方法に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention is intended for manufacturing lenses, windows, mirrors, prisms, filters, etc. used for ultraviolet light, especially laser light in the wavelength range of 4QOn■ or less. The present invention relates to a method for producing a glass base material for ultraviolet light.

「従来の技術」 例えばLSIの微細化、高集積化に伴ないウェハ上に集
積回路パターンを描画するリングラフィ技術においても
サブミクロン単位の描画技術の開発が急がれているが、
最近の光学系、光源、フォトレジスト等の着実な進歩か
らみてやはり光リソグラフィーが主流になるものと推定
される。
"Conventional technology" For example, with the miniaturization and higher integration of LSIs, there is an urgent need to develop submicron-level drawing technology in phosphorography technology, which draws integrated circuit patterns on wafers.
Considering recent steady progress in optical systems, light sources, photoresists, etc., it is presumed that optical lithography will become the mainstream.

確かに光リソグラフィーは、比較的高輝度の光源、高感
度レジスト、安定した光学材料がそろっている等微細な
線幅描画を行う上で必要な種々の条件を備えているが、
欠点として露光波長が大きいため、回折により解像力が
制限されるという問題があり、その解決策として露光波
長の短波長化が進められている。
It is true that optical lithography has the various conditions necessary to draw fine line widths, such as a relatively high-intensity light source, high-sensitivity resist, and stable optical materials.
As a drawback, since the exposure wavelength is large, the resolution is limited due to diffraction, and as a solution to this problem, progress is being made to shorten the exposure wavelength.

しかしながら露光波長の短波長化を図る為に400n■
以下の紫外線を用いた場合は、従来の光学ガラスを用い
たレンズでは使用波長が385nm(i線)付近より光
透過率が急激に低下して、光吸収による発熱が生じ、該
レンズの焦点位置やその他の特性を狂わせることになる
However, in order to shorten the exposure wavelength, 400n■
When the following ultraviolet rays are used, in lenses using conventional optical glass, the light transmittance decreases rapidly from the wavelength used around 385 nm (i-line), heat generation occurs due to light absorption, and the focal point of the lens and other characteristics.

この為、レンズ材料を従来の光学ガラスから石英ガラス
に代えるとともに石英ガラスを用いた場合における色収
差の発生を防止する為に、その光源としてスペクトル巾
の狭いレーザ光、特に紫外域で発振する高出力パルスレ
ーザを用いているが、石英ガラスを用いた場合において
も、透過光の波長域が190 nm以下では急速に透過
率が低下してしまう。
For this reason, we changed the lens material from conventional optical glass to quartz glass, and in order to prevent the occurrence of chromatic aberration when using quartz glass, we used a high-power laser beam with a narrow spectral width as the light source, especially in the ultraviolet region. Although a pulsed laser is used, even when quartz glass is used, the transmittance rapidly decreases when the wavelength range of transmitted light is 190 nm or less.

従って石英ガラスを用いた場合においてもその透過光の
波長域は略200〜400nmのレーザ光、具体的には
前記1線の外にKrF(248nl1) 、Xe(41
(308nm)、XeBr(282nm) 、 XaF
 (351,353ni+)等のエキシマレーザ光及び
YAG 4倍高調波(25Qnm )等のレーザ光が対
象となるが、このような短波長レーザ光を用いた場合そ
の光学材料の屈折率の均一性は前記g線の場合に比較し
て数段高いものが要求される。
Therefore, even when silica glass is used, the wavelength range of the transmitted light is approximately 200 to 400 nm, specifically, KrF (248nl1), Xe (41nm), etc.
(308nm), XeBr (282nm), XaF
Excimer laser light such as (351, 353ni+) and laser light such as YAG 4th harmonic (25Qnm) are targeted, but when such short wavelength laser light is used, the uniformity of the refractive index of the optical material is Compared to the case of the above-mentioned G-line, something several orders of magnitude higher is required.

この為前記レンズ等を製造する為の石英ガラス母材は一
般により高純度化を図る為に、例えば四塩化珪素を酸水
素炎中で反応させて形成される合成石英ガラスを用い、
該合成石英ガラスを略円柱状、円板状、又は球状等の所
望形状に成型した後 その内部歪の除去と屈折率分布の
均一化を図る為に加熱処理、具体的には1100℃前後
の高温で加熱処理を行っている。
For this reason, the quartz glass base material used to manufacture the lenses and the like is generally made of synthetic quartz glass, which is formed by reacting silicon tetrachloride in an oxyhydrogen flame, in order to achieve higher purity.
After the synthetic quartz glass is molded into a desired shape such as a substantially cylindrical, disk-shaped, or spherical shape, it is heated to about 1100°C in order to remove internal distortion and make the refractive index distribution uniform. Heat treatment is performed at high temperature.

「発明が解決しようとする課題」 しかしながら前記のような高温域での加熱処理を行うと
、炉材中からの汚染が生じ、高純度性の維持が困難であ
るとともに、前記石英ガラス組織中の吸蔵水素が脱ガス
し、透邊率の低下や屈折率の上昇等を含む耐紫外線特性
に悪影響を及ぼしてしまう。
``Problems to be Solved by the Invention'' However, when heat treatment is performed in the high-temperature range as described above, contamination occurs from within the furnace material, making it difficult to maintain high purity. The occluded hydrogen degasses, which adversely affects the ultraviolet ray resistance, including a decrease in transmittance and an increase in refractive index.

そしてこのような吸蔵水素の脱ガス化を防止する為に適
用可部な技術として、例えば特公昭40−10228号
において、石英ガラス物品を水素ガス雰囲気中で、40
0〜1000℃、特に500℃で加熱する事により電離
線の作用による着色を防止する技術が開示されているが
、前記公報中の詳細な説明に記載されているように、前
記加熱温度が1000℃以上になると例え水素ガス雰囲
気中でも不純物の混入等により、光透過特性が悪化して
しまうという欠点を有する。この為かかる技術は高温度
域での加熱処理が必要な紫外光用ガラス母材の製造方法
として適用する事は不可部である。
As a technique that can be applied to prevent such degassing of occluded hydrogen, for example, in Japanese Patent Publication No. 10228/1973, a quartz glass article is heated for 40 minutes in a hydrogen gas atmosphere.
A technique for preventing coloration due to the action of ionizing radiation by heating at 0 to 1000°C, particularly 500°C, has been disclosed. If the temperature exceeds .degree. C., there is a drawback that the light transmission characteristics deteriorate due to the contamination of impurities even in a hydrogen gas atmosphere. For this reason, such a technique cannot be applied as a method for manufacturing a glass base material for ultraviolet light that requires heat treatment in a high temperature range.

即ち石英ガラスにおいては転移温度域が1025〜11
20℃にある事から、前記加熱処理温度を1000℃以
下にした場合においては内部歪の除去と均質化を図る事
が出来ず、結果として前記技術を採用出来ない。
That is, in silica glass, the transition temperature range is 1025 to 11
Since the temperature is 20° C., if the heat treatment temperature is set to 1000° C. or lower, it is impossible to remove internal strain and achieve homogenization, and as a result, the above technique cannot be adopted.

本発明はかかる従来技術に鑑み、前記加熱処理を行った
場合においても、不純物の混入や脱ガス化が生じる事な
く、逆に加熱処理前に比較して一層好ましい水素の内部
拡散を可能にし、これにより良好な耐紫外光特性を得る
事の出来る紫外光用ガラス母材の製造方法を提供する事
を目的とする。
In view of such prior art, the present invention enables hydrogen to be internally diffused more favorably than before the heat treatment without causing impurity contamination or degassing even when the heat treatment is performed, The object of the present invention is to provide a method for producing a glass base material for ultraviolet light that can obtain good ultraviolet light resistance.

更に本発明の他の目的は、前記耐紫外線特性の向上を加
熱処理方法のみで規制する事なく、加熱処理前の成る特
定含有物質量、具体的にはOH基含有量を規定する事に
より、−層好ましい耐紫外線特性の向上を図る事の出来
る紫外光用ガラス母材の製造方法を提供する事を目的と
する。
Furthermore, another object of the present invention is to improve the ultraviolet ray resistance by not restricting the improvement of the ultraviolet ray resistance only by the heat treatment method, but by regulating the amount of a specific substance contained before the heat treatment, specifically, the OH group content. - Layer An object of the present invention is to provide a method for producing a glass base material for ultraviolet light, which can improve the preferable ultraviolet resistance properties.

「課題を解決する為の手段」 本発明は略20On鳳から400n■までの特定波長域
の紫外光に使用される紫外光用ガラス母材の製造方法に
関するものである。
``Means for Solving the Problems'' The present invention relates to a method of manufacturing a glass base material for ultraviolet light used for ultraviolet light in a specific wavelength range from approximately 20 nm to 400 nm.

即ち熱処理時の不純物混入防止の面のみからみれば前記
波長域を特に限定する必要はないが、本発明は特に前記
ガラス組織中に積極的に吸蔵水素を含有させる事を目的
とするもので、従ってその波長域の範囲も吸蔵水素を含
有させた場合に特に大きな効果を得る範囲、具体的には
略2αGmmから400nmまでの波長域の範囲に限定
した。
That is, from the perspective of preventing impurity contamination during heat treatment, it is not necessary to specifically limit the wavelength range, but the present invention specifically aims to actively incorporate occluded hydrogen into the glass structure. Therefore, the wavelength range is also limited to a range in which a particularly large effect can be obtained when occluded hydrogen is contained, specifically, a wavelength range from about 2αGmm to 400 nm.

けだし、波長域が400n層以上ではフォトンエネルギ
ーが小さいので光学特性の安定性を考慮する必要がなく
、又波長域が略200nm以下では前記したように光透
過性の面で問題になる場合があり又このような真空紫外
域では吸蔵水素を含有しない場合の方が耐性がよいとい
うこともある為である。
However, if the wavelength range is 400nm or more, the photon energy is small, so there is no need to consider the stability of optical properties, and if the wavelength range is about 200nm or less, there may be problems with light transmittance as described above. This is also because in such a vacuum ultraviolet region, resistance is sometimes better when the material does not contain occluded hydrogen.

そしてかかる波長域に使用する紫外光用ガラス母材を製
造する為の本発明は、 ■第1の特徴として所望の合成法にもとづいて高純度石
英ガラス塊を製造するも、該石英ガラス塊中にOH基濃
度が略300ppm以上含有させた点。
The present invention for producing a glass base material for ultraviolet light used in such a wavelength range has the following features: (1) As a first feature, a high-purity quartz glass lump is produced based on a desired synthesis method; The point is that the OH group concentration is approximately 300 ppm or more.

けだし前記ガラス組織中のOH基濃度を増大する事によ
り蛍光特性、屈折率、透過率等の耐紫外線特性を向上さ
せる事は、本発明者が先に知見した事実であり(特願昭
82−323882号)、そして特に前記OH基濃度が
略300pp■以上の高純度石英ガラス塊を用いる事に
より、略200nmから400n厘までの波長域の紫外
線を照射した場合における蛍光発生を抑制させる車が出
来、これにより屈折率、透過率等の安定性を向上させる
事の出来るものである。
It is a fact that the present inventors have previously discovered that UV resistance properties such as fluorescence properties, refractive index, and transmittance can be improved by increasing the OH group concentration in the glass structure. 323882), and in particular, by using a high-purity quartz glass block with an OH group concentration of about 300 ppp or more, a car can be created that suppresses fluorescence generation when irradiated with ultraviolet rays in the wavelength range from about 200 nm to 400 nm. This makes it possible to improve the stability of refractive index, transmittance, etc.

しかしながら前記のように高純度で且つOH基濃度を含
有させた合成石英ガラス塊を用いても、熱処理中に汚染
や吸蔵水素の脱ガスが生じた場合には前記発明の効果を
達成し得ない。
However, even if a synthetic quartz glass block with high purity and OH group concentration is used as described above, the effects of the invention cannot be achieved if contamination or degassing of occluded hydrogen occurs during heat treatment. .

■そこで第2の特徴として、前記石英ガラス塊を水素及
び塩化水素含有雰囲気にて1000〜1200℃の温度
で加熱処理を行う点にある。
(2) Therefore, the second feature is that the quartz glass lump is heat-treated at a temperature of 1000 to 1200° C. in an atmosphere containing hydrogen and hydrogen chloride.

即ち、塩化水素含有雰囲気にて加熱処理を行う事により
、高温加熱により炉材より拡散したNa、に、Fe、M
g等の不純物金属元素が、前記塩化水素中のC+元素と
化合し塩化物として揮散してしまい、この結果ガラス組
織内の不純物の混入を阻止する事が出来る。尚、合成石
英ガラスの徐冷点は1120℃である為に、前記のよう
に1000〜1200℃特に1120℃以上の温度で加
熱処理を行う事により短時間で歪除去が出来て好ましい
That is, by performing heat treatment in an atmosphere containing hydrogen chloride, Na, Fe, and M diffused from the furnace material by high-temperature heating.
Impurity metal elements such as g combine with the C+ element in the hydrogen chloride and volatilize as chloride, and as a result, it is possible to prevent impurities from entering the glass structure. Incidentally, since the annealing point of synthetic quartz glass is 1120°C, it is preferable to carry out the heat treatment at a temperature of 1000 to 1200°C, particularly 1120°C or higher, as described above, since strain can be removed in a short time.

この場合前記高温度域で加熱処理を行うと、例え水素ガ
ス含有雰囲気中でも脱ガス化し、そのままでは蛍光等が
発生し耐紫外線特性が悪化する。
In this case, if the heat treatment is performed in the above-mentioned high temperature range, it will be degassed even in an atmosphere containing hydrogen gas, and if left as it is, fluorescence etc. will be generated and the ultraviolet ray resistance will deteriorate.

■そこで本発明の第3の特徴とする所は、水素及び塩化
水素含有雰囲気を維持した状態でそのまま前記処理温度
が少なくとも400℃以下、好ましくは200℃以下に
低下するまで徐冷を行う点にある。
③Therefore, the third feature of the present invention is that while the atmosphere containing hydrogen and hydrogen chloride is maintained, slow cooling is performed until the treatment temperature is lowered to at least 400°C or lower, preferably 200°C or lower. be.

即ち、水素含有雰囲気で徐冷する事によりガラス組織中
への水素の拡散と溶解を促進させつつ且つ該徐冷を前記
混合雰囲気下で拡散した水素の脱ガスが生じる恐れのな
い温度地点まで継続するものである。
That is, slow cooling in a hydrogen-containing atmosphere promotes the diffusion and dissolution of hydrogen into the glass structure, and the slow cooling is continued to a temperature point where there is no risk of degassing of the hydrogen diffused in the mixed atmosphere. It is something to do.

この場合前記徐冷中も塩化水素含有雰囲気である為に前
記したように不純物の混入を阻止する事が出来る。
In this case, since the atmosphere is hydrogen chloride-containing even during the slow cooling, contamination of impurities can be prevented as described above.

尚400℃以下になるまで前記徐冷且つ混合雰囲気を維
持するように設定した理由は、400℃以上に前記混合
雰囲気を例えば他の窒素ガス等に置換してしまうと、折
角前記混合雰囲気下でガラス中に溶存させた水素ガスが
容易に離脱してしまうからである。
The reason for maintaining the slow cooling and mixed atmosphere until the temperature drops to 400°C or lower is that if the mixed atmosphere is replaced with other nitrogen gas or the like at 400°C or higher, This is because hydrogen gas dissolved in the glass easily separates.

又前記水素と塩化水素の配合割合は水素ガスの混合比率
が高い程有利であり、一方墳化水素ガスについては、そ
の混合比率が少なくても、より具体的には前記雰囲気内
における塩化水素の混合割合を0.1 mo1%でもか
なりの不純物混入防止効果があり、又逆に塩化水素を略
30 mo1%以上に設定してもその防止効果が向上す
る事はない、従って前記含有雰囲気における塩化水素の
混合割合は、塩化水素を少なくとも0.1 mo1%以
上、特に好ましくは0.5 mo1%以上(水素89.
5脂O1%以下)に設定するのがよい、尚該塩化水素の
混合割合の上限は特に限定されるものではないが、最適
には前記した水素の吸蔵効果をより円滑に達成する為に
、塩化水素を略30 mo1%以下(水素70 no!
%以h)に設定するのが好ましい。
Furthermore, regarding the blending ratio of hydrogen and hydrogen chloride, the higher the mixing ratio of hydrogen gas, the more advantageous it is.On the other hand, regarding the hydrogen gas, even if the mixing ratio is small, more specifically, the hydrogen chloride in the atmosphere is more advantageous. Even at a mixing ratio of 0.1 mo1%, there is a considerable effect of preventing impurity contamination, and conversely, even if hydrogen chloride is set to approximately 30 mo1% or more, the prevention effect does not improve. The mixing ratio of hydrogen is at least 0.1 mo1% hydrogen chloride, particularly preferably 0.5 mo1% or more (hydrogen 89%).
Although the upper limit of the mixing ratio of hydrogen chloride is not particularly limited, optimally, in order to more smoothly achieve the hydrogen occlusion effect described above, Hydrogen chloride is approximately 30 mo1% or less (hydrogen 70 no!
It is preferable to set it to %h).

従って本発明は、OH基含有の高純度石英ガラスを用い
て、その加熱−徐冷時において塩化水素含有雰囲気にお
ける不純物混入阻止と、水素含有雰囲気における水素の
拡散と溶解(徐冷時)とを効果的に組み合わせて耐紫外
線特性を向上させた点に、本発明の要旨があり、かかる
点は前記いずれの従来技術にも開示されていない。
Therefore, the present invention uses high-purity quartz glass containing OH groups to prevent contamination of impurities in a hydrogen chloride-containing atmosphere during heating and slow cooling, and to prevent hydrogen diffusion and dissolution in a hydrogen-containing atmosphere (during slow cooling). The gist of the present invention lies in the fact that the ultraviolet ray resistance is improved through effective combination, and this point is not disclosed in any of the above-mentioned conventional techniques.

「実験例」 本発明に至った経過を具体的な実験例に基づいて説明す
る。
"Experimental Example" The process leading to the present invention will be explained based on a specific experimental example.

原料四塩化ケイ素を蒸留処理して不純物を除去させた後
テフロンランニゲ付ステンレス製容器に貯溜した高純度
四塩化ケイ素を用意し、該高純度の四塩化ケイ素原料を
用いてダイレクト法とCVDスート再溶融合成法にて、
高純度石英ガラス塊を各々複数個合成する。
After distilling the raw material silicon tetrachloride to remove impurities, we prepare high-purity silicon tetrachloride stored in a stainless steel container with a Teflon runner, and use the high-purity silicon tetrachloride raw material to perform the direct method and CVD suit. By remelting synthesis method,
A plurality of high-purity quartz glass blocks are synthesized.

次に、前記2種類の合成方法により作成された石英ガラ
ス塊を順次雰囲気加熱炉内の石英ガラスチャンバー内に
設置して、水素ガスと塩化水素との混合ガス、もしくは
水素ガス又は塩化水素ガスいずれか一種類、もしくは大
気雰囲気にて約1100℃で一定時間保持した後、約2
00℃の温度以下になるまで一定のプログラムにより徐
冷を行い、その後大気放冷を行った。
Next, the quartz glass lumps produced by the above two types of synthesis methods are sequentially placed in a quartz glass chamber in an atmospheric heating furnace, and either a mixed gas of hydrogen gas and hydrogen chloride, or a mixture of hydrogen gas or hydrogen chloride gas is produced. or about 2 types after being kept at about 1100℃ for a certain period of time in the air atmosphere.
Slow cooling was performed according to a certain program until the temperature reached 00° C. or less, and then air cooling was performed.

そして、このようにして形成した残留歪のない石英ガラ
ス塊を40X30XtlO+u+の寸法に切断し、かつ
両面鏡面仕上を行って、エキシマレーザ照射実験用試験
片を各々9枚作成する。
Then, the thus formed silica glass lump free of residual strain is cut into a size of 40×30×tlO+u+, and both sides are mirror-finished to produce nine test pieces for each excimer laser irradiation experiment.

次にこれらの各8枚の試験片に対して、 KrFエキシ
マ−レーザ(248!11)を用い、パルス当りエネル
ギー密度t00,200,400(mJ/crnj11
pulse)及び照射パルス数lX105、 lX10
6、 lX107 (pulse)の組合せから成る照
射条件にて照射を行った。
Next, for each of these eight test pieces, using a KrF excimer laser (248!11), the energy density per pulse was t00, 200, 400 (mJ/crnj11).
pulse) and number of irradiation pulses lX105, lX10
6. Irradiation was performed under the irradiation conditions consisting of a combination of 1×107 (pulse).

そして、前記照射終了後の各試験片について、干渉計に
て屈折率分布変化、透過率計にてソーラリゼーション、
蛍光測定器にて蛍光強度測定を行い、その結果を下記実
験結果−覧表に示す。
After the irradiation, the refractive index distribution of each specimen was changed using an interferometer, and solarization was observed using a transmittance meter.
Fluorescence intensity was measured using a fluorometer, and the results are shown in the experimental results table below.

下記−覧表より理解される如く、ダイレクト法及びスー
ト法により合成され、OH基が夫々1000pp腸と3
00pp箇含有する高純度石英ガラス塊を大気雰囲気に
て熱処理を行ったものは耐エキシマレーザ性が不良であ
ったが、水素及び塩化水素含有雰囲気にて熱処理を行っ
たものは、耐エキシマレーザ性が大幅に改善され、かつ
歪のない且つ屈折率変動の少ない均一なガラスが得られ
た(実験1.4,5.fl、?) 次に、ダイレクト法により合成され、OH基が1000
pp−含有する高純度石英ガラス塊を塩化水素雰囲気も
しくは水素雰囲気にて熱処理を行ったものは、いずれも
耐エキシマレーザ性は平均的レベルではあるが満足すべ
き水準ではなかった。 (実験2.3) 更に、スート法により合成された高純度無水石英ガラス
塊を塩化水素及び水素含有雰囲気にて熱処理を行っても
、大気雰囲気にて熱処理を行っても、耐KrFエキシマ
レーザ性に関しては大幅に悪い値であった。(実験8,
3) 尚、−度溶存させた水素ガスの離脱の影響を確認する為
に、実験番号1)に記載の石英ガラス塊を水素ガスと塩
化水素との混合ガス雰囲気にて約1100℃で一定時間
保持した後、約500℃の温度になるまで同一雰囲気に
て徐冷を行い、その後窒素ガス雰囲気にして徐冷を行っ
たものの耐エキシマレーザ性を調べた所、前記実験1)
に比して透過率、屈折率、及び蛍光特性のいずれも低下
している事が確認出来た。(実験1゛) 「発明の効果」 以上記載の如く本発明によれば、OH基含有の高純度石
英ガラスを用いて塩化水素含有雰囲気における不純物阻
止効果と水素含有雰囲気における水素拡散効果を効率よ
く組み合わせ可能に加熱−徐冷処理を行う事により、高
温度域で加熱処理を行った場合においても、不純物の混
入や脱ガス化が生じる事なく、逆に加熱処理前に比較し
て一層好ましい水素の内部拡散を可能にし、結果として
良好な耐紫外光特性を得る事が出来る。
As can be understood from the table below, it was synthesized by the direct method and the soot method, and the OH groups were 1000pp and 3.
The excimer laser resistance of the high-purity quartz glass ingot containing 0.00 pp heat-treated in an atmospheric atmosphere was poor, but the excimer laser resistance of the high-purity quartz glass ingot that was heat-treated in an atmosphere containing hydrogen and hydrogen chloride was poor. A uniform glass with significantly improved refractive index and no distortion was obtained (Experiments 1.4, 5.fl, ?) Next, a glass with 1000
The excimer laser resistance of high-purity quartz glass blocks containing pp-containing heat treated in a hydrogen chloride atmosphere or a hydrogen atmosphere was at an average level, but not at a satisfactory level. (Experiment 2.3) Furthermore, whether the high-purity anhydrous silica glass lump synthesized by the soot method is heat-treated in an atmosphere containing hydrogen chloride and hydrogen or in an air atmosphere, the KrF excimer laser resistance remains high. The value was significantly worse. (Experiment 8,
3) In order to confirm the effect of desorption of dissolved hydrogen gas, the quartz glass lump described in Experiment No. 1) was heated at approximately 1100°C for a certain period of time in a mixed gas atmosphere of hydrogen gas and hydrogen chloride. After holding, the sample was slowly cooled in the same atmosphere until it reached a temperature of about 500°C, and then slowly cooled in a nitrogen gas atmosphere.The excimer laser resistance of the sample was investigated.
It was confirmed that the transmittance, refractive index, and fluorescence characteristics were all lower than that of the previous one. (Experiment 1) "Effects of the Invention" As described above, according to the present invention, the impurity blocking effect in a hydrogen chloride-containing atmosphere and the hydrogen diffusion effect in a hydrogen-containing atmosphere can be efficiently achieved by using high-purity quartz glass containing OH groups. By performing heating and slow cooling treatment in a combinable manner, even when heat treatment is performed in a high temperature range, there will be no contamination of impurities or degassing, and on the contrary, hydrogen will be more preferable than before heat treatment. As a result, good ultraviolet light resistance can be obtained.

又本発明は、耐紫外線特性の向上を加熱処理方法のみで
規制する事なく、加熱処理前のOH基含有量を規定する
事により、−層好ましい耐紫外線特性の向上を図る事が
出来る0等の種々の著効を有す。
In addition, the present invention does not restrict the improvement of UV resistance properties only by the heat treatment method, but by specifying the OH group content before heat treatment, it is possible to improve the UV resistance properties of the - layer. It has various effects.

Claims (1)

【特許請求の範囲】[Claims] 1)略200nmから400nmまでの特定波長域の紫
外光に使用される紫外光用ガラス母材の製造方法におい
て、所望の合成法にもとづいてOH基濃度が略300p
pm以上含有する高純度石英ガラス塊を製造した後、該
石英ガラス塊を水素及び塩化水素含有雰囲気にて略10
00〜1200℃の温度で加熱処理を行い、次いで該雰
囲気を維持した状態でそのまま前記処理温度が少なくと
も400℃以下に低下するまで徐冷を行う事を特徴とす
る紫外光用ガラス母材の製造方法
1) In a method for producing a glass base material for ultraviolet light used for ultraviolet light in a specific wavelength range from approximately 200 nm to 400 nm, the OH group concentration is approximately 300p based on the desired synthesis method.
After producing a high-purity quartz glass lump containing pm or more, the quartz glass lump is heated in an atmosphere containing hydrogen and hydrogen chloride for about 10 min.
Production of a glass base material for ultraviolet light, characterized in that heat treatment is performed at a temperature of 00 to 1200°C, and then gradual cooling is performed while maintaining the atmosphere until the treatment temperature drops to at least 400°C or less. Method
JP6224189A 1989-03-16 1989-03-16 Production of glass matrix for ultraviolet ray Granted JPH02243535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6224189A JPH02243535A (en) 1989-03-16 1989-03-16 Production of glass matrix for ultraviolet ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6224189A JPH02243535A (en) 1989-03-16 1989-03-16 Production of glass matrix for ultraviolet ray

Publications (2)

Publication Number Publication Date
JPH02243535A true JPH02243535A (en) 1990-09-27
JPH0531510B2 JPH0531510B2 (en) 1993-05-12

Family

ID=13194452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6224189A Granted JPH02243535A (en) 1989-03-16 1989-03-16 Production of glass matrix for ultraviolet ray

Country Status (1)

Country Link
JP (1) JPH02243535A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483752A2 (en) * 1990-10-30 1992-05-06 Shin-Etsu Quartz Products Co., Ltd. Optical member made of high-purity and transparent synthetic silica glass and method for production thereof and blank thereof
JP2004059412A (en) * 2002-07-31 2004-02-26 Shinetsu Quartz Prod Co Ltd Quartz glass jig and its manufacture method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509609A (en) * 1973-05-29 1975-01-31
JPS6230632A (en) * 1985-08-01 1987-02-09 Shinetsu Sekiei Kk Production of high-purity quartz glass
JPS6280606A (en) * 1985-10-04 1987-04-14 Furukawa Electric Co Ltd:The Single mode optical fiber
JPS62143844A (en) * 1985-12-13 1987-06-27 Furukawa Electric Co Ltd:The Treatment of light-transmitting material
JPS63100038A (en) * 1986-05-09 1988-05-02 Furukawa Electric Co Ltd:The Method for removing impurity from natural quartz glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509609A (en) * 1973-05-29 1975-01-31
JPS6230632A (en) * 1985-08-01 1987-02-09 Shinetsu Sekiei Kk Production of high-purity quartz glass
JPS6280606A (en) * 1985-10-04 1987-04-14 Furukawa Electric Co Ltd:The Single mode optical fiber
JPS62143844A (en) * 1985-12-13 1987-06-27 Furukawa Electric Co Ltd:The Treatment of light-transmitting material
JPS63100038A (en) * 1986-05-09 1988-05-02 Furukawa Electric Co Ltd:The Method for removing impurity from natural quartz glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483752A2 (en) * 1990-10-30 1992-05-06 Shin-Etsu Quartz Products Co., Ltd. Optical member made of high-purity and transparent synthetic silica glass and method for production thereof and blank thereof
JP2004059412A (en) * 2002-07-31 2004-02-26 Shinetsu Quartz Prod Co Ltd Quartz glass jig and its manufacture method

Also Published As

Publication number Publication date
JPH0531510B2 (en) 1993-05-12

Similar Documents

Publication Publication Date Title
EP0483752B1 (en) Optical member made of high-purity and transparent synthetic silica glass and method for production thereof and blank thereof
KR100330305B1 (en) silica glass optical materials for projection lens using to vacuum ultraviolet ray lithography and manufacturing method therefor, and projection lens
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
JP3674793B2 (en) Method for producing quartz glass optical member for ultraviolet laser
JP2000258601A (en) SYNTHETIC QUARTZ GLASS MEMBER FOR ArF EXCIMER LASER LITHOGRAPHY
JP2004269287A (en) Synthetic quartz glass member for optics and method of manufacturing the same
JPH0388742A (en) Synthetic silica glass optical body and production therefor
JP4493060B2 (en) Manufacturing method of optical quartz glass for excimer laser
JP4193358B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JPH0959034A (en) Synthetic quartz glass material and its production
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP4011217B2 (en) Manufacturing method of optical quartz glass for excimer laser
JPH0627014B2 (en) Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof
EP1233005B1 (en) Method for producing synthetic quartz glass members for excimer lasers and synthetic quartz glass members for excimer laser optics produced by the same
JP4191935B2 (en) Method for producing synthetic quartz glass member for excimer laser
JPH02243535A (en) Production of glass matrix for ultraviolet ray
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JPH01212247A (en) Production of base material for laser optical system
JPH03101282A (en) Optical system member for laser light
JPH0829960B2 (en) Ultraviolet laser optical components
JPH0624997B2 (en) Optical components for laser light
TW200413267A (en) Fused silica containing aluminum
JP2000143258A (en) PRODUCTION OF SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER LITHOGRAPHY
JP2652847B2 (en) Optical system member for laser beam and optical system member for lithographic apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 16

EXPY Cancellation because of completion of term