JP4392204B2 - Quartz glass and method for producing the same - Google Patents

Quartz glass and method for producing the same Download PDF

Info

Publication number
JP4392204B2
JP4392204B2 JP2003208905A JP2003208905A JP4392204B2 JP 4392204 B2 JP4392204 B2 JP 4392204B2 JP 2003208905 A JP2003208905 A JP 2003208905A JP 2003208905 A JP2003208905 A JP 2003208905A JP 4392204 B2 JP4392204 B2 JP 4392204B2
Authority
JP
Japan
Prior art keywords
quartz glass
rays
less
ppm
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003208905A
Other languages
Japanese (ja)
Other versions
JP2005067914A (en
Inventor
秀春 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003208905A priority Critical patent/JP4392204B2/en
Publication of JP2005067914A publication Critical patent/JP2005067914A/en
Application granted granted Critical
Publication of JP4392204B2 publication Critical patent/JP4392204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、紫外線吸収性及び可視光透過性に優れ、かつ耐失透性及び耐熱性にも優れた、照明用ランプ、高輝度放電ランプ、レーザー励起ランプ等のバルブ材としての使用に適した合成石英ガラス及びその製造方法に関するものである。
【0002】
【従来の技術】
合成石英ガラスは、赤外から真空紫外までの広い波長範囲において透明であるばかりでなく、熱的及び化学的安定性に優れている事から、各種照明ランプ等の光源用窓材等として広く使用されている。
【0003】
【発明が解決しようとする課題】
合成石英ガラスの高い光透過性のため光源から発生した紫外線が直接人体に悪影響を及ぼすばかりでなく、紫外線により空気中の酸素から人体に有害なオゾンが発生したり、レーザー素子が紫外線によりダメージを受け、レーザー発信効率が低下したり、光源の窓材を支持する樹脂が紫外線によりダメージを受け劣化する等の問題があった。
【0004】
この問題を解決する方法として、石英ガラス中に遷移金属元素を含有させて、紫外線を吸収する石英ガラスが提案されている(例えば、特許文献1及び特許文献2参照)。金属元素をドープするこれらの方法では、金属元素による吸収、散乱のため、紫外線領域だけでなく、可視光領域の透過率も低下する。また、金属元素を均一にドープするのが困難であるばかりでなく、ドープした金属元素と石英ガラスが反応して石英ガラスが結晶化し透明性が低下(失透)する等の問題があった。また、高温にさらされる事で、ドープした金属元素が拡散あるいは飛散して、紫外線吸収効率が低下するばかりでなく、金属元素により周辺機器が汚染される等の問題の他、高温使用時にバルブが熱変形する等、耐熱性にも問題があった。
【0005】
【特許文献1】
特許第2955463号(請求項1)
【特許文献2】
特許第2991901号(請求項1)
【0006】
【課題を解決するための手段】
本発明者は上記課題を解決するため、合成石英ガラスの諸物性と、光透過特性、耐失透性及び耐熱性との関係について鋭意検討を行った結果、合成石英ガラスに金属元素をドープする事なく効率的に紫外線を吸収し、かつ耐失透性及び耐熱性にも優れた、紫外線吸収・可視光透過性石英ガラスを提供できる事を見出した。
【0007】
すなわち本発明は、OH基含有量が1ppm以下、H2含有量が1×1017個/cm3以下、Cl含有量が10ppm以下及び金属不純物含有量の総和が1ppm以下であり、厚さ1cmあたりの透過率が、230nm以下の波長領域で5%以下かつ、300nm以上の波長領域で80%以上である石英ガラスである。
【0008】
また、ガラス形成原料を、酸水素火炎中で火炎加水分解し、生成したシリカ微粒子をターゲット上に堆積させ多孔質シリカ体(スート体)を形成し、得られたスート体を、H2ガス含有雰囲気で熱処理した後、透明ガラス化して透明石英ガラスを得る工程と、得られた石英ガラスに、X線またはγ線を照射する工程とを含む事を特徴とする石英ガラスの製造方法である。
【0009】
以下本発明を詳細に説明する。
【0010】
石英ガラス中に含有される、OH基、H2及び金属不純物は熱的に不安定であり、例えばランプの窓材等、高温にさらされる条件で使用した場合、これらは容易に石英ガラス内を拡散する。その際、石英ガラスの骨格構造と反応して、石英ガラスの結晶化を促進し、可視光の透過性が低下する。また、石英の骨格構造が不安定となる事で耐熱性も低下する。従って、これらの含有量は出来るだけ少なくする必要があり、本発明においては、OH基濃度が1ppm以下、H2含有量が1×1017個/cm3以下、好ましくは0.5×1017個/cm3以下、Cl含有量が10ppm以下及び金属不純物含有量の総和を1ppm以下、好ましくは0.1ppm以下とする。
【0011】
SiO2以外の成分をドープさせる事なく、紫外線を効率よく吸収する石英ガラスを得るには、紫外線を吸収する構造を持つSi元素とO元素だけからなる石英ガラスを製造する必要があるが、スート法で合成した石英ガラスにX線またはγ線を照射する事で上記目的が達成させる事を見出し、本発明を完成するに至った。
【0012】
本発明の石英ガラスの製造方法について説明する。スート法では、例えば、多重管構造の石英ガラス製バーナーの中心から、SiCl4などの原料を供給し、その外側の管からH2およびO2を供給して原料を火炎加水分解してシリカ微粒子を得る。このシリカ微粒子をターゲット上に堆積させシリカ微粒子堆積体(スート体)を得る。このスート体は多量のOH基を含有するため、第1の熱処理として、還元性ガス含有雰囲気で処理を行い、OH基濃度を適切な範囲まで低減させる必要がある。
【0013】
第1の熱処理に使用する還元性ガスは、H2を使用する。H2以外の還元性ガスとして、例えばCl2ガス等を使用しても、OH基濃度の低減は可能であるが、後のX線またはγ線照射による効果が十分得られず、紫外線吸収効果が不充分になるばかりでなく、使用したガスの一部が石英ガラス内に残留して耐失透性及び耐熱性に悪影響を及ぼす。第1の熱処理を行う温度、時間等は特に限定されるものではなく、所望のOH基濃度が得られる条件であればよいが、例えば、1200〜1400℃で2〜10時間熱処理を行えばよい。
【0014】
第1の熱処理を行ったスート体を、ガラス化温度以上の温度で第2の熱処理を施して、透明な石英ガラスを得る。第2の熱処理の温度、時間等の条件も特に制限されるものではなく、透明な石英ガラスが得られる条件で行えばよいが、例えば、1400〜1550℃で1〜10時間熱処理を行えばよい。
【0015】
なお、第1の熱処理で使用したH2ガスの一部は、石英ガラス中に取り込まれるが、第2の熱処理の際、容易に石英得ガラス中を拡散して石英ガラスから除去される。
【0016】
このようにして得られた透明石英ガラスに、X線またはγ線を4×104C/kg以上照射する事で、紫外線吸収・可視光透過性の石英ガラスが得られる。X線及びγ線の照射条件は特に制限されるものではく、例えば、照射線量率2×104C/kg・hで2時間以上照射すればよい。
【0017】
【実施例】
以下の実施例により本発明を具体的に説明するが、本発明はこれら実施例に何等限定されるものではない。
【0018】
実施例1
原料にSiCl4を使用して、スート法により合成石英ガラスインゴットを製造した。即ち、石英ガラス製バーナーの中心管から原料を供給し、バーナーの外管からH2およびO2を供給してスート体を合成した。このスート体を100vol%(容積%)H2ガス雰囲気、1300℃で5時間熱処理を行った。その後、100vol%Heガス雰囲気で1500℃、5時間熱処理して透明化し、合成石英ガラスインゴットを得た。
【0019】
得られた石英ガラスに、X線を、照射線量率2×104C/kg・hで4時間照射して実施例1の合成石英ガラスインゴットを得た。
【0020】
以下の各実施例・比較例において、得られたインゴットから厚さ10mmのテストピースを切り出し、評価用試料とした。
【0021】
実施例2
X線を照射線量率1×104C/kg・hで8時間照射した以外は、実施例1と同様に行い、合成石英ガラスインゴットを得た。
【0022】
実施例3
X線を照射線量率2×104C/kg・hで3時間照射した以外は、実施例1と同様に行い、合成石英ガラスインゴットを得た。
【0023】
実施例4
X線を照射線量率2×104C/kg・hで2時間照射した以外は、実施例1と同様に行い、合成石英ガラスインゴットを得た。
【0024】
実施例5
γ線を照射線量率2×104C/kg・hで4時間照射した以外は、実施例1と同様に行い、合成石英ガラスインゴットを得た。
【0025】
実施例1〜5の製造条件を表1にまとめて示し、各試料の定量結果の一覧を表2に示す。
【0026】
なお、各試料の含有成分の定量方法は以下の通りである。
【0027】
OH基含有量は約2.7μmの吸収からIR測定法により定量した。
【0028】
2含有量は、ラマン分光測定法で定量した。H2に対応するピークは約4150cm-1あらわれる。このピークの面積強度と石英ガラスの基本構造による約800cm-1のピークの面積強度との比からH2含有量を算出した。
【0029】
Cl含有量は検量線法により蛍光X線測定法で定量した。金属不純物含有量はICP質量分析法で求めた。
【0030】
耐失透性及び耐熱性は、大気中、1100℃で24時間熱処理を行い、目視により失透の有無及び変形の有無を観察して評価した。
【0031】
比較例1
X線の照射時間を1時間とした以外は、実施例1と同様の条件で、石英ガラスインゴットを得た。比較例1の試料は230nmの透過率が8%で、紫外線吸収性に劣っていた。
【0032】
比較例2
2ガス雰囲気における熱処理時間を1時間とした以外は、実施例1と同様の条件で石英ガラスインゴットを得た。比較例2の試料はOH基濃度が5ppmであり、230nmの透過率が10%で、紫外線吸収性に劣っており、耐失透性及び耐熱性に劣っていた。
【0033】
比較例3
実施例1と同様の条件で得た、Heガス雰囲気下で熱処理することによって透明化した石英ガラスインゴットを、100%H2、500℃で5時間処理してH2を含浸させた。続いて、実施例1と同様の条件でX線を照射して石英ガラスインゴットを得た。比較例3の試料はH2を3×1017個/cm3含有しており、230nmの透過率が13%で、紫外線吸収効果が不充分であると共に、耐失透性及び耐熱性に劣っていた。
【0034】
比較例4
2ガス雰囲気における熱処理を100%Cl2ガスを用いて1300℃で5時間行った以外は、実施例1と同様な条件で石英ガラスインゴットを得た。比較例4の試料はClを40ppm含有しており、230nmの透過率が35%と紫外線吸収性が非常に悪く、耐失透性及び耐熱性も劣っていた。
【0035】
比較例5
SiCl4にTiの塩化物を0.1重量%混合した原料を用い、熱処理を1300℃で5時間行った以外は、実施例1と同様の条件で石英ガラスインゴットを得た。比較例5の試料にはTiが20ppm含有されており、300nmの透過率が70%と低く、可視域の透過性、耐失透性及び耐熱性に劣っていた。
【0036】
【表1】

Figure 0004392204
【表2】
Figure 0004392204
【発明の効果】
本発明によれば、合成石英ガラスに金属元素をドープする事なく効率的に紫外線を吸収し、かつ耐失透性及び耐熱性にも優れた紫外線吸収・可視光透過性石英ガラス及びその製造方法を提供することが可能となり、この石英ガラスは、照明用ランプ、高輝度放電ランプ、レーザー励起ランプ等のバルブ材として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for use as a bulb material for illumination lamps, high-intensity discharge lamps, laser-excited lamps, etc., which have excellent ultraviolet absorption and visible light transmission properties and excellent devitrification resistance and heat resistance. The present invention relates to synthetic quartz glass and a method for producing the same.
[0002]
[Prior art]
Synthetic quartz glass is not only transparent in a wide wavelength range from infrared to vacuum ultraviolet, but also has excellent thermal and chemical stability, so it is widely used as a light source window material for various lighting lamps. Has been.
[0003]
[Problems to be solved by the invention]
Due to the high light transmittance of synthetic quartz glass, not only the ultraviolet rays generated from the light source directly affect the human body but also harmful ozone is generated from the oxygen in the air by the ultraviolet rays, and the laser element is damaged by the ultraviolet rays. However, there are problems that the laser transmission efficiency is lowered, and the resin supporting the window material of the light source is damaged by ultraviolet rays and deteriorated.
[0004]
As a method for solving this problem, a quartz glass that absorbs ultraviolet rays by incorporating a transition metal element in the quartz glass has been proposed (see, for example, Patent Document 1 and Patent Document 2). In these methods of doping a metal element, the transmittance in the visible light region as well as the ultraviolet region is reduced due to absorption and scattering by the metal element. In addition, it is difficult to uniformly dope the metal element, and the doped metal element and the quartz glass react to cause crystallization of the quartz glass, resulting in a decrease in transparency (devitrification). Also, exposure to high temperatures causes the doped metal elements to diffuse or scatter, which not only reduces UV absorption efficiency, but also contaminates peripheral devices with the metal elements. There was also a problem with heat resistance, such as thermal deformation.
[0005]
[Patent Document 1]
Japanese Patent No. 2955463 (Claim 1)
[Patent Document 2]
Japanese Patent No. 2991901 (Claim 1)
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present inventor has conducted intensive studies on the relationship between various physical properties of synthetic quartz glass, light transmission characteristics, devitrification resistance, and heat resistance. As a result, the synthetic quartz glass is doped with a metal element. It has been found that it is possible to provide an ultraviolet-absorbing / visible-light transmissive quartz glass that efficiently absorbs ultraviolet rays and has excellent devitrification resistance and heat resistance.
[0007]
That is, the present invention has an OH group content of 1 ppm or less, an H 2 content of 1 × 10 17 atoms / cm 3 or less, a Cl content of 10 ppm or less, and a total of metal impurity contents of 1 ppm or less, and a thickness of 1 cm The quartz glass has a permeation transmittance of 5% or less in a wavelength region of 230 nm or less and 80% or more in a wavelength region of 300 nm or more.
[0008]
Moreover, the glass forming raw material is flame-hydrolyzed in an oxyhydrogen flame, and the generated silica fine particles are deposited on a target to form a porous silica body (soot body). The obtained soot body contains H 2 gas. A method for producing quartz glass, comprising: a step of heat-treating in an atmosphere and then obtaining transparent quartz glass to obtain transparent quartz glass; and a step of irradiating the obtained quartz glass with X-rays or γ-rays.
[0009]
The present invention will be described in detail below.
[0010]
OH groups, H 2 and metal impurities contained in quartz glass are thermally unstable. For example, when used under conditions exposed to high temperatures, such as lamp window materials, these easily enter the quartz glass. Spread. At that time, it reacts with the skeleton structure of the quartz glass to promote the crystallization of the quartz glass and the visible light transmittance is lowered. In addition, the heat resistance is reduced due to the unstable structure of the quartz. Accordingly, it is necessary to reduce these contents as much as possible. In the present invention, the OH group concentration is 1 ppm or less, and the H 2 content is 1 × 10 17 atoms / cm 3 or less, preferably 0.5 × 10 17. Pieces / cm 3 or less, the Cl content is 10 ppm or less, and the total content of metal impurities is 1 ppm or less, preferably 0.1 ppm or less.
[0011]
In order to obtain quartz glass that efficiently absorbs ultraviolet rays without doping components other than SiO 2 , it is necessary to produce quartz glass consisting of only Si and O elements having a structure that absorbs ultraviolet rays. The present inventors have found that the above object can be achieved by irradiating quartz glass synthesized by the method with X-rays or γ-rays, and have completed the present invention.
[0012]
The method for producing quartz glass of the present invention will be described. In the soot method, for example, a raw material such as SiCl 4 is supplied from the center of a quartz glass burner having a multi-tube structure, and H 2 and O 2 are supplied from the outer tube to flame-hydrolyze the raw material to produce silica fine particles. Get. The silica fine particles are deposited on the target to obtain a silica fine particle deposit (soot body). Since this soot contains a large amount of OH groups, it is necessary to perform the treatment in a reducing gas-containing atmosphere as the first heat treatment to reduce the OH group concentration to an appropriate range.
[0013]
The reducing gas used for the first heat treatment uses H 2 . Even if, for example, Cl 2 gas or the like is used as a reducing gas other than H 2 , the OH group concentration can be reduced, but the effect of the subsequent X-ray or γ-ray irradiation cannot be sufficiently obtained, and the ultraviolet absorption effect Not only becomes insufficient, but part of the used gas remains in the quartz glass, which adversely affects devitrification resistance and heat resistance. The temperature and time for performing the first heat treatment are not particularly limited as long as the desired OH group concentration can be obtained. For example, the heat treatment may be performed at 1200 to 1400 ° C. for 2 to 10 hours. .
[0014]
The soot body subjected to the first heat treatment is subjected to a second heat treatment at a temperature equal to or higher than the vitrification temperature to obtain transparent quartz glass. The conditions such as the temperature and time of the second heat treatment are not particularly limited, and may be performed under the conditions for obtaining transparent quartz glass. For example, the heat treatment may be performed at 1400 to 1550 ° C. for 1 to 10 hours. .
[0015]
Part of the H 2 gas used in the first heat treatment is taken into the quartz glass, but is easily diffused in the quartz glass and removed from the quartz glass during the second heat treatment.
[0016]
By irradiating the transparent quartz glass thus obtained with 4 × 10 4 C / kg or more of X-rays or γ-rays, an ultraviolet absorbing / visible light transmissive quartz glass can be obtained. The irradiation conditions of X-rays and γ-rays are not particularly limited. For example, the irradiation may be performed at an irradiation dose rate of 2 × 10 4 C / kg · h for 2 hours or more.
[0017]
【Example】
The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.
[0018]
Example 1
A synthetic quartz glass ingot was produced by the soot method using SiCl 4 as a raw material. That is, the soot body was synthesized by supplying the raw material from the central tube of the quartz glass burner and supplying H 2 and O 2 from the outer tube of the burner. The soot body was heat-treated at 100 vol% (volume%) H 2 gas atmosphere at 1300 ° C. for 5 hours. Thereafter, it was heat treated at 1500 ° C. for 5 hours in a 100 vol% He gas atmosphere to make it transparent, and a synthetic quartz glass ingot was obtained.
[0019]
The obtained quartz glass was irradiated with X-rays at an irradiation dose rate of 2 × 10 4 C / kg · h for 4 hours to obtain a synthetic quartz glass ingot of Example 1.
[0020]
In each of the following Examples and Comparative Examples, a test piece having a thickness of 10 mm was cut out from the obtained ingot and used as an evaluation sample.
[0021]
Example 2
A synthetic quartz glass ingot was obtained in the same manner as in Example 1 except that X-rays were irradiated for 8 hours at an irradiation dose rate of 1 × 10 4 C / kg · h.
[0022]
Example 3
A synthetic quartz glass ingot was obtained in the same manner as in Example 1 except that X-rays were irradiated for 3 hours at an irradiation dose rate of 2 × 10 4 C / kg · h.
[0023]
Example 4
A synthetic quartz glass ingot was obtained in the same manner as in Example 1 except that X-rays were irradiated for 2 hours at an irradiation dose rate of 2 × 10 4 C / kg · h.
[0024]
Example 5
A synthetic quartz glass ingot was obtained in the same manner as in Example 1 except that γ rays were irradiated for 4 hours at an irradiation dose rate of 2 × 10 4 C / kg · h.
[0025]
The production conditions of Examples 1 to 5 are summarized in Table 1, and a list of quantitative results for each sample is shown in Table 2.
[0026]
In addition, the determination method of the content component of each sample is as follows.
[0027]
The OH group content was quantified by IR measurement from the absorption of about 2.7 μm.
[0028]
The H 2 content was quantified by Raman spectroscopy. A peak corresponding to H 2 appears at about 4150 cm −1 . The H 2 content was calculated from the ratio between the peak area intensity and the peak area intensity of about 800 cm −1 due to the basic structure of quartz glass.
[0029]
The Cl content was quantified by a fluorescent X-ray measurement method using a calibration curve method. The metal impurity content was determined by ICP mass spectrometry.
[0030]
The devitrification resistance and heat resistance were evaluated by performing heat treatment at 1100 ° C. for 24 hours in the air, and visually observing the presence or absence of devitrification and the presence or absence of deformation.
[0031]
Comparative Example 1
A quartz glass ingot was obtained under the same conditions as in Example 1 except that the X-ray irradiation time was 1 hour. The sample of Comparative Example 1 had a transmittance of 230 nm of 8% and was inferior in ultraviolet absorption.
[0032]
Comparative Example 2
A quartz glass ingot was obtained under the same conditions as in Example 1 except that the heat treatment time in the H 2 gas atmosphere was 1 hour. The sample of Comparative Example 2 had an OH group concentration of 5 ppm, a transmittance of 230 nm of 10%, inferior in ultraviolet absorption, and inferior in devitrification resistance and heat resistance.
[0033]
Comparative Example 3
A quartz glass ingot obtained by heat treatment in a He gas atmosphere obtained under the same conditions as in Example 1 was treated with 100% H 2 at 500 ° C. for 5 hours to impregnate H 2 . Subsequently, a quartz glass ingot was obtained by irradiation with X-rays under the same conditions as in Example 1. The sample of Comparative Example 3 contains 3 × 10 17 H 2 / cm 3 , the transmittance at 230 nm is 13%, the ultraviolet absorption effect is insufficient, and the devitrification resistance and heat resistance are inferior. It was.
[0034]
Comparative Example 4
Except that for 5 hours to a heat treatment in a H 2 gas atmosphere at 1300 ° C. with 100% Cl 2 gas, to obtain a quartz glass ingot under the same conditions as in Example 1. The sample of Comparative Example 4 contained 40 ppm of Cl, the transmittance at 230 nm was 35%, the ultraviolet absorptivity was very poor, and the devitrification resistance and heat resistance were also inferior.
[0035]
Comparative Example 5
A quartz glass ingot was obtained under the same conditions as in Example 1 except that a raw material in which 0.1% by weight of Ti chloride was mixed with SiCl 4 was subjected to heat treatment at 1300 ° C. for 5 hours. The sample of Comparative Example 5 contained 20 ppm of Ti, the transmittance at 300 nm was as low as 70%, and the transparency in the visible region, devitrification resistance and heat resistance were poor.
[0036]
[Table 1]
Figure 0004392204
[Table 2]
Figure 0004392204
【The invention's effect】
According to the present invention, an ultraviolet-absorbing / visible-light-transmitting quartz glass that efficiently absorbs ultraviolet rays without being doped with a metal element in the synthetic quartz glass and has excellent devitrification resistance and heat resistance, and a method for producing the same This quartz glass is useful as a bulb material for illumination lamps, high-intensity discharge lamps, laser excitation lamps, and the like.

Claims (3)

OH基含有量が1ppm以下、H2含有量が1×1017個/cm3以下、Cl含有量が10ppm以下及び金属不純物含有量の総和が1ppm以下であり、厚さ1cmあたりの透過率が、230nm以下の波長領域で5%以下かつ300nm以上の波長領域で80%以上である石英ガラス。The OH group content is 1 ppm or less, the H 2 content is 1 × 10 17 atoms / cm 3 or less, the Cl content is 10 ppm or less, and the sum of the metal impurity contents is 1 ppm or less, and the transmittance per 1 cm thickness is Quartz glass that is 5% or less in a wavelength region of 230 nm or less and 80% or more in a wavelength region of 300 nm or more. ガラス形成原料を、酸水素火炎中で火炎加水分解し、生成したシリカ微粒子をターゲット上に堆積させ多孔質シリカ体(スート体)を形成し、得られたスート体を、H2ガス含有雰囲気で熱処理した後、透明ガラス化して透明石英ガラスを得る工程と、得られた透明石英ガラスにX線またはγ線を照射する工程を含むことを特徴とする石英ガラスの製造方法。The glass forming raw material is flame-hydrolyzed in an oxyhydrogen flame, and the generated silica fine particles are deposited on the target to form a porous silica body (soot body). The obtained soot body in an atmosphere containing H 2 gas A method for producing quartz glass, comprising: a step of obtaining transparent quartz glass by heat treatment after heat treatment; and a step of irradiating the obtained transparent quartz glass with X-rays or γ rays. X線またはγ線の照射線量が4×104C/kg以上であることを特徴とする、請求項2記載の石英ガラスの製造方法。The method for producing quartz glass according to claim 2, wherein the irradiation dose of X-rays or γ-rays is 4 × 10 4 C / kg or more.
JP2003208905A 2003-08-26 2003-08-26 Quartz glass and method for producing the same Expired - Fee Related JP4392204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208905A JP4392204B2 (en) 2003-08-26 2003-08-26 Quartz glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003208905A JP4392204B2 (en) 2003-08-26 2003-08-26 Quartz glass and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005067914A JP2005067914A (en) 2005-03-17
JP4392204B2 true JP4392204B2 (en) 2009-12-24

Family

ID=34402009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208905A Expired - Fee Related JP4392204B2 (en) 2003-08-26 2003-08-26 Quartz glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP4392204B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5284702B2 (en) * 2008-07-10 2013-09-11 信越石英株式会社 Ultraviolet and infrared absorbing synthetic silica glass and method for producing the same
JP5171605B2 (en) * 2008-12-26 2013-03-27 信越石英株式会社 Synthetic silica glass for discharge lamp and method for producing the same
JP6908237B2 (en) * 2017-02-24 2021-07-21 東ソ−・エスジ−エム株式会社 Quartz glass article with ultraviolet absorption and its manufacturing method

Also Published As

Publication number Publication date
JP2005067914A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP5706623B2 (en) Synthetic silica glass and method for producing the same
JP5171605B2 (en) Synthetic silica glass for discharge lamp and method for producing the same
JP5366303B2 (en) Synthetic silica glass for discharge lamps, discharge lamp lamps produced therewith, discharge lamp apparatus provided with the discharge lamp lamps, and method for producing the synthetic silica glass for discharge lamps
JP4470054B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2005170706A (en) Ultraviolet-absorbing synthetic quartz glass and method for producing the same
JPH07215731A (en) High purity quartz glass for ultraviolet lamp and its production
JP2007532459A (en) Quartz glass element for UV radiation source, its manufacturing method and method for determining suitability of quartz glass element
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP4392204B2 (en) Quartz glass and method for producing the same
JP3277719B2 (en) Synthetic quartz glass for transmitting ultraviolet light and method for producing the same
JP2991901B2 (en) Ultraviolet absorbing silica glass and method for producing the same
JP2000086259A (en) Optical material for vacuum ultraviolet ray
JPH06305767A (en) Silica glass for devitrification resistant discharge lamp
JPH08133753A (en) Optical synthetic quartz glass, its production and application thereof
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP2955463B2 (en) Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same
JP4085633B2 (en) Synthetic quartz glass for optical components
JP6908237B2 (en) Quartz glass article with ultraviolet absorption and its manufacturing method
JP2001316123A5 (en)
JP3715163B2 (en) Synthetic quartz glass member for high-power ArF excimer laser and manufacturing method thereof
JP2001316123A (en) Synthetic quarts glass
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP2001311801A (en) Synthetic quartz glass
JP3358883B2 (en) Ultraviolet absorbing visible light transmitting silica glass for high pressure discharge lamp and method for producing the same
JP3792105B2 (en) Method for producing quartz glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4392204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees