JP4270477B2 - Method for producing transparent quartz glass - Google Patents

Method for producing transparent quartz glass Download PDF

Info

Publication number
JP4270477B2
JP4270477B2 JP03013196A JP3013196A JP4270477B2 JP 4270477 B2 JP4270477 B2 JP 4270477B2 JP 03013196 A JP03013196 A JP 03013196A JP 3013196 A JP3013196 A JP 3013196A JP 4270477 B2 JP4270477 B2 JP 4270477B2
Authority
JP
Japan
Prior art keywords
quartz glass
quartz
quartz powder
filled
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03013196A
Other languages
Japanese (ja)
Other versions
JPH09202631A (en
Inventor
透 横田
朗 藤ノ木
宏 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP03013196A priority Critical patent/JP4270477B2/en
Publication of JPH09202631A publication Critical patent/JPH09202631A/en
Application granted granted Critical
Publication of JP4270477B2 publication Critical patent/JP4270477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

【0001】
【産業上の利用分野】
本発明は、透明石英ガラスの製造方法、さらに詳しくは半導体製品の製造工程で用いる石英ガラス治具の製造に好適な透明石英ガラスの製造方法に関する。
【0002】
【従来技術】
従来、石英ガラスは高純度で、しかも耐熱性に優れているところから半導体ウエハーの処理工程で使用される石英ガラス治具用素材として使用されてきた。近年、前記半導体ウエハーの処理に使用する石英ガラス治具が肉厚の部材を多く使用するようになり、それを作成するむく棒、管或は板が酸水素火炎中に石英粉を供給しながら溶融堆積させるいわゆるベルヌイ法で製造されていたが、製造時間が長くかかりコスト高になるといった欠点があった。そこで、大型化が可能で、かつ水酸基濃度が低く高温粘度の高い石英ガラスの製造方法である、カーボン製鋳型に石英粉を充填しそれを電気炉を用いて加熱溶融する製造方法(以下カーボン鋳型法という)が提案された。しかし前記製造方法では石英粉がガラス化前にカーボン製鋳型内表面と充填石英粉の接触部分で熱反応が始まり、それが一定の深さまで進行して石英ガラスの外表面に荒れを作ったり、或は前記熱反応で発生した汚染ガスが充填石英粉の隙間を通って内部に移動し石英ガラスの外層部を汚染したりして製品の歩留を低くするといった問題点があった。
【0003】
【発明が解決しようとする課題】
こうした現状に鑑み、本発明者等は、半導体処理治具製造用の石英ガラスの製造方法について検討を重ねた結果、カーボン鋳型法による石英ガラスの外表面の荒れや外層部の汚染が、カーボン製鋳型と石英粉との熱反応に起因し、その熱反応がカーボン製鋳型と石英粉との接触面積の増大で加速されることがわかった。そして前記外表面の荒れや外層部の汚染がカーボン製鋳型の内周壁と充填石英粉との間に薄肉の透明石英ガラス層を介在させカーボン製鋳型と石英粉を直接接触させないとともに、充填石英粉中に含有する気体を充分排気しながら加熱溶融することで解決することを見出し、本発明を完成したものである。すなわち、
【0004】
本発明は、外表面の荒れや外層部の汚染が少なく比較的小径の透明石英ガラスを生産性よく製造する方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成する本発明は、石英粉をカーボン製鋳型に充填し真空下で加熱溶融する透明な石英ガラスの製造方法において、前記カーボン製鋳型内壁面と充填石英粉との間に石英ガラス層を介在させ、真空下に、充填石英粉層の高さ5cm当たり少なくとも30分以上の時間を要して加熱昇温し、石英粉層内の気体を排気しながら、充填石英粉の溶融を下部から上方に順に進行させる透明石英ガラスの製造方法に係る。
【0006】
上記製造方法で使用する石英粉としては高温粘性に優れ、高純度であることが要求されるところから、精製した高純度の結晶質石英粉を使用するのが好ましい。前記結晶質石英粉としては例えば水晶、珪砂、珪石等を粉砕して得られた粉体を挙げることができるが、特に水晶粉がよい。前記結晶質石英粉はその粒度が50〜300μmの範囲のものを使用する。粒度が50μm未満では石英粉の溶融が速くなり、気泡の含有を助長して好ましくなく、また粒度が300μmを超えると均一なガラス化が困難となる。
【0007】
本発明における製造方法においてカーボン製鋳型に石英粉を充填したとき状態を図1に示す。また、図2に図1のAーA線水平断面図を示す。図1、2において、1はカーボン製鋳型、2は石英ガラス管、3は石英粉、4は石英ガラス板である。本発明の製造方法では、図1のカーボン製鋳型1の内周壁と充填石英粉の間に薄肉の石英ガラス層介在させ、真空下で充填石英粉層中の気体を排気しながら加熱溶融する方法が採られるが、前記カーボン製鋳型1と石英粉3との間に介在させる石英ガラス層薄肉の管状、又は管状及び板状からなる透明石英ガラスが好ましい。特に管状の透明石英ガラス層を介在させるのが作業効率からみて好適である。そして前記石英ガラスは原料の石英粉と同程度の純度を有し、かつ含有されるOH基濃度も30ppm以下とするのがよい。前記OH基濃度の石英ガラス層を介在することにより真空下での加熱溶融中に石英ガラス層のOH基濃度が低下し、最後には石英粉から得られた石英ガラスと石英ガラス層との境界が判別できない程度まで減少する。また、前記石英ガラス層カーボン製鋳型に石英ガラス板4を敷いたのちその上に石英ガラス管2を設置するのが特に好ましい。これにより不必要に石英ガラスを研削除去することなく歩留り高く気泡のない透明石英ガラスを製造できる。このように本発明ではカーボン製鋳型内部に石英ガラス層を介在させその内部に石英粉を充填するのでカーボン製鋳型と石英粉とが直接接触することがなく、しかもカーボン製鋳型は表面が滑らかな石英ガラス層と接触するところから、接触面積が減少し、カーボン製鋳型と石英粉との熱反応で発生するガスが少なくなる上に、発生したガスが緻密な石英ガラス層で石英粉充填層内部に移行するのが阻止され、石英ガラスの外表面の荒れや外層部の汚染が少なくなる。
【0008】
本発明の製造方法における加熱溶融条件は、室温から1600℃までを200〜600℃/時間の昇温速度で、1600℃〜石英粉の溶融温度までを10〜100℃/時間のゆっくりした昇温速度で、充填石英粉層の高さ5cm当たり30分以上の時間を要して加熱し、石英粉層内の気体を排気しながら充填石英粉層の下部から上方に加熱源を順次移動しながら加熱溶融することからなる。前記加熱溶融後は降温することなく少なくとも2時間、好ましくは3〜5時間、鋳型内に不活性ガスを導入し真空破壊し、0.5〜3気圧の加圧下に保持する。前記加熱溶融条件をとることにより、充填石英粉中の気体の排気が充分に行われるとともに、溶融中に発生した気体も排気でき気泡のない透明の比較的小径の石英ガラスを外周部の荒れや汚染が少なく生産性よく製造できる。特に前記加熱において充填結晶質石英粉層の下端部を上端部より少なくとも30℃高い温度に保持すると気体の排気が一段と促進され生産性が向上する。
【0009】
【発明の実施の態様】
次に具体例に基づいて本発明を詳細に説明するが、本発明はそれにより限定されるものではない。
【0010】
【実施例】
実施例1
カーボン板上に内径155mm、長さ500mmのカーボン筒を立てて、その中に外径154mm、肉厚2mm、長さ500mmの透明石英ガラス管2(OH基濃度28ppm、総金属不純物<25ppm)を挿入し、内部に結晶質石英粉(総金属不純物<30ppm、粒度分布60〜280μm、平均粒径180μm)を振動を与えながら充填し高さ約470mmに詰めた。前記充填物の密度は約1.45g/cm3であった。
【0011】
上記結晶質石英粉を充填したカーボン製鋳型を真空炉内にセットし1×10-4mmHg以下の真空度まで排気した後、下部ヒーターのみを使用して昇温をスタートした。昇温条件は以下のとおりである。
室温〜1600℃ 4時間(400℃/時間)
1600℃〜1780℃ 6時間(30℃/時間)
1780℃保持 3時間
【0012】
上記昇温において、1780℃に2時間保持したのち、窒素ガスで炉内の真空を破壊し、大気圧に戻し1時間保持し、溶融・冷却終了まで大気圧を維持した。前記昇温加熱における加熱時間は結晶質石英粉層厚さ470mmに対して合計10時間であり、5cm当り約64分の平均加熱時間であった。
【0013】
冷却後取り出された石英ガラスには気泡がなく透明な石英ガラスであった。該石英ガラスをその外表面から約1mmまで研削したところ通常のガラス表面があらわれ、その部分をサンプル抽出し純度を測定したところ内部の純度と変わらなかった。さらに上下表面の凹凸部を切り落として外径152mm、長さ295mmで重量11.78Kgの石英ガラスを得た。この石英ガラスは製造に使用した石英ガラス管と石英粉の合計重量にたいして90%の歩留であった。このように製造された石英ガラスには外表面荒れや外層部の汚染が少ない上に目視でカーボン製鋳型の損耗が少ないことが観察された。
【0014】
比較例1
実施例1と同様なカーボン筒でカーボン製鋳型を形成しその中に結晶質石英粉(総金属不純物<30ppm、粒度分布60〜280μm、平均粒径180μm)を12.85kgを充填した。前記充填に際しては振動を与えながら密度を挙げ、高さ約470mmに詰めた。前記充填物の密度は約1.45g/cm3であった。前記結晶質石英粉の充填されたカーボン鋳型を実施例1と同様に加熱溶融して石英ガラスインゴットを製造した。得られた石英ガラスはカーボンと反応し、外表面が荒れているとともに、中心部と同じ純度の石英ガラスを露出するのに半径で6mm程度の研削が必要であり、かつ石英ガラスの上下を切り落とす必要があった。その結果得られた石英ガラスの重量は10.4kgで投入原料当たり80%の歩留であった。カーボン製鋳型の損耗が大きいことが目視された。
【0015】
【発明の効果】
本発明の製造方法では、外表面荒れや外層部の汚染が少なく、かつ気泡のない比較的小径の透明石英ガラスをが歩留り高く製造できる。前記透明石英ガラスを素材として作成された半導体処理用石英ガラス治具は高温粘性が高く治具寿命の高いものであった。さらにカーボン製鋳型と石英粉との反応が少ないところからカーボン製鋳型の損耗が少なくカーボン製鋳型を長く使用でき、製造コストを下げることができた。
【図面の簡単な説明】
【図1】図1は、本発明の製造方法における石英粉を充填したカーボン製鋳型の概略図を示す。
【図2】図2は、図1のAーA線水平断面図である。
【符号の説明】
1 カーボン製鋳型
2 ガラス層
3 充填石英粉
4 ガラス板
[0001]
[Industrial application fields]
The present invention relates to a method for producing transparent quartz glass, and more particularly to a method for producing transparent quartz glass suitable for producing a quartz glass jig used in the production process of a semiconductor product.
[0002]
[Prior art]
Conventionally, quartz glass has been used as a material for a quartz glass jig used in a semiconductor wafer processing process because of its high purity and excellent heat resistance. In recent years, the quartz glass jig used for the processing of the semiconductor wafer has used many thick members, and the bar, tube or plate for producing it has supplied quartz powder into the oxyhydrogen flame. Although manufactured by the so-called Bernoulli method for melt deposition, there is a drawback that the manufacturing time is long and the cost is high. Therefore, a method for producing quartz glass that can be increased in size and has a low hydroxyl group concentration and a high high-temperature viscosity, in which a quartz mold is filled with quartz powder and heated and melted using an electric furnace (hereinafter referred to as a carbon mold). Law) was proposed. However, in the above manufacturing method, a thermal reaction starts at the contact portion between the inner surface of the carbon mold and the filled quartz powder before vitrification of the quartz powder, and it progresses to a certain depth to make the outer surface of the quartz glass rough, Alternatively, there is a problem that the contaminated gas generated by the thermal reaction moves to the inside through the gap of the filled quartz powder and contaminates the outer layer portion of the quartz glass to lower the product yield.
[0003]
[Problems to be solved by the invention]
In view of the current situation, the present inventors have repeatedly studied on a method for producing quartz glass for producing semiconductor processing jigs. As a result, the rough surface of the quartz glass and the contamination of the outer layer by the carbon mold method are It was found that due to the thermal reaction between the mold and the quartz powder, the thermal reaction was accelerated by an increase in the contact area between the carbon mold and the quartz powder. Further, the rough surface and contamination of the outer layer are not caused to contact the carbon mold and the quartz powder directly by interposing a thin transparent quartz glass layer between the inner peripheral wall of the carbon mold and the filled quartz powder. The present invention has been completed by finding that the problem can be solved by heating and melting while sufficiently exhausting the gas contained therein. That is,
[0004]
An object of the present invention is to provide a method for producing a relatively small-diameter transparent quartz glass with high productivity with little roughness of the outer surface and contamination of the outer layer portion.
[0005]
[Means for Solving the Problems]
The present invention that achieves the above object provides a method for producing transparent quartz glass in which quartz powder is filled in a carbon mold and heated and melted under vacuum, and a quartz glass layer is disposed between the inner wall surface of the carbon mold and the filled quartz powder. The temperature of the filled quartz powder layer is increased by heating at a time of at least 30 minutes per 5 cm height of the filled quartz powder layer under vacuum, and the melting of the filled quartz powder is performed while exhausting the gas in the quartz powder layer. The present invention relates to a method for producing transparent quartz glass that proceeds in order from the top to the bottom.
[0006]
As the quartz powder used in the above-mentioned production method, it is preferable to use purified high-purity crystalline quartz powder because it is required to have excellent high-temperature viscosity and high purity. Examples of the crystalline quartz powder include powders obtained by pulverizing quartz, silica sand, silica, and the like, and quartz powder is particularly preferable. The crystalline quartz powder having a particle size in the range of 50 to 300 μm is used. If the particle size is less than 50 μm, the melting of the quartz powder is accelerated, which promotes the inclusion of bubbles, and if the particle size exceeds 300 μm, uniform vitrification becomes difficult.
[0007]
FIG. 1 shows the state when the carbon mold is filled with quartz powder in the production method of the present invention. FIG. 2 is a horizontal sectional view taken along line AA in FIG. 1 and 2, 1 is a carbon mold, 2 is a quartz glass tube, 3 is quartz powder, and 4 is a quartz glass plate. In the manufacturing method of the present invention, a thin quartz glass layer is interposed between the inner peripheral wall of the carbon mold 1 shown in FIG. 1 and the filled quartz powder, and the gas in the filled quartz powder layer is heated and melted while evacuating the gas in a vacuum. Although the method is adopted, the quartz glass layer interposed between the carbon mold 1 and the quartz powder 3 is preferably a thin quartz tube or a transparent quartz glass having a tubular shape and a plate shape . In view of work efficiency, it is particularly preferable to interpose a tubular transparent quartz glass layer. The quartz glass layer preferably has the same degree of purity as the raw material quartz powder, and the contained OH group concentration is preferably 30 ppm or less. By interposing the quartz glass layer having the OH group concentration, the OH group concentration of the quartz glass layer decreases during heating and melting under vacuum, and finally, the boundary between the quartz glass obtained from the quartz powder and the quartz glass layer. Decreases to the extent that cannot be determined. Further, it is particularly preferable that the quartz glass layer is formed by placing a quartz glass plate 4 on a carbon mold and then installing a quartz glass tube 2 thereon. This makes it possible to produce transparent quartz glass with a high yield and no bubbles without unnecessarily grinding and removing the quartz glass. As described above, in the present invention, the quartz glass layer is interposed in the carbon mold and the quartz powder is filled therein, so that the carbon mold and the quartz powder are not in direct contact, and the carbon mold has a smooth surface. The contact area decreases from where it comes into contact with the quartz glass layer, the gas generated by the thermal reaction between the carbon mold and the quartz powder is reduced, and the generated gas is a dense quartz glass layer inside the quartz powder packed layer. Therefore, the roughening of the outer surface of the quartz glass and the contamination of the outer layer portion are reduced.
[0008]
The heating and melting conditions in the production method of the present invention are as follows: room temperature to 1600 ° C. at a heating rate of 200 to 600 ° C./hour; 1600 ° C. to the melting temperature of quartz powder at a slow temperature of 10 to 100 ° C./hour. While heating at a rate of 30 minutes or more per 5 cm in height of the filled quartz powder layer, while exhausting the gas in the quartz powder layer, moving the heating source sequentially from the bottom of the filled quartz powder layer It consists of heating and melting. After the heating and melting, an inert gas is introduced into the mold for vacuum breaking for at least 2 hours, preferably 3 to 5 hours without lowering the temperature, and maintained under a pressure of 0.5 to 3 atmospheres. By taking the heating and melting conditions, the gas in the filled quartz powder is sufficiently exhausted, and the gas generated during the melting can be exhausted, so that a transparent relatively small-diameter quartz glass without bubbles is roughened on the outer periphery. It can be manufactured with low contamination and high productivity. In particular, when the lower end portion of the filled crystalline quartz powder layer is maintained at a temperature that is at least 30 ° C. higher than the upper end portion in the heating, gas exhaust is further promoted and productivity is improved.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail based on specific examples, but the present invention is not limited thereto.
[0010]
【Example】
Example 1
A carbon tube having an inner diameter of 155 mm and a length of 500 mm is set up on a carbon plate, and an outer diameter of 154 mm, a thickness of 2 mm, and a length of 500 mm of a transparent quartz glass tube 2 (OH group concentration: 28 ppm, total metal impurities <25 ppm) It was inserted and filled with crystalline quartz powder (total metal impurities <30 ppm, particle size distribution 60-280 μm, average particle size 180 μm) while vibrating and packed to a height of about 470 mm. The density of the packing was about 1.45 g / cm 3 .
[0011]
The carbon mold filled with the crystalline quartz powder was set in a vacuum furnace and evacuated to a vacuum of 1 × 10 −4 mmHg or less, and then the temperature was raised using only the lower heater. The temperature raising conditions are as follows.
Room temperature to 1600 ° C 4 hours (400 ° C / hour)
1600 ° C to 1780 ° C for 6 hours (30 ° C / hour)
Hold at 1780 ° C for 3 hours [0012]
After maintaining at 1780 ° C. for 2 hours at the above temperature increase, the vacuum in the furnace was broken with nitrogen gas, returned to atmospheric pressure and maintained for 1 hour , and maintained at atmospheric pressure until melting and cooling were completed. The heating time in the temperature raising heating was 10 hours in total with respect to the crystalline quartz powder layer thickness of 470 mm, and the average heating time was about 64 minutes per 5 cm.
[0013]
The quartz glass taken out after cooling was transparent quartz glass without bubbles. When the quartz glass was ground from the outer surface to about 1 mm, a normal glass surface appeared. When the portion was sampled and the purity was measured, it was not different from the internal purity. Further, the concave and convex portions on the upper and lower surfaces were cut off to obtain quartz glass having an outer diameter of 152 mm, a length of 295 mm, and a weight of 11.78 kg. This quartz glass had a yield of 90% with respect to the total weight of the quartz glass tube and the quartz powder used for production. It was observed that the quartz glass produced in this manner had less rough outer surface and less contamination of the outer layer portion, and that the carbon mold was less worn visually.
[0014]
Comparative Example 1
A carbon mold was formed with the same carbon cylinder as in Example 1, and 12.85 kg of crystalline quartz powder (total metal impurities <30 ppm, particle size distribution 60 to 280 μm, average particle size 180 μm) was filled therein. During the filling, the density was increased while applying vibration, and the height was packed to about 470 mm. The density of the packing was about 1.45 g / cm 3 . The carbon mold filled with the crystalline quartz powder was heated and melted in the same manner as in Example 1 to produce a quartz glass ingot. The obtained quartz glass reacts with carbon, and the outer surface is rough. In addition, to expose the quartz glass having the same purity as that of the central portion, grinding with a radius of about 6 mm is necessary, and the quartz glass is cut off at the top and bottom. There was a need. As a result, the weight of quartz glass obtained was 10.4 kg, and the yield was 80% per input raw material. It was visually observed that the carbon mold was heavily worn.
[0015]
【The invention's effect】
According to the production method of the present invention, it is possible to produce a transparent quartz glass having a relatively small diameter with little roughness on the outer surface and no contamination of the outer layer and having no bubbles, with a high yield. The quartz glass jig for semiconductor processing prepared using the transparent quartz glass as a raw material has a high temperature viscosity and a long jig life. Further, since the reaction between the carbon mold and the quartz powder is small, the carbon mold is less worn and the carbon mold can be used for a long time, and the production cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view of a carbon mold filled with quartz powder in the production method of the present invention.
FIG. 2 is a horizontal cross-sectional view taken along line AA in FIG.
[Explanation of symbols]
1 Carbon mold 2 Glass layer 3 Filled quartz powder 4 Glass plate

Claims (5)

石英粉をカーボン製鋳型に充填し真空下で加熱溶融する透明な石英ガラスの製造方法において、前記カーボン製鋳型内壁面と充填石英粉との間に石英ガラス層を介在させ、真空下に、充填石英粉層の高さ5cm当たり少なくとも30分以上の時間を要して加熱昇温し、石英粉層内の気体を排気しながら、充填石英粉の溶融を下部から上方に順に進行させることを特徴とする透明石英ガラスの製造方法。In a method for producing transparent quartz glass in which quartz powder is filled in a carbon mold and heated and melted under vacuum, a quartz glass layer is interposed between the inner wall surface of the carbon mold and the filled quartz powder, and filling is performed under vacuum. The temperature of the quartz powder layer is increased by heating for at least 30 minutes per 5 cm height, and the melting of the filled quartz powder proceeds in order from the bottom upward while exhausting the gas in the quartz powder layer. A method for producing transparent quartz glass. 石英ガラス層のOH基濃度が30ppm以下とすることを特徴とする請求項1記載の透明石英ガラスの製造方法。The method for producing transparent quartz glass according to claim 1, wherein the quartz glass layer has an OH group concentration of 30 ppm or less. 鋳型内の加熱昇温速度を
室温から1600℃まで 200〜600℃/時間
1600℃〜石英粉の溶融温度まで 10〜100℃/時間
とすることを特徴とする請求項1又は2記載の透明石英ガラスの製造方法。
The transparent quartz according to claim 1 or 2, wherein the heating temperature rising rate in the mold is from room temperature to 1600 ° C, from 200 to 600 ° C / hour, from 1600 ° C to the melting temperature of the quartz powder, from 10 to 100 ° C / hour. Glass manufacturing method.
石英粉の真空下での加熱溶融終了後降温せず鋳型内を不活性ガスによる加圧下に保持することを特徴とする請求項ないし3のいずれか1項記載の透明石英ガラスの製造方法。The method for producing transparent quartz glass according to any one of claims 1 to 3, wherein the temperature in the mold is maintained under pressure with an inert gas without lowering the temperature after completion of heating and melting of the quartz powder under vacuum. 石英粉が粒度50〜300μmの結晶質石英粉であることを特徴とする請求項1ないし4のいずれか1項記載の透明石英ガラスの製造方法。The method for producing transparent quartz glass according to any one of claims 1 to 4 , wherein the quartz powder is crystalline quartz powder having a particle size of 50 to 300 µm.
JP03013196A 1996-01-25 1996-01-25 Method for producing transparent quartz glass Expired - Fee Related JP4270477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03013196A JP4270477B2 (en) 1996-01-25 1996-01-25 Method for producing transparent quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03013196A JP4270477B2 (en) 1996-01-25 1996-01-25 Method for producing transparent quartz glass

Publications (2)

Publication Number Publication Date
JPH09202631A JPH09202631A (en) 1997-08-05
JP4270477B2 true JP4270477B2 (en) 2009-06-03

Family

ID=12295231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03013196A Expired - Fee Related JP4270477B2 (en) 1996-01-25 1996-01-25 Method for producing transparent quartz glass

Country Status (1)

Country Link
JP (1) JP4270477B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19855915C5 (en) * 1997-12-03 2009-09-24 Tosoh Corp., Shinnanyo Transparent high-purity quartz glass and process for its production
KR101642327B1 (en) * 2014-09-23 2016-07-26 (주) 디에스테크노 Apparatus for manufacturing high purity quartz glass
KR101642323B1 (en) * 2014-09-23 2016-07-26 (주) 디에스테크노 The method for manufacturing high purity quartz glass

Also Published As

Publication number Publication date
JPH09202631A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
US4358306A (en) Method for molding a fused quartz glass block
KR101104674B1 (en) High-purity vitreous silica crucible used for pulling large-diameter single-crystal silicon ingot which enables reduction of pinhole defect among large-diameter single-crystal silicon ingot
EP2484813B1 (en) Composite crucible, method for producing same and use thereof
US20070039544A1 (en) Method for casting polycrystalline silicon
JP4339003B2 (en) Method for producing quartz glass crucible
JP4462808B2 (en) Manufacturing method of quartz glass crucible
EP1462421B1 (en) Silica glass crucible
JP4014724B2 (en) Method for producing silica glass
EP0258457B1 (en) Process for manufacturing glass
JP4161296B2 (en) Method for producing quartz glass crucible
KR101474043B1 (en) Quartz glass crucible for silicon single crystal pulling operation and process for manufacturing the same
JPS62212234A (en) Production of glass
JP3770566B2 (en) Method for producing cylindrical quartz glass
JP4270477B2 (en) Method for producing transparent quartz glass
JPH08151220A (en) Method for molding quartz glass
JP5741163B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
CN103118995A (en) Process for producing a quartz glass crucible having a transparent inner layer of synthetically produced quartz glass
JP3672460B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JPS62212235A (en) Production of glass
JPS62212236A (en) Production of glass
JP3649801B2 (en) Method for producing transparent quartz glass ingot
JPH0776098B2 (en) Method for producing high-purity quartz glass
JPH0218311B2 (en)
JP3327364B2 (en) Method for producing silica glass processed product
JP3810235B2 (en) Quartz glass manufacturing method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees