JP3665664B2 - Method for producing opaque quartz glass - Google Patents

Method for producing opaque quartz glass Download PDF

Info

Publication number
JP3665664B2
JP3665664B2 JP11767595A JP11767595A JP3665664B2 JP 3665664 B2 JP3665664 B2 JP 3665664B2 JP 11767595 A JP11767595 A JP 11767595A JP 11767595 A JP11767595 A JP 11767595A JP 3665664 B2 JP3665664 B2 JP 3665664B2
Authority
JP
Japan
Prior art keywords
silicon dioxide
quartz glass
dioxide powder
melting point
opaque quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11767595A
Other languages
Japanese (ja)
Other versions
JPH08290926A (en
Inventor
恭一 稲木
宜正 吉田
護 遠藤
仁 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP11767595A priority Critical patent/JP3665664B2/en
Publication of JPH08290926A publication Critical patent/JPH08290926A/en
Application granted granted Critical
Publication of JP3665664B2 publication Critical patent/JP3665664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/80Glass compositions containing bubbles or microbubbles, e.g. opaque quartz glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高純度で耐熱性が高く、しかも遮熱性の優れた不透明石英ガラス、特に熱処理炉の赤外線散乱および遮熱材料として有用な不透明石英ガラスを効率的に製造する方法に関する。
【0002】
【従来の技術】
従来、石英ガラスは、高い純度を有し、耐熱性に優れているところから半導体工業用の熱処理炉や熱処理用治具材料として用いられてきた。ところが、前記半導体工業用の熱処理炉は、炉内の温度分布が非常に重要であり、炉内温度を均一にするため、例えば特開平5−900号公報に開示されているように不透明石英ガラスで炉芯管を形成したり、あるいは実開平1−162234号公報に開示されているように半導体ウエハ−を載置するボ−トの両端に不透明石英ガラスの熱線散乱板を設けたりしていた。
【0003】
上記不透明石英ガラス板等の製造には中実の不透明石英ガラスブロックを板状に切り出すのが効率的であり、そのために原料の二酸化珪素粉を耐熱性型内に充填した後、電気炉で加熱溶融して不透明石英ガラスブロックを製造する方法(以下充填式溶融法という)が採用されてきた。ところが、従来の充填式溶融法にあっては、溶融時に最も温度が上がり易い下部表層部で最初の溶融が起こり、次いで側胴表層部に溶融が起こり、最後に上部表層部へと溶融が進む。一方、中心部では、側胴表層部から中心部にかけて温度勾配が発生し、下部中心から上部中心へと溶融が進む。そのため中心部が完全に溶融される前に、上部表層部の溶融が進み中心部で発生したガスが抜けず、図2(a)に示すように中心部に大きな泡8が形成されたり、あるいは図2(b)に示すように大きな泡が集まった鬚9が形成されたりし、均質な不透明石英ガラスブロックが得られなかった。
【0004】
【発明が解決しようとする課題】
そこで、本発明者等は上記問題点を解決すべく鋭意研究を重ねた結果、耐熱性型内に二酸化珪素粉を充填するに際し、表層部に中心部より融点の高い二酸化珪素粉が配置するように充填することで、均質な不透明石英ガラスブロックが得られることを発見し、本発明を完成したものである。すなわち
【0005】
本発明は、高純度で耐熱性が高く、赤外線散乱および遮熱性に優れた均質な不透明石英ガラスを製造する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明は、耐熱性型内に融点が異なる2種以上の二酸化珪素粉を充填したのち、該充填二酸化珪素粉を焼結、溶融する不透明石英ガラスの製造方法において、前記充填二酸化珪素粉の表層部が中心部より融点の高い二酸化珪素粉で充填されていることを特徴とする不透明石英ガラスの製造方法に係る。
【0007】
上記不透明石英ガラスとは、微細な気泡が均一に分散した不透明な石英ガラスをいい、その製造に当たっては、融点が少なくとも20℃異なる2種以上の天然に産出する結晶質石英粉、又は合成して得られた結晶質石英粉、結晶質クリストバライト粉等であって、粒度が50〜1000μm、嵩密度が1.0〜1.7g/cm、好ましくは1.2〜1.5g/cmの二酸化珪素粉が使用される。天然に産出する結晶質石英粉には、鉱脈、精製プロセス、微量不純物含量等ににより融点が少なくとも20℃異なる石英粉が存在し、それを組合せて使用することにより耐熱性に優れた不透明石英ガラスブロックを得ることができる。また、ゾル−ゲル法等で合成した結晶質クリストバライト粉は、天然に産出する結晶質石英粉より更に融点が約30℃程度高いことから本発明の表層部形成原料として好適である。本発明の製造方法において、中心部の二酸化珪素粉の粒度が前記範囲から外れると微細な気泡を有する不透明石英ガラスが得られず、また二酸化珪素粉の嵩密度が1.0g/cm未満では二酸化珪素粉が断熱材となって焼結が中心部まで進まず、外周部だけが溶融された不中実な不透明石英ガラスブロックとなる。さらに嵩密度が1.7g/cmを越える二酸化珪素粉は、前記粒度範囲では困難である。
【0008】
一方、溶融して得られた不透明石英ガラスブロックの嵩密度は、1.7〜2.15g/cm3の範囲が良い。嵩密度が1.7g/cm3未満では、気泡の含有量が多く機械的強度が低下し、また嵩密度が2.15g/cm3を越えると透明度が増し光の散乱効果が低下する。
【0009】
本発明の製造方法にあっては、図1又は2に示すように耐熱性型内の中心部に融点の低い二酸化珪素粉を充填し、その周囲に融点の高い二酸化珪素粉を層状に充填し、それを非酸化性雰囲気下で焼結、溶融することからなる。前記二酸化珪素粉の充填方法としては、耐熱性型内にガラス製仕切板を配置し、表層部と中心部を形成し、該表層部に融点の高い二酸化珪素粉を、また中心部には融点の低い二酸化珪素粉を充填し、充填終了後ガラス製仕切板を抜き取る等の方法や耐熱性型に先ず融点の低い二酸化珪素粉を充填し、その上部に融点の高い二酸化珪素粉を充填する方法等が採用される。特に後者の充填方法は、効率的に不透明石英ガラスを製造するための充填方法として好適である。前記二酸化珪素粉の充填した型を電気炉内に設置し、10-2torr以下に真空排気し粒子間に残留している空気を除去したのち、炉内を窒素で真空破壊し、5l/minの流量で窒素を流しながら室温から融点の最も高い結晶質二酸化珪素粉の融点未満まで温度を上昇して二酸化珪素粉の焼結、溶融を行う。前記温度の上昇方法としては好ましくは室温から1000℃までは10〜50℃/分の昇温速度で、1000℃を超え融点が最も低い結晶質二酸化珪素粉の融点又は該融点より10℃高い温度までは10℃/分以下の昇温速度で、さらに融点の最も高い結晶質二酸化珪素粉の融点未満まではゆっくりした昇温速度で上昇するのが良い。前記温度上昇により、気泡径10〜300μm、気泡密度100,000〜1,000,000個/cm3の微細な気泡が均一に分散した不透明石英ガラスブロックが得られる。
【0010】
上記製造方法で使用する耐熱性型としては、カーボン製型、セラミック製型、及び前記型枠内に透明石英ガラス管等を挿入した型等がが用いられる。特に、透明石英ガラス管の使用は、原料の高純度が維持されるとともに、製造されるシリカガラスに形崩れが起らず良好な不透明石英ガラスブロックが得られるので好ましい。また、溶融時の雰囲気は、窒素ガス雰囲気等の不活性ガス雰囲気や真空雰囲気が用いられるが、耐熱性型がカーボン性のときは、不活性ガス雰囲気を必須する。耐熱性型がセラミックス製であれば、任意の雰囲気を選択することができる。
【0011】
以下に本発明を実施例で詳しく説明するが、本発明はその実施例に限定されるものではない。
【0012】
【実施例】
実施例1
図1に示す内径270mm、高さ300mmのグラファイト製型1内に、外径270mm、肉厚4mm、高さ300mmの石英ガラス管2を挿入した。前記石英ガラス管2内に、粒径が50〜200μm、平均粒径が約100μm、嵩密度が1.4g/cm3、融点が1730℃の天然石英結晶粉3を充填し、その上層部に粒径が50〜200μm、平均粒径が約100μm、嵩密度が1.4g/cm3、融点が1780℃の天然石英結晶粉4を厚さ1cmに充填し、それを電気炉内に設置し、10-2torr以下に真空排気し粒子間に残留している空気を除去したのち、炉内を窒素で真空破壊し、5l/minの流量で窒素を流しながら室温から1200℃までを120分、1200℃〜1630℃までを90分、1630℃〜1750℃までを240分で昇温し、次いで1750℃に60分保持し、加熱を止めて室温まで冷却し、不透明石英ガラスブロックを取り出した。得られた不透明石英ガラスブロックの上部から10mmの部分をカットし、鬚の発生の有無を調べた。その結果を表1に示す。
【0013】
実施例2
図2に示すように内径270mm、高さ300mmのグラファイト製型1内にガラス製仕切板6で1cm厚さの表層部が形成できるように型内部を仕切り、前記表層部に粒径が50〜200μm、平均粒径が約100μm、嵩密度が1.4g/cm3、融点が1780℃の天然石英結晶粉4を型の底部及び胴部の厚さが1cmとなるように充填し、次いで粒径50〜200μm、平均粒径が約100μm、嵩密度が1.4g/cm3、融点が1730℃の天然石英結晶粉3を中心部に充填し、ガラス製仕切板6を抜き取った後、実施例1と同様に室温から1200℃までを120分で、1200℃〜1630℃までを90分で、1630℃〜1750℃までを240分で昇温し、最後に1750℃に60分保持したのち、加熱を止めて室温まで冷却し、不透明石英ガラスブロックを取り出した。得られた不透明石英ガラスブロックの上部から10mmの部分をカットし、鬚の発生の有無を調べた。その結果を表1に示す。
【0014】
比較例1
内径270mm、高さ300mmのグラファイト製型内に、粒径が50〜200μm、平均粒径が約100μm、嵩密度が1.4g/cm3、融点が1750℃の天然石英結晶粉を充填し、それを実施例1と同様に焼結、溶融して不透明石英ガラスブロックを製造した。得られた不透明石英ガラスブロックについて実施例1と同様に鬚の有無を調べた。その結果を表1に示す。
【0015】
実施例3
実施例1と同様に図1に示す内径270mm、高さ300mmのグラファイト製型1内に、外径270mm、肉厚4mm、高さ300mmの石英ガラス管2を挿入し、該ガラス管2内に、粒径が250〜500μm、平均粒径が約350μm、嵩密度が1.3g/cm3、融点が1780℃の天然石英結晶質粉を充填した。この天然石英結晶質粉の上層部に粒径が250〜500μm、平均粒径が約350μm、融点が1810℃の合成クリストバライト結晶粉4′を厚さ1cmに充填し、それを電気炉内に設置し、10-2torr以下に真空排気し粒子間に残留している空気を除去したのち、炉内を窒素で真空破壊し、5l/minの流量で窒素を流しながら室温から1200℃までを120分、1200℃〜1630℃までを90分、1630℃〜1800℃までを340分で昇温し、最後に1800℃に60分保持したのち、加熱を止めて室温まで冷却し、不透明石英ガラスブロックを取り出した。得られた不透明石英ガラスブロックについて実施例1と同様に鬚の有無を調べた。その結果を表1に示す。
【0016】
【表1】

Figure 0003665664
【0017】
【発明の効果】
本発明の製造方法では、融点の異なる二酸化珪素粉を融点が高い二酸化珪素粉が表層部になるように充填し、それを融点の低い二酸化珪素粉の融点以上に加熱するという簡便な方法で均質な不透明石英ガラスブロックを製造することができ、それを切り出すことで、赤外線散乱および遮熱性の優れた不透明石英ガラス板が得られる。
【図面の簡単な説明】
【図1】本発明の製造方法の1態様を示す。
【図2】本発明の製造方法の他の態様を示す。
【図3】従来の充填式溶融方法による不透明石英ガラスの製造方法を示す。
【符号の説明】
1 耐熱製型
2 石英ガラス管
3 融点の低い二酸化珪素粉
4 融点の高い二酸化珪素粉
4´合成クリストバライト結晶粉
5 ヒーター
6 石英ガラス製仕切板
7 ガラスマトリックス
8 微細気泡
9 大気泡
10 鬚[0001]
[Industrial application fields]
The present invention relates to an opaque quartz glass having high purity, high heat resistance and excellent heat shielding, and more particularly to a method for efficiently producing opaque quartz glass useful as an infrared scattering and heat shielding material in a heat treatment furnace.
[0002]
[Prior art]
Conventionally, quartz glass has been used as a heat treatment furnace or heat treatment jig material for the semiconductor industry because of its high purity and excellent heat resistance. However, in the heat treatment furnace for the semiconductor industry, the temperature distribution in the furnace is very important, and in order to make the furnace temperature uniform, for example, as disclosed in JP-A-5-900, opaque quartz glass is used. Or a heat ray scattering plate made of opaque quartz glass was provided at both ends of a boat on which a semiconductor wafer was placed as disclosed in Japanese Utility Model Laid-Open No. 1-162234. .
[0003]
It is efficient to cut a solid opaque quartz glass block into a plate shape for the production of the opaque quartz glass plate and the like. For this purpose, the silicon dioxide powder as a raw material is filled in a heat-resistant mold and then heated in an electric furnace. A method of melting and producing an opaque quartz glass block (hereinafter referred to as a filling melting method) has been adopted. However, in the conventional filling type melting method, the first melting occurs in the lower surface layer portion where the temperature is most likely to rise during melting, then the melting occurs in the side body surface layer portion, and finally the melting proceeds to the upper surface layer portion. . On the other hand, in the central portion, a temperature gradient is generated from the side trunk surface layer portion to the central portion, and melting proceeds from the lower center to the upper center. Therefore, before the center part is completely melted, the upper surface layer part melts and the gas generated in the center part does not escape, and a large bubble 8 is formed in the center part as shown in FIG. As shown in FIG. 2B, ridges 9 in which large bubbles gathered were formed, and a homogeneous opaque quartz glass block could not be obtained.
[0004]
[Problems to be solved by the invention]
Therefore, as a result of intensive studies to solve the above problems, the present inventors have found that silicon dioxide powder having a melting point higher than that of the central portion is arranged in the surface layer portion when filling the silicon dioxide powder in the heat-resistant mold. It has been found that a homogeneous opaque quartz glass block can be obtained by filling in, and the present invention has been completed. That is, [0005]
An object of the present invention is to provide a method for producing a homogeneous opaque quartz glass having high purity, high heat resistance, and excellent infrared scattering and heat shielding properties.
[0006]
[Means for Solving the Problems]
The present invention that achieves the above object provides a method for producing an opaque quartz glass in which a heat-resistant mold is filled with two or more types of silicon dioxide powders having different melting points, and then the filled silicon dioxide powder is sintered and melted. The present invention relates to a method for producing opaque quartz glass, wherein a surface layer portion of silicon dioxide powder is filled with silicon dioxide powder having a melting point higher than that of the center portion.
[0007]
The opaque quartz glass refers to an opaque quartz glass in which fine bubbles are uniformly dispersed, and in the production thereof, two or more kinds of naturally occurring crystalline quartz powders having melting points different by at least 20 ° C. , or synthesized The obtained crystalline quartz powder, crystalline cristobalite powder, etc. , having a particle size of 50 to 1000 μm and a bulk density of 1.0 to 1.7 g / cm 3 , preferably 1.2 to 1.5 g / cm 3 Silicon dioxide powder is used. Naturally produced crystalline quartz powder includes quartz powder having a melting point that differs by at least 20 ° C. depending on the vein, refining process, trace impurity content, etc., and by using these in combination, opaque quartz glass with excellent heat resistance You can get a block. In addition, crystalline cristobalite powder synthesized by the sol-gel method or the like is suitable as a raw material for forming the surface layer of the present invention because it has a melting point of about 30 ° C. higher than that of naturally produced crystalline quartz powder. In the production method of the present invention, when the particle size of the silicon dioxide powder at the center part is out of the above range, an opaque quartz glass having fine bubbles cannot be obtained, and the bulk density of the silicon dioxide powder is less than 1.0 g / cm 3. The silicon dioxide powder becomes a heat insulating material, so that sintering does not proceed to the central portion, and only the outer peripheral portion is melted to become an innocent opaque quartz glass block. Furthermore, silicon dioxide powder having a bulk density exceeding 1.7 g / cm 3 is difficult in the above particle size range.
[0008]
On the other hand, the bulk density of the opaque quartz glass block obtained by melting is preferably in the range of 1.7 to 2.15 g / cm 3 . When the bulk density is less than 1.7 g / cm 3 , the bubble content is large and the mechanical strength is lowered. When the bulk density exceeds 2.15 g / cm 3 , the transparency is increased and the light scattering effect is lowered.
[0009]
In the production method of the present invention, as shown in FIG. 1 or 2, the silicon dioxide powder having a low melting point is filled in the central portion of the heat-resistant mold, and the silicon dioxide powder having a high melting point is filled in layers around the center. And sintering and melting it in a non-oxidizing atmosphere. As a filling method of the silicon dioxide powder, a glass partition plate is disposed in a heat-resistant mold, a surface layer portion and a center portion are formed, silicon dioxide powder having a high melting point is formed in the surface layer portion, and a melting point is formed in the center portion. A method such as filling a silicon dioxide powder having a low melting point, filling a silicon dioxide powder having a low melting point into a heat-resistant mold, and then filling a silicon dioxide powder having a high melting point on the top. Etc. are adopted. In particular, the latter filling method is suitable as a filling method for efficiently producing opaque quartz glass. The mold filled with silicon dioxide powder was placed in an electric furnace, evacuated to 10 −2 torr or less to remove the air remaining between the particles, and the furnace was vacuum broken with nitrogen to give 5 l / min. While flowing nitrogen at a flow rate of, the temperature is raised from room temperature to below the melting point of the crystalline silicon dioxide powder having the highest melting point to sinter and melt the silicon dioxide powder. Preferably, the temperature is raised from room temperature to 1000 ° C. at a rate of temperature increase of 10 to 50 ° C./min, and the melting point of crystalline silicon dioxide powder having a melting point exceeding 1000 ° C. or the lowest melting point is 10 ° C. or higher. It is preferable that the temperature rises at a rate of 10 ° C./min or less until it is lower than the melting point of the crystalline silicon dioxide powder having the highest melting point, and at a slow rate of temperature rise. By the temperature increase, an opaque quartz glass block in which fine bubbles having a bubble diameter of 10 to 300 μm and a bubble density of 100,000 to 1,000,000 / cm 3 are uniformly dispersed is obtained.
[0010]
As the heat-resistant mold used in the above production method, a carbon mold, a ceramic mold, and a mold in which a transparent quartz glass tube or the like is inserted into the mold are used. In particular, the use of a transparent quartz glass tube is preferable because the high purity of the raw material is maintained and the silica glass to be produced is not deformed and a good opaque quartz glass block is obtained. In addition, an inert gas atmosphere such as a nitrogen gas atmosphere or a vacuum atmosphere is used as the melting atmosphere, but when the heat resistant mold is carbon, an inert gas atmosphere is essential. If the heat resistant mold is made of ceramics, any atmosphere can be selected.
[0011]
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the examples.
[0012]
【Example】
Example 1
A quartz glass tube 2 having an outer diameter of 270 mm, a wall thickness of 4 mm, and a height of 300 mm was inserted into a graphite mold 1 having an inner diameter of 270 mm and a height of 300 mm shown in FIG. The quartz glass tube 2 is filled with natural quartz crystal powder 3 having a particle size of 50 to 200 μm, an average particle size of about 100 μm, a bulk density of 1.4 g / cm 3 and a melting point of 1730 ° C. A natural quartz crystal powder 4 having a particle size of 50 to 200 μm, an average particle size of about 100 μm, a bulk density of 1.4 g / cm 3 , and a melting point of 1780 ° C. is filled to a thickness of 1 cm and placed in an electric furnace. After evacuating to 10 -2 torr or less and removing the air remaining between the particles, the inside of the furnace is vacuum-ruptured with nitrogen, and from room temperature to 1200 ° C for 120 minutes while flowing nitrogen at a flow rate of 5 l / min. The temperature was raised from 1200 ° C. to 1630 ° C. for 90 minutes, and from 1630 ° C. to 1750 ° C. in 240 minutes, then held at 1750 ° C. for 60 minutes, stopped heating and cooled to room temperature, and the opaque quartz glass block was taken out. . A 10 mm portion was cut from the upper part of the obtained opaque quartz glass block, and the presence or absence of wrinkles was examined. The results are shown in Table 1.
[0013]
Example 2
As shown in FIG. 2, the interior of the mold is partitioned so that a surface layer portion having a thickness of 1 cm can be formed by a glass partition plate 6 in a graphite mold 1 having an inner diameter of 270 mm and a height of 300 mm. 200 μm, an average particle size of about 100 μm, a bulk density of 1.4 g / cm 3 and a melting point of 1780 ° C. are filled with natural quartz crystal powder 4 so that the thickness of the bottom and body of the mold is 1 cm. Filled with natural quartz crystal powder 3 having a diameter of 50 to 200 μm, an average particle size of about 100 μm, a bulk density of 1.4 g / cm 3 , and a melting point of 1730 ° C. in the center, and after removing the glass partition plate 6 As in Example 1, the temperature was raised from room temperature to 1200 ° C. for 120 minutes, from 1200 ° C. to 1630 ° C. in 90 minutes, from 1630 ° C. to 1750 ° C. in 240 minutes, and finally held at 1750 ° C. for 60 minutes. , Stop heating to room temperature And retirement was removed an opaque silica glass block. A 10 mm portion was cut from the upper part of the obtained opaque quartz glass block, and the presence or absence of wrinkles was examined. The results are shown in Table 1.
[0014]
Comparative Example 1
A graphite mold having an inner diameter of 270 mm and a height of 300 mm is filled with natural quartz crystal powder having a particle size of 50 to 200 μm, an average particle size of about 100 μm, a bulk density of 1.4 g / cm 3 , and a melting point of 1750 ° C. This was sintered and melted in the same manner as in Example 1 to produce an opaque quartz glass block. The obtained opaque quartz glass block was examined for the presence of wrinkles in the same manner as in Example 1. The results are shown in Table 1.
[0015]
Example 3
As in Example 1, a quartz glass tube 2 having an outer diameter of 270 mm, a wall thickness of 4 mm, and a height of 300 mm is inserted into a graphite mold 1 having an inner diameter of 270 mm and a height of 300 mm shown in FIG. A natural quartz crystalline powder having a particle size of 250 to 500 μm, an average particle size of about 350 μm, a bulk density of 1.3 g / cm 3 and a melting point of 1780 ° C. was filled. A synthetic cristobalite crystal powder 4 'having a particle size of 250-500 μm, an average particle size of about 350 μm, and a melting point of 1810 ° C. is filled to a thickness of 1 cm on the upper layer of the natural quartz crystalline powder, and this is installed in an electric furnace. Then, after evacuating to 10 −2 torr or less and removing the air remaining between the particles, the inside of the furnace was vacuum-breaked with nitrogen, and the temperature was increased from room temperature to 1200 ° C. while flowing nitrogen at a flow rate of 5 l / min. The temperature is raised from 1200 ° C to 1630 ° C for 90 minutes, from 1630 ° C to 1800 ° C in 340 minutes, and finally held at 1800 ° C for 60 minutes. Was taken out. The obtained opaque quartz glass block was examined for the presence of wrinkles in the same manner as in Example 1. The results are shown in Table 1.
[0016]
[Table 1]
Figure 0003665664
[0017]
【The invention's effect】
In the production method of the present invention, silicon dioxide powder having a different melting point is filled so that the silicon dioxide powder having a higher melting point becomes a surface layer portion, and then heated to a temperature equal to or higher than the melting point of the silicon dioxide powder having a lower melting point. An opaque quartz glass block can be produced, and by cutting it, an opaque quartz glass plate excellent in infrared scattering and heat shielding properties can be obtained.
[Brief description of the drawings]
FIG. 1 shows one embodiment of the production method of the present invention.
FIG. 2 shows another embodiment of the production method of the present invention.
FIG. 3 shows a method for producing opaque quartz glass by a conventional filling melting method.
[Explanation of symbols]
1 Heat-resistant mold 2 Quartz glass tube 3 Low melting point silicon dioxide powder 4 High melting point silicon dioxide powder 4 'Synthetic cristobalite crystal powder 5 Heater 6 Quartz glass partition plate 7 Glass matrix 8 Fine bubbles 9 Large bubbles 10

Claims (3)

耐熱性型内に融点が異なる2種以上の結晶質二酸化珪素粉を充填したのち、該充填二酸化珪素粉を焼結、溶融する不透明石英ガラスの製造方法において、前記融点が異なる2種以上の結晶質二酸化珪素粉の粒度が50〜1000μm、嵩密度が1.0〜1.7g/cmの範囲にあり、かつ充填二酸化珪素粉の表層部が中心部より融点の高い結晶質二酸化珪素粉で充填されていることを特徴とする不透明石英ガラスの製造方法。In a method for producing opaque quartz glass, in which two or more types of crystalline silicon dioxide powders having different melting points are filled in a heat-resistant mold, and then the filled silicon dioxide powder is sintered and melted, two or more types of crystals having different melting points are used. quality granularity of the silicon dioxide powder is 50 to 1000 [mu] m, in the range bulk density of 1.0~1.7g / cm 3, and a surface layer portion of the filling silicon dioxide powder with high crystalline silicon dioxide powder the melting points of the center portion A method for producing opaque quartz glass, which is filled. 耐熱性型内に融点の低い結晶質二酸化珪素粉を充填し、次いで前記二酸化珪素粉層の上部に融点の高い結晶質二酸化珪素粉を充填したのち焼成、溶融することを特徴とする請求項1記載の不透明石英ガラスの製造方法。2. The heat-resistant mold is filled with crystalline silicon dioxide powder having a low melting point, and then filled with crystalline silicon dioxide powder having a high melting point on the silicon dioxide powder layer, followed by firing and melting. The manufacturing method of the opaque quartz glass of description. 表層部の結晶質二酸化珪素粉の融点が中心部の結晶質二酸化珪素粉の融点より少なくとも20℃高いことを特徴とする請求項1又は2記載の不透明石英ガラスの製造方法。Method for producing opaque quartz glass according to claim 1 or 2, wherein the melting point of the crystalline silicon dioxide powder of the surface layer portion may be higher at least 20 ° C. above the melting point of the crystalline silicon dioxide powder in the center.
JP11767595A 1995-04-20 1995-04-20 Method for producing opaque quartz glass Expired - Fee Related JP3665664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11767595A JP3665664B2 (en) 1995-04-20 1995-04-20 Method for producing opaque quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11767595A JP3665664B2 (en) 1995-04-20 1995-04-20 Method for producing opaque quartz glass

Publications (2)

Publication Number Publication Date
JPH08290926A JPH08290926A (en) 1996-11-05
JP3665664B2 true JP3665664B2 (en) 2005-06-29

Family

ID=14717512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11767595A Expired - Fee Related JP3665664B2 (en) 1995-04-20 1995-04-20 Method for producing opaque quartz glass

Country Status (1)

Country Link
JP (1) JP3665664B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884348B2 (en) * 2007-10-17 2012-02-29 信越石英株式会社 Manufacturing method of quartz glass block

Also Published As

Publication number Publication date
JPH08290926A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
US5772714A (en) Process for producing opaque silica glass
EP0463543B1 (en) Manufacture of quartz glass crucible for use in the manufacture of single crystal in silicon
EP1290250B1 (en) Multilayered quartz glass crucible and method of its production
TWI395719B (en) Method of producing a quartz glass crucible
JP5462423B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JP4014724B2 (en) Method for producing silica glass
JPS62212234A (en) Production of glass
JPH08151220A (en) Method for molding quartz glass
JP3665664B2 (en) Method for producing opaque quartz glass
EP1024118A2 (en) Large diameter quartz glass crucible for pulling up single crystalline silicon
JP2005162535A (en) Method for producing transparent synthetic quartz glass and synthetic quartz glass body
JP3050352B2 (en) Method for producing opaque quartz glass
JP3449654B2 (en) Method for producing opaque quartz glass
JP3050351B2 (en) Method for producing opaque quartz glass
JPH0761827A (en) Opaque silica glass
JP3048800B2 (en) Method for producing opaque quartz glass
JP3050353B2 (en) Method for producing opaque quartz glass
JPH09202632A (en) Production of cylindrical quartz glass
JP4270477B2 (en) Method for producing transparent quartz glass
JP4076263B2 (en) Method for producing transparent silica glass
JP2628211B2 (en) Composite silica body, method of manufacturing the same, and semiconductor manufacturing jig using the silica body
JPS60215534A (en) Quartz glass jig
JP3699778B2 (en) Manufacturing method of quartz glass crucible
JP3371399B2 (en) Cristobalite crystalline phase-containing silica glass and method for producing the same
JP3649801B2 (en) Method for producing transparent quartz glass ingot

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050105

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees