JP3050353B2 - Method for producing opaque quartz glass - Google Patents

Method for producing opaque quartz glass

Info

Publication number
JP3050353B2
JP3050353B2 JP5246156A JP24615693A JP3050353B2 JP 3050353 B2 JP3050353 B2 JP 3050353B2 JP 5246156 A JP5246156 A JP 5246156A JP 24615693 A JP24615693 A JP 24615693A JP 3050353 B2 JP3050353 B2 JP 3050353B2
Authority
JP
Japan
Prior art keywords
quartz glass
opaque quartz
glass
bubbles
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5246156A
Other languages
Japanese (ja)
Other versions
JPH0769661A (en
Inventor
朗 藤ノ木
龍弘 佐藤
透 横田
博至 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP5246156A priority Critical patent/JP3050353B2/en
Publication of JPH0769661A publication Critical patent/JPH0769661A/en
Application granted granted Critical
Publication of JP3050353B2 publication Critical patent/JP3050353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高純度で耐熱性が高
く、しかも遮熱性の優れた不透明石英ガラス、特に熱処
理炉の遮熱材料として有用な中実の不透明石英ガラスブ
ロックの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing opaque quartz glass having high purity, high heat resistance, and excellent heat shielding properties, and particularly to a solid opaque quartz glass block useful as a heat shielding material for a heat treatment furnace. .

【0002】[0002]

【従来の技術】従来、石英ガラスは高い純度を有し、し
かも耐熱性に優れているところから半導体工業用の熱処
理炉や熱処理治具として用いられてきた。この半導体工
業用の熱処理炉にあっては炉内の温度分布を均一にする
ことが重要であり、その目的で特開平5−900号公報
にみるように100,000個/cm3以下の気泡を含
有した不透明石英ガラスで炉芯管を作成したり、あるい
は実開平1−162234号公報に記載するように半導
体ウエハ−を載置するボ−トの両端に6000個/cm
3未満の気泡を含有する不透明石英ガラスの熱線散乱板
を設けていた。
2. Description of the Related Art Conventionally, quartz glass has been used as a heat treatment furnace or a heat treatment jig for the semiconductor industry because of its high purity and excellent heat resistance. In this heat treatment furnace for the semiconductor industry, it is important to make the temperature distribution in the furnace uniform, and for that purpose, as shown in Japanese Patent Application Laid-Open No. 5-900, 100,000 bubbles / cm 3 or less. A core tube is made of opaque quartz glass containing 6000 or 6000 pieces / cm at both ends of a boat for mounting semiconductor wafers as described in Japanese Utility Model Application Laid-Open No. 1-162234.
A heat-scattering plate of opaque quartz glass containing less than 3 bubbles was provided.

【0003】上記熱線散乱板材料としては不透明石英ガ
ラスがその耐熱性および遮熱性の良さから好適に使用さ
れてきたが、その作成には作業効率から中実な不透明石
英ガラスブロックを板状に切り出すのが一般的な製造方
法であった。そして、該不透明石英ガラスブロックは、
ガラス原料粉、特に水晶粉を耐熱性型内に充填した後、
電気炉で加熱溶融して製造されていた(以下充填式溶融
法という)。
Opaque quartz glass has been suitably used as the heat-scattering plate material because of its excellent heat resistance and heat-shielding properties. This was a general manufacturing method. And the opaque quartz glass block,
After filling glass raw material powder, especially quartz powder into the heat resistant mold,
It was manufactured by heating and melting in an electric furnace (hereinafter referred to as a filling-type melting method).

【0004】ところが、上記従来の充填式溶融法では一
般的に350〜50μmの粒度範囲のガラス原料粉が用
いられ、これを溶融して不透明石英ガラスを製造してい
たが、得られた不透明石英ガラス中の気泡は上記実開平
1−162234号公報にみるようにその最大径が22
0μmと大きく、また気泡密度も10万個/cm3未満
のものであった。この不透明石英ガラスからなる熱線散
乱板を近年半導体工業用の熱処理炉の主流となった縦型
熱処理炉の熱線散乱兼遮熱板として使用しても、縦型熱
処理炉の炉下端部と金属製架台の接合部で起る熱線の不
規則散乱、およびシ−ル部材の保護のために設けた冷却
部に基づく炉内温度の乱れを十分に防ぐことができなか
った。その上、上記従来の充填式溶融法では、不透明石
英ガラスブロックの中央に大きな空洞等が生じ易く、全
体に均一な気泡が分布したブロックを製造することが困
難で、熱線散乱兼遮熱板製造用石英ガラスブロックとし
ては満足の行くものではなかった。
However, in the above-mentioned conventional filling type melting method, glass raw material powder having a particle size range of 350 to 50 μm is generally used, and this is melted to produce opaque quartz glass. Bubbles in the glass have a maximum diameter of 22 as shown in Japanese Utility Model Laid-Open No. 1-162234.
It was as large as 0 μm, and the bubble density was less than 100,000 cells / cm 3 . Even if this heat ray scattering plate made of opaque quartz glass is used as a heat ray scattering and heat shield plate of a vertical heat treatment furnace, which has recently become the mainstream of heat treatment furnaces for the semiconductor industry, the lower end of the vertical heat treatment furnace and the metal It was not possible to sufficiently prevent irregular scattering of heat rays at the joint of the gantry and disturbance in the furnace temperature due to the cooling unit provided for protecting the seal member. In addition, in the above-mentioned conventional filling-type melting method, large cavities and the like are easily generated in the center of the opaque quartz glass block, and it is difficult to manufacture a block in which uniform bubbles are distributed throughout. It was not satisfactory as a quartz glass block for use.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明者等は
上記問題点を解決すべく鋭意研究を重ねた結果、使用す
るガラス原料粉の粒度を最大粒径で250μm以下と
し、かつ溶融の際の昇温速度を制御することにより、気
泡の径を小さくするとともにその個数を増大し、しかも
気泡をブロック全体にわたり均一に分散することがで
き、熱線散乱性および遮熱性に優れた不透明石英ガラス
ブロックが得られることを見出し、本発明を完成したも
のである。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have set the maximum particle size of the glass raw material powder to be 250 μm or less, By controlling the temperature rise rate, the diameter of bubbles can be reduced and the number of bubbles can be increased, and the bubbles can be evenly dispersed throughout the block. Have been obtained, and the present invention has been completed.

【0006】本発明は、気泡の径が小さいが、その密度
が高く、しかも均一に分散している高純度不透明石英ガ
ラスの製造方法を提供することを目的とする。
An object of the present invention is to provide a method for producing a high-purity opaque quartz glass in which bubbles have a small diameter but a high density and are uniformly dispersed.

【0007】本発明は、耐熱性が高く、しかも遮熱性に
優れた高純度不透明石英ガラス遮熱材料の製造方法を提
供することを目的とする。
An object of the present invention is to provide a method for producing a high-purity opaque quartz glass heat insulating material having high heat resistance and excellent heat insulating properties.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明は、耐熱性型内に充填したガラス原料粉層を加熱溶融
して微細な気泡を含有する不透明石英ガラスを製造する
方法において、耐熱性型内に最大径が250μm以下の
粒度を有するガラス原料粉を充填し、次いで該ガラス原
料粉層を不活性ガス雰囲気下で昇温速度を制御しながら
室温からガラス原料粉の溶融温度まで加熱し、次いで1
740〜1800℃の温度範囲に10分以上保持して、
溶融ガラス化することを特徴とする不透明石英ガラスの
製造方法に係る。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method for producing an opaque quartz glass containing fine bubbles by heating and melting a glass raw material powder layer filled in a heat resistant mold. A glass raw material powder having a maximum particle size of 250 μm or less is filled in a mold, and the glass raw material powder layer is heated from room temperature to a melting temperature of the glass raw material powder while controlling a temperature rising rate in an inert gas atmosphere. Then 1
Hold in a temperature range of 740 to 1800 ° C. for 10 minutes or more,
The present invention relates to a method for producing opaque quartz glass, which is characterized by being melted and vitrified.

【0009】上記不透明石英ガラスとは、ガラス原料粉
を非酸化性の雰囲気中で加熱溶融して得られた微細な気
泡を含有する不透明な石英ガラスをいう。この不透明石
英ガラスの製造原料としては、高純度の結晶質石英粉が
用いられる。特にアルカリ金属元素のうちナトリウムお
よびカリウムの濃度が0.2ppm以下であることが不
透明石英ガラスの耐熱性、すなわち高温における熱変形
を少なくする点から望ましい。前記ナトリウムおよびカ
リウムの濃度を有する水晶粉は、例えば米国特許第4,
983,370号明細書に記載するような高純度水晶粉
を塩素および/または塩化水素と窒素ガスとの混合ガス
雰囲気下で1100〜1300℃の温度で純化処理する
ことにより得られる。
The opaque quartz glass is opaque quartz glass containing fine bubbles obtained by heating and melting glass raw material powder in a non-oxidizing atmosphere. High-purity crystalline quartz powder is used as a raw material for producing this opaque quartz glass. In particular, the concentration of sodium and potassium among the alkali metal elements is preferably 0.2 ppm or less from the viewpoint of the heat resistance of the opaque quartz glass, that is, the reduction of thermal deformation at high temperatures. The quartz powder having a concentration of sodium and potassium is, for example, U.S. Pat.
No. 983,370, which is obtained by subjecting a high-purity quartz powder to a purification treatment at a temperature of 1100 to 1300 ° C. in a mixed gas atmosphere of chlorine and / or hydrogen chloride and nitrogen gas.

【0010】また、ガラス原料粉の溶融ガラス化には、
OH基含有量の少ない石英ガラスの製造方法である電気
溶融法を採用する。この方法を採用することにより、不
透明石英ガラス中のOH基濃度を10ppm以下にする
ことができ、高温での耐熱性を向上させることができ
る。
[0010] In addition, for the vitrification of glass raw material powder,
An electromelting method, which is a method for producing quartz glass having a small OH group content, is employed. By employing this method, the OH group concentration in the opaque quartz glass can be reduced to 10 ppm or less, and the heat resistance at high temperatures can be improved.

【0011】ところで、石英ガラスへの熱伝導は、温度
が1000℃以上になると輻射熱伝導が支配的になると
いわれている。そして前記温度において石英ガラス中に
気泡が存在すると熱線の反射はガラス表面にとどまらず
内部の気泡においても起るため不透明石英ガラス中の気
泡の表面積とその分布が熱線の反射および透過に大きな
影響を及ぼす。そのため不透明石英ガラスを熱処理炉の
遮熱および赤外線散乱材料として使用するには単位体積
当りに含まれる気泡の表面積の総和を大きくするととも
に気泡の個数を多くし、かつ気泡を均一に分散させるこ
とが肝要である。
By the way, it is said that radiant heat conduction becomes dominant when the temperature reaches 1000 ° C. or higher. When bubbles exist in the quartz glass at the above temperature, the reflection of the heat rays occurs not only on the surface of the glass but also in the bubbles inside, so that the surface area and distribution of the bubbles in the opaque quartz glass greatly affect the reflection and transmission of the heat rays. Exert. Therefore, in order to use opaque quartz glass as a heat shield and infrared scattering material for heat treatment furnaces, it is necessary to increase the total surface area of bubbles contained per unit volume, increase the number of bubbles, and disperse the bubbles uniformly. It is important.

【0012】上記単位体積当りに含まれる気泡の表面積
の総和を大きくするとともに気泡の個数を多くするには
本発明者等の実験によれば、ガラス原料粉を篩分して最
大粒径が250μm以上の粒子を除去するか、あるいは
予め250μm以上の粒子を含まないガラス原料粉を使
用するのがよい。この粒径のガラス原料粉を使用するこ
とにより、気泡の最大径を160μm以下、気泡密度を
10万個/cm3以上にでき、遮熱性および熱線散乱性
が著しく向上した。この時、自重による変形を最小限に
抑えるため不透明石英ガラスの密度を2.08〜2.1
8にする必要があった。
In order to increase the total surface area of the bubbles contained per unit volume and increase the number of bubbles, according to an experiment conducted by the present inventors, glass raw material powder was sieved to have a maximum particle size of 250 μm. It is preferable to remove the above particles or use a glass raw material powder containing no particles of 250 μm or more in advance. By using the glass raw material powder having this particle size, the maximum diameter of bubbles can be reduced to 160 μm or less, the bubble density can be increased to 100,000 / cm 3 or more, and the heat shielding property and the heat ray scattering property are remarkably improved. At this time, the density of the opaque quartz glass is set to 2.08 to 2.1 in order to minimize the deformation due to its own weight.
Had to be 8.

【0013】ここで、ガラス原料粉の最大粒径が250
μm以下とは、オ−プニングが250μmの篩を用いて
篩分けを行った時に、篩い上に残る粒子がない状態をい
う。
Here, the maximum particle size of the glass raw material powder is 250
The term “μm or less” refers to a state in which no particles remain on the sieve when sieving is performed using a sieve having an opening of 250 μm.

【0014】また、従来の充填式溶融法で得られた不透
明石英ガラスブロックはその中央の大きな空洞等が発生
し均質な気泡を有する石英ガラスブロックが得られ難か
ったが、本発明者等の実験によるとそれはガラス原料粉
層の熱伝導が極めて小さく、溶融の際の昇温速度が速過
ぎると、図2に示すように外側が溶融状態であっても不
透明石英ガラスブロック内部には未溶融層5が残り、そ
れが大きな空隙となり、逆に、昇温速度が遅過ぎると、
図3に示すように不透明石英ガラスブロックの表面層に
気泡4の多い層ができ、反対に底部には気泡が大きいが
数の少ない半透明層6が形成されことに起因することが
わかった。そこで、ガラス原料粉の溶融時の昇温速度を
制御しながら加熱を行うと図1(b)にみるように気泡
4の分布が均一となり、ブロック全体に渡って高い遮熱
性が得られた。特に昇温速条件を下記の範囲に制御する
ことにより最大径が160μm以下、気泡密度が10万
個/cm3以上の微細な気泡が全体に渡り均一に分散し
た不透明石英ガラスブロックが得られた。 室温≦T≦1200℃ 10〜50℃/分 1200℃∠T≦1700℃ 1〜10℃/分 1700℃∠T≦1800℃ 5℃/分以下
Further, in the opaque quartz glass block obtained by the conventional filling-type melting method, a large cavity or the like in the center is generated, and it is difficult to obtain a quartz glass block having uniform bubbles. According to this, the heat conduction of the glass raw material powder layer is extremely small, and if the heating rate during melting is too high, the unmelted layer remains inside the opaque quartz glass block even if the outside is in a molten state as shown in FIG. 5 remains, which becomes a large void, and conversely, if the heating rate is too slow,
As shown in FIG. 3, it was found that a layer having many air bubbles 4 was formed on the surface layer of the opaque quartz glass block, and a translucent layer 6 having large but few air bubbles was formed at the bottom. Therefore, when heating was performed while controlling the temperature rising rate during melting of the glass raw material powder, the distribution of the bubbles 4 became uniform as shown in FIG. 1B, and high heat shielding properties were obtained over the entire block. In particular, an opaque quartz glass block in which fine bubbles having a maximum diameter of 160 μm or less and a bubble density of 100,000 / cm 3 or more were uniformly dispersed throughout the whole was obtained by controlling the heating rate to the following range. . Room temperature ≦ T ≦ 1200 ° C. 10 to 50 ° C./min 1200 ° C.∠T ≦ 1700 ° C. 1 to 10 ° C./min. 1700 ° C.∠T ≦ 1800 ° C. 5 ° C./min or less

【0015】上記昇温速度で加熱した後、1740〜1
800℃の温度範囲で10分以上保持することにより、
ガラス原料粉の均一な溶融ガラス化が確保できる。
After heating at the above heating rate, 1740 to 1
By holding in a temperature range of 800 ° C. for 10 minutes or more,
Uniform melt vitrification of the glass raw material powder can be ensured.

【0016】以下に本発明を実施例で詳しく説明する
が、本発明はその実施例に限定されるものではない。そ
して、以下の実施例および比較例の物性値は下記の測定
方法に基づく値である。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples. The physical properties of the following Examples and Comparative Examples are values based on the following measurement methods.

【0017】物性値の測定 ・ 気泡総断面積の測定;DIN58927に準じ、一
定体積の不透明石英ガラスの薄片を透過光で写真に撮
り、含まれる気泡の断面積を総計して、体積100cm
3当りの総断面積に換算して測定 ・ 気泡密度測定;上記と同様な手法で気泡の個数を数
え、その個数を不透明石英ガラス1cm3に換算して測
定 ・ 比重の測定;アルキメデス法により測定
Measurement of physical property values: Measurement of total cross-sectional area of bubbles: A flake of opaque quartz glass having a fixed volume was photographed with transmitted light in accordance with DIN 58927, and the cross-sectional area of the contained bubbles was totaled to obtain a volume of 100 cm.
Measured by converting to the total cross-sectional area per 3・ Bubble density measurement: Count the number of bubbles by the same method as above and convert the number to 1 cm 3 of opaque quartz glass ・ Measure specific gravity: Measured by Archimedes method

【0018】[0018]

【実施例1】高純度原料水晶粉を篩分けし、表1に示す
ような250μm以上の粒子を除去した。
Example 1 High-purity raw material quartz powder was sieved to remove particles of 250 μm or more as shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】上記篩分水晶粉を石英ガラス管を炉芯管と
する電気炉内に設置し、塩化水素/窒素の50:50で
1200℃にて1時間熱処理し、アルカリ金属の純化を
行った。この純化した篩分水晶粉1を内径200mmφ
×高さ200mmの高純度グラファイト型1に深さ10
0mmまで充填し、それを真空炉内に設置し、10-2
orr以下に真空排気して粒子間に残留していた空気を
除去した。次いで、炉内を窒素で真空破壊し、5l/分
の流量で窒素を流しながら温度を室温から1200℃ま
でを20℃/分、1200℃から1630℃までを6.
14℃/分、1630から1750℃までを0.34℃
/分の割合で昇温し、1750℃に50分保持した。ガ
ラス化したところで、炉の通電を停止し自然冷却した。
得られた不透明石英ガラスブロック3から試料を切り出
し、気泡密度、総断面積、比重および気泡分布を測定し
た。その結果を表2、表3に示す。
The above-mentioned sieved quartz powder was placed in an electric furnace using a quartz glass tube as a furnace core tube and heat-treated at 1200 ° C. for 1 hour at 50:50 hydrogen chloride / nitrogen to purify the alkali metal. . This purified sieve fraction quartz powder 1
× 200 mm high-purity graphite mold 1 with a depth of 10
Filled to 0 mm, placed in a vacuum furnace, 10 -2 t
Air was evacuated to orr or lower to remove air remaining between the particles. Next, the inside of the furnace is vacuum-ruptured with nitrogen, and while flowing nitrogen at a flow rate of 5 l / min, the temperature is increased from room temperature to 1200 ° C. at 20 ° C./min and from 1200 ° C. to 1630 ° C.
14 ° C / min, 0.34 ° C from 1630 to 1750 ° C
/ Min, and maintained at 1750 ° C. for 50 minutes. At the time of vitrification, the power supply to the furnace was stopped and the furnace was naturally cooled.
A sample was cut out from the obtained opaque quartz glass block 3 and the bubble density, the total cross-sectional area, the specific gravity and the bubble distribution were measured. The results are shown in Tables 2 and 3.

【0021】[0021]

【比較例1】原料水晶粉の粒度調整を行わず、そのまま
実施例1と同様な条件でアルカリ金属元素の除去処理を
行った後、グラファイト型に充填し、実施例1と同様に
して不透明石英ガラスブロック3を製造した。得られた
不透明石英ガラスブロックからサンプルを切り出し、実
施例1と同様に物性値を測定した。その結果を表2、3
に示す。
Comparative Example 1 The raw material quartz powder was not subjected to particle size adjustment, and the alkali metal element was removed under the same conditions as in Example 1 and then filled in a graphite mold. Glass block 3 was manufactured. A sample was cut out from the obtained opaque quartz glass block, and physical properties were measured in the same manner as in Example 1. Tables 2 and 3 show the results.
Shown in

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】上記表2にみるように、本発明の方法で得
られた不透明石英ガラスは粒度調整を行なわない比較例
1に比して気泡体積に大きな差がないが、気泡密度およ
び総断面積が大きく、しかも表3にみるように微細な気
泡が均一に分布し、遮熱効果が大きい透明石英ガラスで
ある。
As shown in Table 2 above, the opaque quartz glass obtained by the method of the present invention has no significant difference in the bubble volume as compared with Comparative Example 1 in which the particle size is not adjusted, but the bubble density and the total cross-sectional area It is a transparent quartz glass having a large heat dissipation effect as shown in Table 3, in which fine bubbles are uniformly distributed.

【0025】[0025]

【比較例2】篩分水晶粉1を実施例1と同様の高純度グ
ラファイト型2内に充填し、それを真空炉内に設置し、
同様の雰囲気で炉内を窒素に置換し、室温から1630
℃までを20℃/分、1630℃から1750℃までを
8℃/分で昇温し、1750℃に50分保持した。得ら
れた不透明石英ガラスブロックを縦に分割して調べたと
ころ、ブロック内部に未溶融層5が認められ、気泡が不
均一に存在した。
[Comparative Example 2] A sieved crystal powder 1 was filled in a high-purity graphite mold 2 similar to that in Example 1, and it was placed in a vacuum furnace.
The atmosphere in the furnace was replaced with nitrogen in the same atmosphere,
The temperature was raised at 20 ° C./min to 20 ° C. and from 830 ° C. to 1750 ° C. at 8 ° C./min, and maintained at 1750 ° C. for 50 minutes. When the obtained opaque quartz glass block was vertically divided and examined, an unmelted layer 5 was found inside the block, and bubbles were unevenly present.

【0026】[0026]

【比較例3】比較例2と同様の条件でグラファイト型内
に充填した篩分水晶粉を室温〜1200℃までを20℃
/分、1200〜1750℃までを0.34℃/分の割
合で昇温し、1750℃に50分保持した。得られた不
透明石英ガラスブロックには図3にみるように、上部に
細かい気泡が多数存在する一方、底部には大きな気泡が
少数存在する気泡分布が認められた。スである。
Comparative Example 3 A sieved crystal powder filled in a graphite mold under the same conditions as in Comparative Example 2 was heated from room temperature to 1200 ° C. at 20 ° C.
The temperature was raised from 1200 to 1750 ° C at a rate of 0.34 ° C / min and maintained at 1750 ° C for 50 minutes. As shown in FIG. 3, in the obtained opaque quartz glass block, a large number of fine bubbles were present at the top, while a small number of large bubbles were present at the bottom, and a bubble distribution was observed. Is.

【0027】[0027]

【発明の効果】本発明は、上述のように均一でかつ微細
な気泡が密度高く分散した不透明石英ガラスブロックを
製造でき、これを切り出して作成した遮熱材は炉内の温
度分布を均一化するのに有効であった。
According to the present invention, as described above, it is possible to produce an opaque quartz glass block in which uniform and fine bubbles are dispersed at a high density, and the heat insulating material cut out of the block makes the temperature distribution in the furnace uniform. It was effective to do.

【図面の簡単な説明】[Brief description of the drawings]

図1は本発明の製造方法を示す。図2は従来の充填式溶
融法により得られた不透明石英ガラスブロックの断面図
を示す。図3は従来の充填式溶融法で過加熱して得られ
た不透明石英ガラスブロックの断面図を示す
FIG. 1 shows the manufacturing method of the present invention. FIG. 2 is a sectional view of an opaque quartz glass block obtained by a conventional filling-type melting method. FIG. 3 shows a cross-sectional view of an opaque quartz glass block obtained by overheating by a conventional filling type melting method.

【符号の説明】[Explanation of symbols]

1 ガラス原料粉 2 耐熱性型 3 不透明石英ガラス 4 気泡 5 未溶融層 6 半透明層 DESCRIPTION OF SYMBOLS 1 Glass raw material powder 2 Heat resistant type 3 Opaque quartz glass 4 Bubbles 5 Unmelted layer 6 Translucent layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 博至 福井県武生市北府2丁目13番60号 信越 石英株式会社 武生工場内 (56)参考文献 特開 平5−345636(JP,A) 特開 平6−24771(JP,A) 特開 平7−61838(JP,A) 特開 平7−61839(JP,A) 特開 平7−69674(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03C 1/00 - 14/00 C03B 20/00 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroshi Kimura 2-13-60 Kitafu, Takefu-shi, Fukui Prefecture Shin-Etsu Quartz Co., Ltd. Inside the Takefu Plant (56) References JP-A-5-345636 (JP, A) JP-A-6-24771 (JP, A) JP-A-7-61838 (JP, A) JP-A-7-61839 (JP, A) JP-A-7-69674 (JP, A) (58) Int.Cl. 7 , DB name) C03C 1/00-14/00 C03B 20/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 耐熱性型内に充填したガラス原料粉層を
加熱溶融して微細な気泡を含有する不透明石英ガラスを
製造する方法において、耐熱性型内に最大径が250μ
m以下の粒度を有するガラス原料粉を充填し、次いで該
ガラス原料粉層を不活性ガス雰囲気下で昇温速度を制御
しながら室温から前記ガラス原料粉の溶融温度まで加熱
し、次いで1740〜1800℃の温度範囲に10分以
上保持して、溶融ガラス化することを特徴とする不透明
石英ガラスの製造方法。
1. A method for producing an opaque quartz glass containing fine bubbles by heating and melting a glass raw material powder layer filled in a heat-resistant mold, wherein the maximum diameter is 250 μm in the heat-resistant mold.
m, and then heating the glass material powder layer from room temperature to the melting temperature of the glass material powder while controlling the rate of temperature rise in an inert gas atmosphere. A method for producing opaque quartz glass, wherein the glass is melted while being kept in a temperature range of 10 ° C. for 10 minutes or more.
【請求項2】 昇温速度(T)が下記範囲であることを
特徴とする請求項1記載の不透明石英ガラスの製造方
法。 室温≦T≦1200℃ 10〜50℃/分 1200℃∠T≦1700℃ 1〜10℃/分 1700℃∠T≦1800℃ 5℃/分以下
2. The method for producing opaque quartz glass according to claim 1, wherein the rate of temperature rise (T) is in the following range. Room temperature ≦ T ≦ 1200 ° C. 10 to 50 ° C./min 1200 ° C.∠T ≦ 1700 ° C. 1 to 10 ° C./min. 1700 ° C.∠T ≦ 1800 ° C. 5 ° C./min or less
【請求項3】 ガラス原料粉中のナトリウムおよびカリ
ウムの濃度が0.2ppm以下、OH基濃度が10pp
m以下であることを特徴とする請求項1記載の不透明石
英ガラスの製造方法。
3. The glass raw material powder has a sodium and potassium concentration of 0.2 ppm or less and an OH group concentration of 10 pp.
2. The method for producing opaque quartz glass according to claim 1, wherein m is equal to or less than m.
JP5246156A 1993-09-07 1993-09-07 Method for producing opaque quartz glass Expired - Fee Related JP3050353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5246156A JP3050353B2 (en) 1993-09-07 1993-09-07 Method for producing opaque quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5246156A JP3050353B2 (en) 1993-09-07 1993-09-07 Method for producing opaque quartz glass

Publications (2)

Publication Number Publication Date
JPH0769661A JPH0769661A (en) 1995-03-14
JP3050353B2 true JP3050353B2 (en) 2000-06-12

Family

ID=17144334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5246156A Expired - Fee Related JP3050353B2 (en) 1993-09-07 1993-09-07 Method for producing opaque quartz glass

Country Status (1)

Country Link
JP (1) JP3050353B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772714A (en) * 1995-01-25 1998-06-30 Shin-Etsu Quartz Products Co., Ltd. Process for producing opaque silica glass
JP3693772B2 (en) * 1996-12-17 2005-09-07 東ソー株式会社 Method for producing opaque quartz glass cylinder

Also Published As

Publication number Publication date
JPH0769661A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
US5977000A (en) High purity opaque silica glass
KR20130023316A (en) Silica glass crucible with barium-doped inner wall
JP3043032B2 (en) Manufacturing method of opaque quartz glass
JP3368547B2 (en) Opaque quartz glass and method for producing the same
JP4014724B2 (en) Method for producing silica glass
JP3050353B2 (en) Method for producing opaque quartz glass
JP2829227B2 (en) Opaque quartz glass
JPS63236723A (en) Quartz glass products for semiconductor industry
EP0728709B1 (en) Opaque silica glass and the production process therefor
JP3449654B2 (en) Method for producing opaque quartz glass
JP3050352B2 (en) Method for producing opaque quartz glass
JP3478616B2 (en) Method for producing quartz glass block composite
JPS62212236A (en) Production of glass
JP4191271B2 (en) Opaque quartz glass having a transparent part and method for producing the same
JP3770566B2 (en) Method for producing cylindrical quartz glass
JPH0575703B2 (en)
JPS6158824A (en) Preparation of transparent quartz glass
JP3665664B2 (en) Method for producing opaque quartz glass
JP3050351B2 (en) Method for producing opaque quartz glass
JP3048800B2 (en) Method for producing opaque quartz glass
JP3371399B2 (en) Cristobalite crystalline phase-containing silica glass and method for producing the same
JPS60215534A (en) Quartz glass jig
KR970011334B1 (en) Apaque silica glass and its process thereof
JP4035793B2 (en) Method for producing opaque quartz glass ring having transparent portion
JP3121733B2 (en) High purity synthetic cristobalite powder, method for producing the same, and silica glass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees