JP2955463B2 - Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same - Google Patents

Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same

Info

Publication number
JP2955463B2
JP2955463B2 JP2918294A JP2918294A JP2955463B2 JP 2955463 B2 JP2955463 B2 JP 2955463B2 JP 2918294 A JP2918294 A JP 2918294A JP 2918294 A JP2918294 A JP 2918294A JP 2955463 B2 JP2955463 B2 JP 2955463B2
Authority
JP
Japan
Prior art keywords
silica glass
silica
wtppm
raw material
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2918294A
Other languages
Japanese (ja)
Other versions
JPH07215735A (en
Inventor
茂 山形
英樹 釣賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2918294A priority Critical patent/JP2955463B2/en
Publication of JPH07215735A publication Critical patent/JPH07215735A/en
Application granted granted Critical
Publication of JP2955463B2 publication Critical patent/JP2955463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、照明ランプ用バルブ
材、並びにレ−ザ励起ランプ用バルブ材および保護管材
として有用なシリカガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bulb material for an illumination lamp, and a silica glass useful as a bulb material and a protective tube material for a laser excitation lamp.

【0002】[0002]

【従来の技術】従来、シリカガラスは光透過性に優れて
いるばかりでなく、化学的耐久性、耐急熱急冷性、およ
びガス封入性に優れているところから、照明用ランプ、
固体レザ−励起用ランプ等のバルブ材(以下バルブ材と
いう)として使用されてきた。ところが、その光透過性
のよさから光源で発生した紫外線が空気中の酸素を分解
し人体に有害なオゾンを発生したり、レ−ザ素子に紫外
線ダメ−ジを与えレ−ザ発振効率を低下させたり、ある
いはシリカガラス自体に紫外線ダメ−ジを与えバルブ材
の強度低下やソラリゼ−ションを起させる等の欠点があ
った。この欠点を解決するため紫外線吸収性の遷移金属
元素をド−プしたシリカガラスの製造法が、例えば特公
昭46−42114号公報で提案されている。ところ
が、このシリカガラスの製造法ではガラス原料の溶融、
成形、加工に際し、溶融容器、成形加工治具に含浸させ
た遷移金属元素化合物を気化させシリカガラス中に遷移
金属元素を拡散するためド−パントの分布が不均一で満
足のいく紫外線吸収性シリカガラスが得られなかった。
そこで、シリカ原料に遷移金属元素化合物を混合し、そ
れを溶融透明ガラス化する紫外線吸収性シリカガラスの
製造方法が一般に検討されたが、透明ガラス化時に遷移
金属元素化合物が相分離を起し不均一に遷移金属元素が
分散したシリカガラスが得られるにとどまった。その
上、前記各シリカガラスはド−プ濃度が高くなるに従っ
て紫外線を高効率で吸収するものの、可視光の透過率の
低下とともに紫外線ダメ−ジも受け易くなるという欠点
があった。特にその傾向は遷移金属元素濃度が約1,0
00wtppmを越えると顕著であった。
2. Description of the Related Art Conventionally, silica glass is not only excellent in light transmittance, but also excellent in chemical durability, rapid heat quenching resistance, and gas encapsulation.
It has been used as a bulb material for a solid laser excitation lamp and the like (hereinafter referred to as a bulb material). However, due to its high light transmittance, ultraviolet light generated by the light source decomposes oxygen in the air to generate ozone harmful to the human body, or causes ultraviolet damage to the laser element, thereby lowering the laser oscillation efficiency. However, there is a drawback that the silica glass itself may be damaged by ultraviolet rays and the strength of the bulb material may be reduced or solarization may occur. In order to solve this drawback, a method for producing silica glass doped with a transition metal element that absorbs ultraviolet light has been proposed, for example, in Japanese Patent Publication No. 46-42114. However, in this method for producing silica glass, melting of glass raw materials,
During molding and processing, the transition metal element compound impregnated in the melting vessel and molding jig is vaporized and the transition metal element is diffused in the silica glass. No glass was obtained.
Therefore, a method for producing a UV-absorbing silica glass in which a transition metal element compound is mixed with a silica raw material and the mixture is melted and vitrified has been generally studied. Only a silica glass in which a transition metal element is uniformly dispersed can be obtained. In addition, each silica glass absorbs ultraviolet rays with higher efficiency as the dope concentration increases, but has a disadvantage that the transmittance of visible light decreases and the ultraviolet rays are easily damaged. In particular, the tendency is that the transition metal element concentration is about 1,0.
When it exceeded 00 wtppm, it was remarkable.

【0003】[0003]

【発明が解決しようとする課題】こうした現状に鑑み、
本発明者等は紫外線吸収性がよく紫外線ダメ−ジを受け
にく、しかも可視光の透過率が高いシリカガラスの開発
について鋭意研究を重ねた結果、シリカガラス中に遷移
金属元素をド−プするに際し、アルミニウム化合物を共
存させ、さらにOH基濃度が特定の範囲になるように水
分を含有させることにより上記欠点が解決することを見
出した。更に前記シリカガラスに特定の仮想温度設定処
理を施しその仮想温度を特定の範囲にすると一層紫外線
ダメ−ジが受けにくくなり、シリカガラスの強度低下お
よびソラリゼ−ションの発生が少なくなることを発見し
た。こうした知見に基づいて本発明は完成したものであ
る。すなわち、
In view of the current situation,
The present inventors have conducted intensive studies on the development of silica glass which has good ultraviolet absorption and is hardly subjected to ultraviolet damage, and has high visible light transmittance. As a result, the transition metal element is doped in the silica glass. In doing so, it has been found that the above-mentioned disadvantage can be solved by coexisting an aluminum compound and adding water so that the OH group concentration is in a specific range. Furthermore, it has been found that when the above-mentioned silica glass is subjected to a specific virtual temperature setting process and the virtual temperature is set in a specific range, ultraviolet damage is further reduced, and the strength of the silica glass is reduced and the occurrence of solarization is reduced. . The present invention has been completed based on these findings. That is,

【0004】本発明は、紫外線ダメ−ジの少ないバルブ
材用シリカガラスを提供することを目的とする。
[0004] It is an object of the present invention to provide a silica glass for a valve material having less ultraviolet damage.

【0005】本発明は、紫外線の長時間照射によっても
ソラリゼ−ションや強度低下の少ないシリカガラスを提
供することを目的とする。
It is an object of the present invention to provide a silica glass which has less solarization and lower strength even when irradiated with ultraviolet rays for a long time.

【0006】また、本発明は、紫外線とくに約400n
m以下の紫外線の吸収性がよく、かつ可視光透過率も高
いシリカガラスを提供することを目的とする。
[0006] The present invention is also applicable to ultraviolet light, particularly about 400 n.
It is an object of the present invention to provide a silica glass which has a high absorbance of ultraviolet light of m or less and a high visible light transmittance.

【0007】さらに、本発明は、上記シリカガラスの新
規な製造方法を提供することを目的とする。
Another object of the present invention is to provide a novel method for producing the above silica glass.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明は、遷移金属元素含有量が100wtppm〜10,
000wtppm、アルミニウム含有量が100wtp
pm〜10,000wtppm、OH基濃度が30wt
ppm〜2,000wtppmであるシリカガラスに係
る。
In order to achieve the above object, the present invention provides a transition metal element having a content of 100 wtppm to 10 wtppm.
000wtppm, aluminum content is 100wtp
pm to 10,000wtppm, OH group concentration is 30wt
The present invention relates to silica glass having a concentration of from ppm to 2,000 wtppm.

【0009】上記シリカガラスに含有される遷移金属元
素としては周期率表の3A、4A、5A、6A、7A、
8および1B族の群から選ばれた少なくとも1種類以上
であり、その含有量は100wtppm〜10,000
wtppmの範囲である。特にFe、Ce、Ti、V、
Cr、Uの遷移金属元素が好ましい。これらの遷移金属
元素は酸化物、塩化物、ヨウ化物、硝酸塩または炭酸塩
として用いられ、水溶性化合物は水溶液でシリカ原料と
混合され、また非水溶性粉状体はシリカ原料と粉体で混
合される。遷移金属元素の含有量が100wtppm未
満では紫外線吸収性が低い。逆に、10,000wtp
pm以上では可視光の透過率低下が増大したり、耐紫外
線性が大幅に低下する。
As the transition metal element contained in the silica glass, 3A, 4A, 5A, 6A, 7A,
At least one member selected from the group of groups 8 and 1B, and the content thereof is 100 wtppm to 10,000.
wtppm range. In particular, Fe, Ce, Ti, V,
Transition metal elements of Cr and U are preferred. These transition metal elements are used as oxides, chlorides, iodides, nitrates or carbonates, water-soluble compounds are mixed with silica raw materials in aqueous solutions, and water-insoluble powders are mixed with silica raw materials in powder. Is done. When the content of the transition metal element is less than 100 wtppm, the ultraviolet absorption is low. Conversely, 10,000wtp
At pm or more, the decrease in transmittance of visible light is increased, and the ultraviolet light resistance is significantly reduced.

【0010】アルミニウム元素は酸化物、塩化物、ヨウ
化物、硝酸塩または炭酸塩の化合物として上記遷移金属
元素化合物とともにシリカ原料に配合され、透明ガラス
化される。このアルミニウム元素の配合により遷移金属
元素の相分離が起こらず、均一に含有されるようにな
る。シリカガラス中のアルミニウムの含有量は100w
tppm〜10,000wtppmである。前記範囲未
満では遷移金属元素の均一分散効果が少なく、逆に1
0,000wtppmを越えると可視光の透過率の急激
な低下をきたす。アルミニウム化合物の配合方法として
は水溶性の化合物であれば水溶液で、非水溶性粉状体で
あれば粉体でシリカ原料に混合される。
The aluminum element is compounded as a compound of an oxide, a chloride, an iodide, a nitrate or a carbonate together with the above-mentioned transition metal element compound in a silica raw material, and is transparently vitrified. By the blending of the aluminum element, the phase separation of the transition metal element does not occur and the transition metal element is uniformly contained. Aluminum content in silica glass is 100w
tppm to 10,000 wtppm. Below the above range, the effect of uniformly dispersing the transition metal element is small.
If it exceeds 000 wtppm, the transmittance of visible light is sharply reduced. As a method of compounding the aluminum compound, an aqueous solution is used for a water-soluble compound, and a powder is used as a powder for a water-insoluble powder, which is mixed with a silica raw material.

【0011】また、シリカ原料としては天然水晶粉、天
然石英粉、合成水晶粉、合成クリストバライト粉および
合成シリカガラス粉が用いられ、特に気泡の少ない透明
シリカガラスを得るにはα−水晶構造のシリカ粉がよ
い。
As the silica raw material, natural quartz powder, natural quartz powder, synthetic quartz powder, synthetic cristobalite powder and synthetic silica glass powder are used. Particularly, in order to obtain transparent silica glass with few bubbles, silica having an α-crystal structure is used. Good powder.

【0012】シリカガラス中のOH基濃度の主たる制御
方法を以下に示す。 (1)粉体原料を使い電気加熱溶融法により透明ガラス
化する場合は、溶融前に100℃〜200℃の加熱、さ
らに必要に応じて約1,000℃での加熱処理を行うこ
とにより制御する。 (2)粉体原料を使い、酸水素炎ベルヌイ法により透明
ガラス化する場合は、ベルヌイ法による溶融時に酸水素
炎の原料粉に対するガス比率を調整することにより制御
する。 (3)四塩化けい素等の液体原料を使い、酸水素火炎加
水分解法によりス−ト体を作り、引き続きこのス−ト体
を電気加熱溶融法により透明ガラス化する場合は、ス−
ト体に遷移金属元素化合物とアルミニウム化合物とを水
溶液でド−プした後、溶融前100℃〜200℃の加
熱、さらに必要に応じて約1,000℃での加熱処理を
行うことにより制御する。
The main control method of the OH group concentration in the silica glass will be described below. (1) In the case where the vitrification is performed by the electric heating and melting method using the powder raw material, control is performed by heating at 100 to 200 ° C. before melting, and further performing heat treatment at about 1,000 ° C. as necessary. I do. (2) In the case of using a powdery raw material and performing vitrification by an oxyhydrogen flame Bernoulli method, control is performed by adjusting the gas ratio of the oxyhydrogen flame to the raw material powder during melting by the Bernoulli method. (3) When a soot body is prepared by a oxyhydrogen flame hydrolysis method using a liquid raw material such as silicon tetrachloride, and the soot body is subsequently made into a transparent glass by an electric heating and melting method, a soot body is used.
After doping a transition metal element compound and an aluminum compound in an aqueous solution with an aqueous solution, the temperature is controlled by heating at 100 ° C. to 200 ° C. before melting and, if necessary, at about 1,000 ° C. .

【0013】上記含有OH基がシリカネットワ−クのタ
−ミネタ−となりシリカガラス中の歪みを緩和し紫外線
ダメ−ジを受けにくくする。OH基濃度が30wtpp
m未満では前記作用がなく、逆に2,000wtppm
を越えると、透明ガラス化時に気泡の多いガラスとなり
可視光の透過率を低下させる。
The OH groups contained in the silica glass serve as a terminator for the silica network, thereby reducing distortion in the silica glass and making it less susceptible to ultraviolet damage. OH group concentration is 30wtpp
m, there is no such effect, and conversely, 2,000 wtppm
If the ratio exceeds the above range, the glass becomes a glass having many air bubbles at the time of transparent vitrification, and the transmittance of visible light is reduced.

【0014】シリカ原料の透明ガラス化は粉体原料では
電気加熱溶融法かまたは火炎ベルヌイ法がよい。四塩化
けい素等の液体原料では酸水素火炎加水分解法が適切な
合成法であり、これ以外の例えばプラズマ火炎溶融法で
は、所定量のOH基がシリカガラス中に存在せず好まし
くない。
The vitrification of the silica raw material is preferably carried out by an electric heat melting method or a flame Bernoulli method for a powder raw material. For liquid raw materials such as silicon tetrachloride, an oxyhydrogen flame hydrolysis method is an appropriate synthesis method. In other methods such as a plasma flame fusion method, a predetermined amount of OH groups is not present in silica glass, which is not preferable.

【0015】上記のように金属元素が含有された透明シ
リカガラスはその仮想温度が1,400℃〜1,800
℃である。このシリカガラスを900℃〜1,300℃
で10〜100時間加熱する仮想温度設定処理を行うと
そのシリカガラスの仮想温度は900℃〜1,300℃
となり、耐紫外線性が一段と向上する。
As described above, the transparent silica glass containing a metal element has a virtual temperature of 1,400 ° C. to 1,800.
° C. 900 ℃ to 1,300 ℃
When the fictive temperature setting process of heating for 10 to 100 hours is performed, the fictive temperature of the silica glass becomes 900 ° C. to 1,300 ° C.
And the UV resistance is further improved.

【0016】本発明のシリカガラスは、それを厚さ2m
mの両面鏡面仕上げ板状体サンプルとしたとき、波長2
00nmの光の透過率を1%以下に、また波長600n
mの可視光の透過率を85%以上とする。したがって、
このシリカガラスで作成した一般照明用ランプ、自動車
のヘッドライト用ランプ、プロジェクタ−用ランプ、お
よび固体レ−ザ励起用キセノンランプ、クリプトンラン
プ、アルゴンランプおよび保護管等は、ランプ周囲のプ
ラスチックス部材の劣化やレ−ザ素子の紫外線ダメ−ジ
がなく、しかもシリカガラス自身の強度低下やソラリゼ
−ションがない。
The silica glass of the present invention has a thickness of 2 m.
m when the sample is a double-sided mirror-finished plate sample.
The transmittance of light of 00 nm is set to 1% or less, and the wavelength of 600 n
m has a transmittance of 85% or more for visible light. Therefore,
General lighting lamps, headlight lamps for automobiles, lamps for projectors, xenon lamps for exciting solid lasers, krypton lamps, argon lamps, protective tubes, and the like made of this silica glass are made of plastic members around the lamps. There is no deterioration of the glass or ultraviolet damage of the laser element, and there is no reduction in strength or solarization of the silica glass itself.

【0017】本発明のシリカガラスは以下の方法により
最も容易に、かつ安価に製造される。すなわち、天然ま
たは合成シリカ原料粉に遷移金属元素化合物およびアル
ミニウム化合物の粉体または水溶液を混合し、必要に応
じて100℃〜200℃で乾燥し、さらに1,000℃
で加熱処理して含有水分量を調整したのち、電気加熱溶
融法または火炎ベルヌイ法で透明ガラス化して製造され
る。前記のシリカガラスは更に冷却した後900℃〜
1,300℃で10〜100時間の仮想温度設定処理が
施される。
The silica glass of the present invention is most easily and inexpensively manufactured by the following method. That is, a powder or an aqueous solution of a transition metal element compound and an aluminum compound is mixed with natural or synthetic silica raw material powder, and dried at 100 ° C. to 200 ° C. as necessary, and further 1,000 ° C.
After adjusting the water content by heat treatment, a transparent vitrification is performed by an electric heating melting method or a flame Bernoulli method. After the above silica glass is further cooled,
A virtual temperature setting process is performed at 1,300 ° C. for 10 to 100 hours.

【0018】上記本発明で使用した用語は下記の意味で
あり、またシリカガラスの物性値は以下に示す測定法で
測定された。
The terms used in the present invention have the following meanings, and the physical properties of the silica glass were measured by the following measuring methods.

【0019】1)OH基濃度とは、厚さ2mmのシリカ
ガラスサンプルを1Torr以下の真空下にて1,00
0℃で10時間以上に加熱処理を行った後に存在するO
H基濃度をいう。
1) The OH group concentration means that a silica glass sample having a thickness of 2 mm is immersed in a vacuum of 1 Torr or less for 1,000 hours.
O present after heat treatment at 0 ° C. for 10 hours or more
Refers to H group concentration.

【0020】2)仮想温度とは、室温のシリカガラスの
密度、屈折率等の物性値が設定されたと仮想される温度
であり、そのシリカガラスの経る熱履歴により異なる
(R.Bruckner(1970)Journal
of Non−Crystalline Solid
s, Vol.5 p123〜175)。
2) The fictive temperature is a temperature at which it is assumed that physical properties such as the density and refractive index of silica glass at room temperature are set, and differs depending on the heat history of the silica glass (R. Bruckner (1970)). Journal
of Non-Crystalline Solid
s, Vol. 5 p123-175).

【0021】3)OH基濃度測定: 赤外線吸収分光光
度法による(D.M.Dodd、D.B.Frase
r、Journal ofApplied Physi
cs、Vol.37(1966)p3911)。
3) Measurement of OH group concentration: Infrared absorption spectrophotometry (DM Dodd, DB Frase)
r, Journal of Applied Physi
cs, Vol. 37 (1966) p3911).

【0022】4)仮想温度測定:ラマン散乱分光光度法
による(A.E.Geissberger、Physi
calReview B、Vol.28、No.6(1
983)p.3266〜3271)。
4) Virtual temperature measurement: Raman scattering spectrophotometry (AE Geissberger, Physi)
calReview B, Vol. 28, no. 6 (1
983) p. 3266-3271).

【0023】6)透過率:紫外線分光光度法による。サ
ンプルは厚さ2mm、両面鏡面研磨仕上げしたものであ
る。
6) Transmittance: According to ultraviolet spectrophotometry. The sample had a thickness of 2 mm and was mirror-polished on both sides.

【0024】[0024]

【実施例】【Example】

実施例1〜4 天然水晶粉を塩素ガス含有雰囲気で1,000℃、10
時間純化処理を行い、次いで粒径を10μm〜100μ
mに調整した。このシリカ原料粉に粒径約1μmの酸化
セシウムCeO2または/および酸化チタンTiO2の微
粉体を加えV型混合器で均一に混合した。得られた混合
原料粉に塩化アルミニウムの水溶液を混合し、100℃
〜200℃で乾燥したのち、更に1,000℃で10時
間加熱処理し、混合物中の水分量を調整した。このシリ
カガラス原料を1Torr以下の真空中で電気加熱溶融
法により透明ガラス化し、冷却したのち、1,150℃
で100時間の仮想温度設定処理を行った。含有成分お
よびシリカガラスの物性値を測定した。その結果を表1
に示す。
Examples 1 to 4 Natural quartz powder was put in an atmosphere containing chlorine gas at 1,000 ° C. and 10 ° C.
Time purification treatment, then reduce the particle size from 10 μm to 100 μm
m. Fine powder of cesium oxide CeO 2 and / or titanium oxide TiO 2 having a particle size of about 1 μm was added to the silica raw material powder, and uniformly mixed with a V-type mixer. An aqueous solution of aluminum chloride was mixed with the obtained mixed raw material powder,
After drying at -200 ° C, the mixture was further heat-treated at 1,000 ° C for 10 hours to adjust the amount of water in the mixture. This silica glass raw material is made into a transparent glass by an electric heating and melting method in a vacuum of 1 Torr or less, cooled, and then cooled to 1,150 ° C.
Performed a virtual temperature setting process for 100 hours. Physical properties of the contained components and silica glass were measured. Table 1 shows the results.
Shown in

【0025】実施例5 四塩化けい素を原料として酸水素炎加水分解法でシリカ
ガラス白色ス−ト体を作成した。この白色ス−ト体に塩
化チタン、塩化セリウムの所定濃度の水溶液および塩化
アルミニウムを加え金属元素化合物の浸漬したス−ト体
を100℃〜200℃で加熱乾燥たのち、1Torr以
下の真空度で約1,700℃加熱して透明ガラス化し
た。該シリカガラスを冷却したのち1,150℃で10
0時間の仮想温度設定処理を行った。得られたシリカガ
ラスについて各成分の含有量および物性値を測定し、そ
れを表1に示す。
Example 5 A white soot body of silica glass was prepared from silicon tetrachloride as a raw material by an oxyhydrogen flame hydrolysis method. To this white soot body, an aqueous solution of titanium chloride and cerium chloride having a predetermined concentration and aluminum chloride are added, and the soot body in which the metal element compound is immersed is heated and dried at 100 ° C. to 200 ° C., and then at a degree of vacuum of 1 Torr or less. It was heated to about 1,700 ° C. to form a transparent glass. After cooling the silica glass, 10
A virtual temperature setting process for 0 hours was performed. The content and physical properties of each component of the obtained silica glass were measured, and the results are shown in Table 1.

【0026】実施例6 実施例5と同様な方法でさらにOH基含有量の多いシリ
カガラスを製造し、その中の成分および物性値を測定
し、それを表1に示す。
Example 6 A silica glass having a higher OH group content was produced in the same manner as in Example 5, and its components and physical properties were measured. The results are shown in Table 1.

【0027】比較例1〜3 比較例1は実施例1における製造方法においてアルミニ
ウムを含有しないシリカガラスである。得られたシリカ
ガラスにはTi、Ceが均一に分散せず、白濁した半透
明体であった。
Comparative Examples 1 to 3 Comparative Example 1 is a silica glass containing no aluminum in the production method of Example 1. Ti and Ce were not uniformly dispersed in the obtained silica glass, and it was a cloudy translucent body.

【0028】比較例2もアルミニウムを配合しないシリ
カガラスである。比較例1と同様に白濁した半透明体で
あった。
Comparative Example 2 is also a silica glass containing no aluminum. It was a translucent white turbid body as in Comparative Example 1.

【0029】比較例3は実施例1のシリカガラスでOH
基濃度が1wtppm未満のシリカガラスである。この
シリカガラスの仮想温度は1,650℃であった。
Comparative Example 3 is the silica glass of Example 1 with OH
It is a silica glass having a group concentration of less than 1 wtppm. The fictive temperature of this silica glass was 1,650 ° C.

【0030】[0030]

【表1】 注):真空溶融法aは真空電気加熱溶融法 を、火炎分解
bは酸水素炎加水分解法をいう。
[Table 1]Note): Vacuum melting methodaIs the vacuum electric heating and melting method The flame decomposition
LawbRefers to the oxyhydrogen flame hydrolysis method.

【0031】上記表1の実施例1および比較例3のシリ
カガラスについて、それぞれKrFエキシマレ−ザ(2
48nm)を照射し、その前後の曲げ強度を測定した。
その結果を表2に示す。この表から明らかなように本発
明のシリカガラスはレ−ザ照射前後で強度変化がほとん
どなかった。
For the silica glass of Example 1 and Comparative Example 3 in Table 1 above, a KrF excimer laser (2
48 nm), and the bending strength before and after the irradiation was measured.
Table 2 shows the results. As is clear from this table, the silica glass of the present invention hardly changed in strength before and after laser irradiation.

【0032】[0032]

【表2】(MPa) [Table 2] (MPa)

【0033】上記レ−ザ照射条件は、エネルギ−密度1
00mJ/cm ・pulse、周波数100Hz、照射
パルス数1×106pulsesである。また、曲げ強
度は、JIS R−1601に従って測定した。強度単
位はMPaである。
The laser irradiation conditions are as follows: energy density 1
00mJ / cm ・ Pulse, frequency 100Hz, irradiation
Number of pulses 1 × 106pulses. Also, bending strength
The degree was measured according to JIS R-1601. Strength
The order is MPa.

【0034】[0034]

【発明の効果】本発明のシリカガラスは紫外線透過率が
少なく紫外線による強度の低下およびソラリゼ−ション
の発生がなく、かつ可視光の透過性が高いシリカガラス
である。このシリカガラスで作成した照明ランプおよび
レ−ザ励起ランプは部材のプラスチックスを劣化させる
ことも、またレ−ザ発振子の発光効率を低下させること
もない優れたランプ用材料である。
Industrial Applicability The silica glass of the present invention is a silica glass having a low transmittance of ultraviolet rays, no reduction in strength due to ultraviolet rays and no occurrence of solarization, and a high transmittance of visible light. Illumination lamps and laser excitation lamps made of this silica glass are excellent lamp materials that do not degrade the plastics of the members and do not lower the luminous efficiency of the laser oscillator.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C03C 3/06 C03C 3/06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C03C 3/06 C03C 3/06

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】遷移金属元素含有量が100wtppm〜
10,000wtppm、アルミニウム含有量が100
wtppm〜10,000wtppm、OH基濃度が3
0wtppm〜2,000wtppmであることを特徴
とする紫外線吸収・可視光透過性シリカガラス。
(1) a transition metal element content of 100 wtppm or more;
10,000wtppm, aluminum content 100
wtppm to 10,000 wtppm, OH group concentration is 3
Ultraviolet-absorbing and visible-light-transmitting silica glass having a content of 0 wtppm to 2,000 wtppm.
【請求項2】波長200nmの紫外線の透過率が1%以
下、波長600nmの可視光の透過率が85%以上であ
ることを特徴とする請求項1記載の紫外線吸収・可視光
透過性シリカガラス。
2. The ultraviolet-absorbing and visible-light-transmitting silica glass according to claim 1, wherein the transmittance of ultraviolet light having a wavelength of 200 nm is 1% or less, and the transmittance of visible light having a wavelength of 600 nm is 85% or more. .
【請求項3】仮想温度が900℃〜1,300℃である
ことを特徴とする請求項1記載の紫外線吸収・可視光透
過性シリカガラス。
3. The silica glass according to claim 1, wherein the fictive temperature is 900 ° C. to 1,300 ° C.
【請求項4】シリカ原料、遷移金属元素化合物およびア
ルミニウム化合物からなる混合物を加熱処理して含有水
分を調節した後、溶融ガラス化することを特徴とする紫
外線吸収・可視光透過性シリカガラスの製造方法。
4. A process for producing a silica glass having a UV-absorbing and visible-light-transmitting property, which comprises subjecting a mixture comprising a silica raw material, a transition metal element compound and an aluminum compound to heat treatment to adjust the water content thereof, followed by melt vitrification. Method.
【請求項5】シリカ原料がけい素化合物原料を火炎加水
分解法で得られたシリカのス−ト体であることを特徴と
する請求項4記載の紫外線吸収・可視光透過性シリカガ
ラスの製造方法。
5. The method of claim 4, wherein the silica raw material is a soot body of silica obtained by flame hydrolysis of a silicon compound raw material. Method.
【請求項6】シリカ原料が結晶質シリカ粉を高純化処理
したシリカであることを特徴とする請求項4記載の紫外
線吸収・可視光透過性シリカガラスの製造方法。
6. The method of claim 4, wherein the silica raw material is a silica obtained by subjecting a crystalline silica powder to a highly purified treatment.
【請求項7】請求項4記載の溶融ガラス化後のシリカガ
ラスを更に900℃〜1,300℃で仮想温度設定処理
を行うことを特徴とする紫外線吸収・可視光透過性シリ
カガラスの製造方法。
7. A process for producing a silica glass having a UV-absorbing and visible-light transmittance, further comprising the step of setting a fictive temperature at 900 ° C. to 1,300 ° C. on the silica glass after the melt vitrification according to claim 4. .
JP2918294A 1994-02-02 1994-02-02 Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same Expired - Lifetime JP2955463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2918294A JP2955463B2 (en) 1994-02-02 1994-02-02 Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2918294A JP2955463B2 (en) 1994-02-02 1994-02-02 Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07215735A JPH07215735A (en) 1995-08-15
JP2955463B2 true JP2955463B2 (en) 1999-10-04

Family

ID=12269075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2918294A Expired - Lifetime JP2955463B2 (en) 1994-02-02 1994-02-02 Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same

Country Status (1)

Country Link
JP (1) JP2955463B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376401B1 (en) 1998-09-07 2002-04-23 Tosoh Corporation Ultraviolet ray-transparent optical glass material and method of producing same
US20120148770A1 (en) * 2009-08-21 2012-06-14 Momentive Performance Materials, Inc. Fused quartz tubing for pharmaceutical packaging
DE102013110177A1 (en) 2013-09-16 2015-03-19 Heraeus Quarzglas Gmbh & Co. Kg Process for producing iron-doped silica glass
CN111052421A (en) * 2017-08-30 2020-04-21 日本碍子株式会社 Transparent sealing member

Also Published As

Publication number Publication date
JPH07215735A (en) 1995-08-15

Similar Documents

Publication Publication Date Title
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
EP1125897B1 (en) Synthetic quartz glass and method for preparing the same
JP2980510B2 (en) High purity silica glass for ultraviolet lamp and method for producing the same
JPH07187706A (en) Reductively molten borosilicate glass having improved ultraviolet transmittance and hydrolysis stability and its usage
JPH07187707A (en) Borosilicate glass having high transmittance in ultraviolet region, low expansibility and high chemical stability, its production and its use
JP4531904B2 (en) Optical material for ultraviolet ray and method for producing the same
JPH0791084B2 (en) Ultraviolet-resistant synthetic quartz glass and method for producing the same
JP2955463B2 (en) Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same
JP2005170706A (en) Ultraviolet-absorbing synthetic quartz glass and method for producing the same
JPH0532432A (en) Optical member for high-power laser
JP2991901B2 (en) Ultraviolet absorbing silica glass and method for producing the same
JP3358883B2 (en) Ultraviolet absorbing visible light transmitting silica glass for high pressure discharge lamp and method for producing the same
JP2931735B2 (en) Silica glass for devitrification resistant discharge lamp
JPH0891867A (en) Ultraviolet ray transmitting synthetic quartz glass and its production
JP2000191329A (en) Production of optical quartz glass for excimer laser
JPH08133753A (en) Optical synthetic quartz glass, its production and application thereof
JP2000086259A (en) Optical material for vacuum ultraviolet ray
EP2145863B1 (en) Copper-containing silica glass, process for producing the same, and xenon flash lamp using the copper-containing silica glass
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP2001247318A (en) Synthesized silica glass optical member ahd method for producing the same
JP3368932B2 (en) Transparent quartz glass and its manufacturing method
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP2005067914A (en) Quartz glass and manufacturing method therefor
JP6908237B2 (en) Quartz glass article with ultraviolet absorption and its manufacturing method
JPH0733259B2 (en) Ultraviolet-resistant synthetic quartz glass and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100716

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110716

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110716

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130716

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term