JP2005170706A - Ultraviolet-absorbing synthetic quartz glass and method for producing the same - Google Patents

Ultraviolet-absorbing synthetic quartz glass and method for producing the same Download PDF

Info

Publication number
JP2005170706A
JP2005170706A JP2003410258A JP2003410258A JP2005170706A JP 2005170706 A JP2005170706 A JP 2005170706A JP 2003410258 A JP2003410258 A JP 2003410258A JP 2003410258 A JP2003410258 A JP 2003410258A JP 2005170706 A JP2005170706 A JP 2005170706A
Authority
JP
Japan
Prior art keywords
quartz glass
less
ppm
ultraviolet
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003410258A
Other languages
Japanese (ja)
Inventor
Hideharu Horikoshi
秀春 堀越
Kinya Kato
欣弥 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Tohos SGM KK
Original Assignee
Tosoh Corp
Tohos SGM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, Tohos SGM KK filed Critical Tosoh Corp
Priority to JP2003410258A priority Critical patent/JP2005170706A/en
Publication of JP2005170706A publication Critical patent/JP2005170706A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quartz glass excellent in ultraviolet absorptivity and visible light transmittance and excellent in devitrification resistance and heat resistance and to provide a method for producing the same. <P>SOLUTION: The synthetic quartz glass controlled so as to have an OH group content of at most 20 ppm, an H<SB>2</SB>molecule content of at most 1×10<SP>17</SP>molecules/cm<SP>3</SP>, a Cl content of at most 10 ppm, and a total metal impurity content of at most 1 ppm is excellent in ultraviolet absorptivity and visible light transmittance and excellent in devitrification resistance and heat resistance. The quartz glass can be produced by treating a soot body with an NH<SB>3</SB>-containing atmosphere in a soot synthesis method and vitrifying the treated soot body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、紫外線吸収性及び可視光透過性に優れ、かつ耐失透性及び耐熱性にも優れた、照明用ランプ、高輝度放電ランプ、レーザー励起ランプ等のバルブ材としての使用に適した合成石英ガラス及びその製造方法に関する。   The present invention is suitable for use as a bulb material for illumination lamps, high-intensity discharge lamps, laser-excited lamps, etc., which are excellent in ultraviolet absorption and visible light transmission, and also in devitrification resistance and heat resistance. The present invention relates to synthetic quartz glass and a method for producing the same.

合成石英ガラスは、赤外から真空紫外までの広い波長範囲において透明であるばかりでなく、熱的及び化学的安定性に優れていることから、各種照明ランプ等の光源用窓材等として広く使用されている。   Synthetic quartz glass is not only transparent in a wide wavelength range from infrared to vacuum ultraviolet, but also has excellent thermal and chemical stability, so it is widely used as a light source window material for various lighting lamps. Has been.

しかし、その高い光透過性のため光源から発生した紫外線が直接人体に悪影響を及ぼすばかりでなく、紫外線により空気中の酸素から人体に有害なオゾンが発生したり、レーザー素子が紫外線によりダメージを受け、レーザー発信効率が低下したり、光源の窓材を支持する樹脂が紫外線によりダメージを受け劣化する等の問題があった。   However, due to its high light transmittance, not only the ultraviolet rays generated from the light source have a direct adverse effect on the human body but also harmful ozone is generated from oxygen in the air due to the ultraviolet rays, and the laser element is damaged by the ultraviolet rays. However, there are problems that the laser transmission efficiency is lowered and the resin supporting the window material of the light source is damaged by ultraviolet rays and deteriorated.

この問題を解決する方法として、石英ガラス中に遷移金属元素を含有させて、紫外線を吸収する石英ガラスが提案されている(例えば、特許文献1及び特許文献2参照。)。   As a method for solving this problem, there has been proposed a quartz glass that absorbs ultraviolet rays by containing a transition metal element in the quartz glass (see, for example, Patent Document 1 and Patent Document 2).

特開平7−69671号公報(第2頁第1欄5行〜6行)JP-A-7-69671 (page 2, column 1, line 5-6)

特開平8−26764号公報(第2頁第1欄2行〜4行)JP-A-8-26764 (page 2, column 1, lines 2 to 4)

上述のように金属元素をドープする方法では、金属をドープする余分な工程が必要となるため生産効率が低下する。また、金属元素による吸収、散乱のため、紫外線領域だけでなく、可視光領域の透過率も低下する。また、金属元素を均一にドープするのが困難であるばかりでなく、ドープした金属元素と石英ガラスが反応して石英ガラスが結晶化し透明性が低下(失透)する等の問題がある。また、高温にさらされることで、ドープした金属元素が拡散あるいは飛散して、紫外線吸収効率が低下するばかりでなく、金属元素により周辺機器が汚染される等の問題の他、高温使用時にバルブが熱変形する等、耐熱性にも問題がある。   As described above, in the method of doping a metal element, an extra step of doping a metal is required, so that the production efficiency is lowered. In addition, the transmittance in the visible light region as well as the ultraviolet region is reduced due to absorption and scattering by the metal element. In addition, it is difficult to uniformly dope the metal element, and there is a problem that the doped metal element reacts with the quartz glass and the quartz glass is crystallized to lower the transparency (devitrification). Moreover, exposure to high temperatures causes the doped metal elements to diffuse or scatter, which not only lowers UV absorption efficiency, but also contaminates peripheral devices with the metal elements. There is also a problem with heat resistance such as thermal deformation.

本発明者らは、上記課題を解決するため合成石英ガラスの諸物性と、光透過特性、耐失透性及び耐熱性との関係について鋭意検討を行った結果、合成石英ガラスに金属元素をドープすることなく効率的に紫外線を吸収し、かつ耐失透性及び耐熱性にも優れた、紫外線吸収合成石英ガラスを提供できることを見出した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on the relationship between various physical properties of synthetic quartz glass, light transmission characteristics, devitrification resistance, and heat resistance. As a result, the synthetic quartz glass is doped with a metal element. It was found that an ultraviolet-absorbing synthetic quartz glass that efficiently absorbs ultraviolet rays and has excellent devitrification resistance and heat resistance can be provided.

すなわち本発明は、OH基含有量が20ppm以下、H分子の含有量が1×1017個/cm以下、Cl含有量が10ppm以下及び金属不純物含有量の総和が1ppm以下であり、厚さ10mmあたりの透過率が、180nm以下の波長領域で5%以下かつ、220nm以上の波長領域で80%以上である紫外線吸収合成石英ガラスである。 That is, the present invention has an OH group content of 20 ppm or less, an H 2 molecule content of 1 × 10 17 molecules / cm 3 or less, a Cl content of 10 ppm or less, and a total of metal impurity contents of 1 ppm or less. The ultraviolet-absorbing synthetic quartz glass has a transmittance per 10 mm of 5% or less in a wavelength region of 180 nm or less and 80% or more in a wavelength region of 220 nm or more.

また、ガラス形成原料を、酸水素火炎中で火炎加水分解し、生成したシリカ微粒子をターゲット上に堆積させ多孔質シリカ体(スート体)を形成し、得られたスート体を、第1の熱処理としてNHガス含有雰囲気で熱処理した後、第2の熱処理をして透明石英ガラスを得る工程から成ることを特徴とする、紫外線吸収石英ガラスの製造方法である。 Further, the glass forming raw material is flame-hydrolyzed in an oxyhydrogen flame, and the generated silica fine particles are deposited on a target to form a porous silica body (soot body). The obtained soot body is subjected to a first heat treatment. As a method for producing an ultraviolet-absorbing quartz glass, the method includes a step of obtaining a transparent quartz glass by performing a second heat treatment after heat treatment in an atmosphere containing NH 3 gas.

以下本発明を詳細に説明する。   The present invention will be described in detail below.

石英ガラス中に含有される、OH基、H、Cl及び金属不純物は熱的に不安定であり、例えばランプの窓材等、高温にさらされる条件で使用した場合、これらは容易に石英ガラス内を拡散する。その際、石英ガラスの骨格構造と反応して、石英ガラスの結晶化を促進し、可視光の透過性が低下する。また、石英の骨格構造が不安定となる事で耐熱性も低下する。従って、これらの含有量は出来るだけ少なくする必要がある。すなわち、OH基濃度が20ppm以下、好ましくは10ppm以下、H分子の含有量が1×1017個/cm以下、好ましくは5×1016個/cm以下、Cl含有量が10ppm以下及び金属不純物含有量の総和が1ppm以下であることが重要である。SiO以外の成分をドープさせることなく、紫外線を効率よく吸収する石英ガラスを得るには、紫外線を吸収する構造を持つSi元素とO元素だけからなる石英ガラスを製造する必要があるが、スート体をNHガス雰囲気で熱処理した後透明ガラス化する製造方法で上記目的が達成されることを見出し、本発明を完成するに至った。 The OH group, H 2 , Cl and metal impurities contained in the quartz glass are thermally unstable, and when used under conditions exposed to high temperatures, such as lamp window materials, these are easily incorporated into the quartz glass. Spread inside. At that time, it reacts with the skeleton structure of the quartz glass to promote the crystallization of the quartz glass and the visible light transmittance is lowered. In addition, the heat resistance is reduced due to the unstable structure of the quartz. Therefore, it is necessary to reduce these contents as much as possible. That is, the OH group concentration is 20 ppm or less, preferably 10 ppm or less, the H 2 molecule content is 1 × 10 17 molecules / cm 3 or less, preferably 5 × 10 16 molecules / cm 3 or less, the Cl content is 10 ppm or less, and It is important that the total content of metal impurities is 1 ppm or less. In order to obtain quartz glass that efficiently absorbs ultraviolet rays without doping components other than SiO 2 , it is necessary to produce quartz glass consisting of only Si and O elements having a structure that absorbs ultraviolet rays. It has been found that the above object can be achieved by a production method in which a body is heat-treated in an NH 3 gas atmosphere and then transparent vitrified, and the present invention has been completed.

本発明の紫外線吸収石英ガラスの製造方法について説明する。スート法では、例えば、多重管構造の石英ガラス製バーナーの中心から、SiClなどの原料を供給し、その外側の管からHおよびOを供給して原料を火炎加水分解してシリカ微粒子を得る。このシリカ微粒子をターゲット上に堆積させシリカ微粒子堆積体(スート体)を得る。このスート体は多量のOH基を含有するため、第1の熱処理として、還元性ガス含有雰囲気で処理を行い、OH基濃度を適切な範囲まで低減させる必要がある。 A method for producing the ultraviolet absorbing quartz glass of the present invention will be described. In the soot method, for example, a raw material such as SiCl 4 is supplied from the center of a quartz glass burner having a multi-tube structure, and H 2 and O 2 are supplied from the outer tube to flame-hydrolyze the raw material to produce silica fine particles. Get. The silica fine particles are deposited on the target to obtain a silica fine particle deposit (soot body). Since this soot contains a large amount of OH groups, it is necessary to perform the treatment in a reducing gas-containing atmosphere as the first heat treatment to reduce the OH group concentration to an appropriate range.

第1の熱処理に使用する還元性ガスは、NHを使用する。NH以外の還元性ガスとして、例えばClガス等を使用しても、OH基濃度の低減は可能であるが、紫外線吸収効果が不充分であるばかりでなく、使用したガスの一部が石英ガラス内に残留して耐失透性及び耐熱性に悪影響を及ぼす。第1の熱処理を行う際の、NHガス濃度、処理温度及び処理時間等の条件は特に限定されるものではなく、所望のOH基濃度が得られる条件であればよい。 The reducing gas used for the first heat treatment uses NH 3 . Even if Cl 2 gas or the like is used as a reducing gas other than NH 3 , the OH group concentration can be reduced, but not only the ultraviolet absorption effect is insufficient, but a part of the used gas is also present. Residue in quartz glass adversely affects devitrification resistance and heat resistance. Conditions such as NH 3 gas concentration, processing temperature, and processing time when performing the first heat treatment are not particularly limited, as long as a desired OH group concentration can be obtained.

工業的生産性を考慮すれば、例えば、1〜20vol%(体積%)NH雰囲気(残部はHe等の不活性ガス)、温度1000〜1300℃で1〜10時間処理すればよい。 In consideration of industrial productivity, for example, the treatment may be performed at 1 to 20 vol% (volume%) NH 3 atmosphere (the balance is an inert gas such as He) at a temperature of 1000 to 1300 ° C. for 1 to 10 hours.

このようにして得られた第1の熱処理を行ったスート体を、ガラス化温度以上の温度で第2の熱処理を行って、透明な石英ガラスを得る。第2の熱処理の雰囲気、温度、時間等の条件も特に制限されるものではなく、透明な石英ガラスが得られる条件で行えばよい。例えば、不活性ガス雰囲気下、温度1350〜1500℃で1〜10時間処理を行えばよい。不活性ガスとしては、例えば、100vol%又は希釈したヘリウム等を用いればよい。   The soot body that has been subjected to the first heat treatment thus obtained is subjected to a second heat treatment at a temperature equal to or higher than the vitrification temperature to obtain transparent quartz glass. The conditions of the atmosphere, temperature, time, etc. of the second heat treatment are not particularly limited, and may be performed under conditions that provide transparent quartz glass. For example, the treatment may be performed at 1350 to 1500 ° C. for 1 to 10 hours in an inert gas atmosphere. As the inert gas, for example, 100 vol% or diluted helium may be used.

本発明の製造方法によれば、金属元素等の不純物を含有せず、耐失透性及び耐熱性に優れた、紫外線吸収合成石英ガラスを提供することができる。   According to the production method of the present invention, it is possible to provide an ultraviolet-absorbing synthetic quartz glass which does not contain impurities such as metal elements and has excellent devitrification resistance and heat resistance.

実施例1
原料にSiClを使用して、スート法により合成石英ガラスインゴットを製造した。石英ガラス製バーナーの中心管から原料を供給し、バーナーの外管からHおよびOを供給してスート体を合成した。このスート体を1vol%(残部He)NHガス雰囲気、1200℃で5時間熱処理を行った。その後、100%Heガス雰囲気で1500℃、5時間熱処理して透明な合成石英ガラスインゴットを得た。このインゴットから厚さ10mmのテストピースを切り出し、実施例1の評価用試料とした。
Example 1
A synthetic quartz glass ingot was manufactured by the soot method using SiCl 4 as a raw material. The raw material was supplied from the central tube of the quartz glass burner, and H 2 and O 2 were supplied from the outer tube of the burner to synthesize the soot body. This soot body was heat-treated at 1200 ° C. for 5 hours in a 1 vol% (remaining He) NH 3 gas atmosphere. Thereafter, heat treatment was performed at 1500 ° C. for 5 hours in a 100% He gas atmosphere to obtain a transparent synthetic quartz glass ingot. A test piece having a thickness of 10 mm was cut out from the ingot and used as an evaluation sample of Example 1.

実施例2
実施例2の試料は、10vol%NHガス雰囲気、1000℃で5時間熱処理を行い、実施例1に記載の方法で透明ガラス化して製造した。
Example 2
The sample of Example 2 was manufactured by heat-treating at 1000 ° C. for 5 hours in a 10 vol% NH 3 gas atmosphere and forming a transparent glass by the method described in Example 1.

実施例3
実施例3の試料は、1vol%NHガス雰囲気、1300℃で3時間熱処理い、実施例1に記載の方法で透明ガラス化して製造した。表1に各試料の製造条件を示す。
Example 3
The sample of Example 3 was manufactured by heat-treating in a 1 vol% NH 3 gas atmosphere at 1300 ° C. for 3 hours and forming a transparent glass by the method described in Example 1. Table 1 shows the manufacturing conditions of each sample.

Figure 2005170706
各試料の含有成分の定量方法は以下の通りである。
Figure 2005170706
The method for quantifying the components contained in each sample is as follows.

OH基含有量はIR測定法で求めた約2.7μmの吸光度から、G.Hetherington and K.H.Jack, Physics and Chemistry Glasses,(1962)129−133に記載の方法により定量した。 The OH group content was determined from the absorbance of about 2.7 μm determined by the IR measurement method. Heatherington and K.C. H. Quantification was performed by the method described in Jack, Physics and Chemistry Glasses, 3 (1962) 129-133.

分子含有量は、ラマン分光測定法で求めたH分子に対応する約4150cm−1のピークと、石英ガラスの基本振動に対応する約800cm−1のピークの面積強度比から、V.S.Khotimchenko, G.M.Sochivkin, I.I.Novak and K.N.Kusenko,Journal of Applied Spectroscopy,46(6)(1987)632−635に記載の方法により定量した。 The content of H 2 molecule is determined from the area intensity ratio of the peak at about 4150 cm −1 corresponding to the H 2 molecule obtained by Raman spectroscopy and the peak at about 800 cm −1 corresponding to the fundamental vibration of quartz glass. S. Khotimchenko, G.M. M.M. Sochivkin, I.D. I. Novak and K.K. N. Quantification was performed by the method described in Kusenko, Journal of Applied Spectroscopy, 46 (6) (1987) 632-635.

Cl含有量は検量線法により蛍光X線測定法で定量した。金属不純物含有量はICP質量分析法で求めた。   The Cl content was quantified by a fluorescent X-ray measurement method using a calibration curve method. The metal impurity content was determined by ICP mass spectrometry.

耐失透性及び耐熱性は、大気中、1200℃で24時間熱処理を行い、目視により失透の有無及び変形の有無を観察して評価した。   The devitrification resistance and heat resistance were evaluated by performing heat treatment at 1200 ° C. for 24 hours in the air, and visually observing the presence or absence of devitrification and the presence or absence of deformation.

表2に各試料の評価結果の一覧を示す。   Table 2 shows a list of evaluation results for each sample.

表2に示すように、本発明の範囲の合成石英ガラスである実施例の試料は、紫外線吸収石英ガラスとして優れた性能を持つ合成石英ガラスである。   As shown in Table 2, a sample of an example which is a synthetic quartz glass within the scope of the present invention is a synthetic quartz glass having excellent performance as an ultraviolet absorbing quartz glass.

Figure 2005170706
比較例1
第1の熱処理を20%COガス雰囲気で行った以外は、実施例1と同等な条件で合成した石英ガラスインゴットからテストピースを切り出し、比較例1の試料とした。比較例1の試料は、180nmの透過率が80%と高く紫外線の吸収が不充分であった。また、OH基濃度が60ppmと高く、耐熱性に劣っていた。
Figure 2005170706
Comparative Example 1
A test piece was cut out from a quartz glass ingot synthesized under the same conditions as in Example 1 except that the first heat treatment was performed in a 20% CO gas atmosphere to obtain a sample of Comparative Example 1. The sample of Comparative Example 1 had a high transmittance of 180% at 80% and insufficient UV absorption. Moreover, the OH group concentration was as high as 60 ppm and the heat resistance was poor.

比較例2
実施例1と同等の条件で石英ガラスインゴットを合成後、100%H、500℃で5時間処理してHを含浸して比較例2の試料とした。比較例2の試料はH分子を3×1017個/cm含有しており、180nmの透過率が8%で、紫外線吸収効果が不充分であると共に、耐失透性及び耐熱性に劣っていた。
Comparative Example 2
A quartz glass ingot was synthesized under the same conditions as in Example 1 and then treated with 100% H 2 at 500 ° C. for 5 hours to impregnate H 2 to obtain a sample of Comparative Example 2. The sample of Comparative Example 2 contains 3 × 10 17 H 2 molecules / cm 3 , the transmittance at 180 nm is 8%, the ultraviolet absorption effect is insufficient, and the devitrification resistance and heat resistance are improved. It was inferior.

比較例3
第1の熱処理を10%Clガス雰囲気で行った以外は、実施例1と同等な条件で合成し比較例3の試料とした。この試料はClを60ppm含有していた。比較例3の試料は、180nmの透過率が35%と紫外線吸収性が悪く、また耐失透性及び耐熱性も劣っていた。
Comparative Example 3
A sample of Comparative Example 3 was synthesized under the same conditions as in Example 1 except that the first heat treatment was performed in a 10% Cl 2 gas atmosphere. This sample contained 60 ppm Cl. The sample of Comparative Example 3 had a transmittance of 180 nm of 35% and a poor ultraviolet absorptivity, and was also inferior in devitrification resistance and heat resistance.

比較例4
SiClにTiの塩化物を混合した原料を用いて石英インゴットを合成した以外は、実施例1と同等の条件で合成して比較例4の試料とした。この試料にはTiが20ppm含有されており、220nmの透過率が65%と低く、可視域の透過性、耐失透性及び耐熱性に劣っていた。
Comparative Example 4
A sample of Comparative Example 4 was synthesized under the same conditions as in Example 1 except that a quartz ingot was synthesized using a raw material in which TiCl 4 was mixed with SiCl 4 . This sample contained 20 ppm of Ti, the transmittance at 220 nm was as low as 65%, and the transparency in the visible range, devitrification resistance and heat resistance were poor.

Claims (2)

OH基含有量が20ppm以下、H分子の含有量が1×1017個/cm以下、Cl含有量が10ppm以下及び金属不純物含有量の総和が1ppm以下であり、厚さ10mmあたりの透過率が、180nm以下の波長領域で5%以下かつ、220nm以上の波長領域で80%以上である紫外線吸収合成石英ガラス。 The OH group content is 20 ppm or less, the H 2 molecule content is 1 × 10 17 molecules / cm 3 or less, the Cl content is 10 ppm or less, and the total content of metal impurities is 1 ppm or less, and the transmission per 10 mm in thickness. An ultraviolet-absorbing synthetic quartz glass having a rate of 5% or less in a wavelength region of 180 nm or less and 80% or more in a wavelength region of 220 nm or more. ガラス形成原料を、酸水素火炎中で火炎加水分解し、生成したシリカ微粒子をターゲット上に堆積させ多孔質シリカ体(スート体)を形成し、得られたスート体を、第1の熱処理としてNHガス含有雰囲気で熱処理した後、第2の熱処理をして透明石英ガラスを得ることを特徴とする、請求項1記載の紫外線吸収合成石英ガラスの製造方法。
The glass forming raw material is flame-hydrolyzed in an oxyhydrogen flame, and the generated silica fine particles are deposited on a target to form a porous silica body (soot body). The obtained soot body is NH as a first heat treatment. The method for producing an ultraviolet-absorbing synthetic quartz glass according to claim 1, wherein the transparent quartz glass is obtained by performing a second heat treatment after heat treatment in an atmosphere containing three gases.
JP2003410258A 2003-12-09 2003-12-09 Ultraviolet-absorbing synthetic quartz glass and method for producing the same Pending JP2005170706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410258A JP2005170706A (en) 2003-12-09 2003-12-09 Ultraviolet-absorbing synthetic quartz glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410258A JP2005170706A (en) 2003-12-09 2003-12-09 Ultraviolet-absorbing synthetic quartz glass and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005170706A true JP2005170706A (en) 2005-06-30

Family

ID=34731387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410258A Pending JP2005170706A (en) 2003-12-09 2003-12-09 Ultraviolet-absorbing synthetic quartz glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005170706A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106134A1 (en) * 2008-02-27 2009-09-03 Heraeus Quarzglas Gmbh & Co. Kg Method for producing an optical component of quartz glass
JP2009298686A (en) * 2008-05-12 2009-12-24 Shinetsu Quartz Prod Co Ltd Synthetic silica glass, method for producing the same, and device provided with lamp for electric-discharge lamp or synthetic silica soot firing furnace core tube using the synthetic silica glass
JP2014218417A (en) * 2013-05-10 2014-11-20 信越石英株式会社 Molding method of synthetic quartz glass, and synthetic quartz glass
JP2019503961A (en) * 2015-12-18 2019-02-14 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Ammonia treatment of silicon dioxide powder in the preparation of quartz glass
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106134A1 (en) * 2008-02-27 2009-09-03 Heraeus Quarzglas Gmbh & Co. Kg Method for producing an optical component of quartz glass
JP2009298686A (en) * 2008-05-12 2009-12-24 Shinetsu Quartz Prod Co Ltd Synthetic silica glass, method for producing the same, and device provided with lamp for electric-discharge lamp or synthetic silica soot firing furnace core tube using the synthetic silica glass
JP2014218417A (en) * 2013-05-10 2014-11-20 信越石英株式会社 Molding method of synthetic quartz glass, and synthetic quartz glass
JP2019503961A (en) * 2015-12-18 2019-02-14 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Ammonia treatment of silicon dioxide powder in the preparation of quartz glass
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Similar Documents

Publication Publication Date Title
JP5473216B2 (en) Synthetic silica glass optical material and method for producing the same
JP5706623B2 (en) Synthetic silica glass and method for producing the same
JP4529340B2 (en) Synthetic quartz glass and manufacturing method thereof
EP2495220B1 (en) Optical member for deep ultraviolet and process for producing same
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
JP5171605B2 (en) Synthetic silica glass for discharge lamp and method for producing the same
JP2980510B2 (en) High purity silica glass for ultraviolet lamp and method for producing the same
JP2005170706A (en) Ultraviolet-absorbing synthetic quartz glass and method for producing the same
JP5366303B2 (en) Synthetic silica glass for discharge lamps, discharge lamp lamps produced therewith, discharge lamp apparatus provided with the discharge lamp lamps, and method for producing the synthetic silica glass for discharge lamps
JP2007532459A (en) Quartz glass element for UV radiation source, its manufacturing method and method for determining suitability of quartz glass element
JP4470054B2 (en) Synthetic quartz glass and manufacturing method thereof
JPH0959034A (en) Synthetic quartz glass material and its production
JP2000264650A (en) Production of optical quartz glass for excimer laser and vertical type heating furnace
JPH0891867A (en) Ultraviolet ray transmitting synthetic quartz glass and its production
JP4392204B2 (en) Quartz glass and method for producing the same
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
JP2000086259A (en) Optical material for vacuum ultraviolet ray
JP3531870B2 (en) Synthetic quartz glass
JPH08133753A (en) Optical synthetic quartz glass, its production and application thereof
JPH0616449A (en) Synthetic quartz glass optical member for excimer laser and its production
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP2955463B2 (en) Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same
TW200413267A (en) Fused silica containing aluminum
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP2001316123A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A977 Report on retrieval

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222