JP3048800B2 - Method for producing opaque quartz glass - Google Patents

Method for producing opaque quartz glass

Info

Publication number
JP3048800B2
JP3048800B2 JP5229637A JP22963793A JP3048800B2 JP 3048800 B2 JP3048800 B2 JP 3048800B2 JP 5229637 A JP5229637 A JP 5229637A JP 22963793 A JP22963793 A JP 22963793A JP 3048800 B2 JP3048800 B2 JP 3048800B2
Authority
JP
Japan
Prior art keywords
quartz glass
opaque quartz
material powder
raw material
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5229637A
Other languages
Japanese (ja)
Other versions
JPH0761839A (en
Inventor
朗 藤ノ木
龍弘 佐藤
透 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP5229637A priority Critical patent/JP3048800B2/en
Publication of JPH0761839A publication Critical patent/JPH0761839A/en
Application granted granted Critical
Publication of JP3048800B2 publication Critical patent/JP3048800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高純度で耐熱性が高
く、しかも遮熱性の優れた不透明石英ガラス、特に熱処
理炉の赤外線散乱および遮熱材料として有用な不透明石
英ガラス板を効率よく製造するための中実な不透明石英
ガラスブロックの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention efficiently manufactures opaque quartz glass having high purity, high heat resistance, and excellent heat shielding properties, particularly an opaque quartz glass sheet useful as a material for infrared scattering and heat shielding in a heat treatment furnace. To manufacture a solid opaque quartz glass block.

【0002】[0002]

【従来の技術】従来、石英ガラスは、高い純度を有し、
耐熱性に優れているところから半導体工業用の熱処理炉
や熱処理治具として用いられてきた。ところが、前記半
導体工業用の熱処理炉は、炉内の温度分布が非常に重要
であり、炉内温度を均一にするため、例えば特開平5−
900号公報に開示されているような不透明石英ガラス
で炉芯管を形成したり、あるいは実開平1−16223
4号公報に開示されているような半導体ウエハ−を載置
するボ−トの両端に不透明石英ガラスの熱線散乱板を設
けたりしていた。
2. Description of the Related Art Conventionally, quartz glass has a high purity,
Because of their excellent heat resistance, they have been used as heat treatment furnaces and heat treatment jigs for the semiconductor industry. However, in the heat treatment furnace for the semiconductor industry, the temperature distribution in the furnace is very important.
The furnace core tube is made of opaque quartz glass as disclosed in Japanese Unexamined Patent Publication No.
Japanese Patent Application Laid-Open No. 4 (1999) -1995 discloses a scattered plate made of opaque quartz glass at both ends of a boat on which a semiconductor wafer is mounted.

【0003】ところが、上記特開平5−900号公報記
載の不透明石英ガラス炉芯管は、確かに石英ガラス自体
の均熱性を改善するが、炉芯管端部に対する熱線の散乱
を防ぐことができなかった。炉芯管端部の熱線散乱を防
ぐには例えば実開平1−162234号公報に記載する
ような不透明石英ガラス板の熱線散乱材を設置するのが
望ましい。かかる熱線散乱材の製造には中実な石英ガラ
スブロックを板状に切り出すのが効率的であり、そのた
めガラス原料粉、特に水晶粉を耐熱性型内に充填した
後、電気炉で加熱溶融して不透明石英ガラスブロックを
製造する方法(以下充填式溶融法という)が採用されて
きた。ところが、この従来の充填式溶融法ではブロック
の中心部に大きな空洞等が生じ均一な気泡を含有し赤外
線散乱および遮熱性に優れた高純度の不透明石英ガラス
ブロックを製造することができなかった。
However, the opaque quartz glass furnace tube described in Japanese Patent Laid-Open No. 5-900 does improve the uniformity of the quartz glass itself, but can prevent the scattering of heat rays to the end of the furnace tube. Did not. In order to prevent heat ray scattering at the end of the furnace core tube, it is desirable to install a heat ray scattering material of an opaque quartz glass plate as described in, for example, Japanese Utility Model Laid-Open No. 1-162234. In order to manufacture such a heat ray scattering material, it is efficient to cut a solid quartz glass block into a plate shape. Therefore, after filling glass raw material powder, particularly quartz powder, in a heat-resistant mold, it is heated and melted in an electric furnace. (Hereinafter referred to as a filling-type melting method) for producing an opaque quartz glass block. However, this conventional filling-type melting method cannot produce a high-purity opaque quartz glass block having large voids or the like in the center of the block, containing uniform bubbles, and having excellent infrared scattering and heat shielding properties.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明者等は
上記問題点を解決すべく鋭意研究を重ねた結果、ガラス
原料粉を充填するに当り、ガラス原料粉層の内層に充填
する原料粉を外層に充填する原料粉より粒径の小さいガ
ラス原料粉とすると、均一な気泡を含有する不透明石英
ガラスブロックが得られることを発見し、本発明を完成
したものである。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, when filling the glass raw material powder, the raw material powder to be filled in the inner layer of the glass raw material powder layer is used. The present invention has been completed by discovering that an opaque quartz glass block containing uniform air bubbles can be obtained by using as a raw material powder having a smaller particle size than the raw material powder to be filled in the outer layer.

【0005】すなわち本発明は、高純度で耐熱性が高
く、赤外線散乱および遮熱性に優れた不透明石英ガラス
の新規な製造方法を提供することを目的とする。
That is, an object of the present invention is to provide a novel method for producing opaque quartz glass having high purity, high heat resistance, and excellent infrared scattering and heat shielding properties.

【0006】また、本発明は、シリコンウエハ−の熱処
理炉用遮熱材として有用な不透明石英ガラスの製造方法
を提供することを目的とする。
Another object of the present invention is to provide a method for producing opaque quartz glass useful as a heat shield for a silicon wafer heat treatment furnace.

【0007】[0007]

【課題を解決するための手段】本発明は、型内にガラス
原料粉を充填し、加熱溶融してなる微細な気泡を含有す
る不透明石英ガラスの製造方法において、型内のガラス
原料粉層の中心部を外側層のガラス原料粉より小さい粒
径を有するガラス原料粉で充填することを特徴とする不
透明石英ガラスの製造方法に係る。
SUMMARY OF THE INVENTION The present invention relates to a method for producing an opaque quartz glass containing fine bubbles formed by filling a glass raw material powder in a mold and heating and melting the glass raw material powder. The present invention relates to a method for producing opaque quartz glass, characterized in that a center portion is filled with a glass raw material powder having a smaller particle size than the glass raw material powder of the outer layer.

【0008】上記不透明石英ガラスとは、ガラス原料粉
を非酸化性の雰囲気中で加熱溶融して得られた気泡を含
有する不透明な石英ガラスをいう。前記ガラス原料粉と
しては、結晶質石英粉もしくは非晶質粉が用いられが、
結晶質粉としては、超高純度の水晶粉または高純度の水
晶粉を米国特許第4,983,370号明細書の純化処
理した水晶粉が純度の点から好ましい。また、非晶質粉
としては高純度の石英ガラスあるいは合成石英ガラスを
粉砕、洗浄し粒度を350μm〜50μmに調整した粉
体がよい。
The opaque quartz glass is an opaque quartz glass containing bubbles obtained by heating and melting glass raw material powder in a non-oxidizing atmosphere. As the glass raw material powder, crystalline quartz powder or amorphous powder is used,
As the crystalline powder, ultrahigh-purity crystal powder or crystal powder obtained by subjecting high-purity crystal powder to a purification treatment described in US Pat. No. 4,983,370 is preferable from the viewpoint of purity. As the amorphous powder, a powder obtained by crushing and washing high-purity quartz glass or synthetic quartz glass and adjusting the particle size to 350 μm to 50 μm is preferable.

【0009】ところで、石英ガラスへの熱伝導は、温度
が1000℃以上になると輻射熱伝導が支配的になると
いわれている。そして前記温度において石英ガラス中に
気泡が存在すると熱線の反射はガラス表面にとどまらず
内部の気泡においても起るため不透明石英ガラス中の気
泡の表面積とその分布が熱線の反射および透過に大きな
影響を及ぼす。そのため不透明石英ガラスを熱処理炉の
遮熱材料として使用するには単位体積当りに含まれる気
泡の表面積の総和を大きくするとともに気泡の個数を多
くし、かつ均一に分散させることが肝要である。
By the way, it is said that radiant heat conduction becomes dominant when the temperature reaches 1000 ° C. or higher. When bubbles exist in the quartz glass at the above temperature, the reflection of the heat rays occurs not only on the surface of the glass but also in the bubbles inside, so that the surface area and distribution of the bubbles in the opaque quartz glass greatly affect the reflection and transmission of the heat rays. Exert. Therefore, in order to use opaque quartz glass as a heat shielding material of a heat treatment furnace, it is important to increase the total surface area of the bubbles contained per unit volume, increase the number of bubbles, and uniformly disperse the bubbles.

【0010】従来の充填式溶融法にあっては、図3
(a)に示すようにグラファイト型3内に水晶粉1を充
填し、それを水酸基の混入の少ない電気溶融法で溶融し
て不透明石英ガラスブロックを図3(b)のように製造
していたが、外側が溶融状態であっても不透明石英ガラ
スブロック5の内部に未溶融層6が残り、それが大きな
空隙となって均質な不透明石英ガラスブロックの製造の
障害となっていた。本発明者等の研究によればブロック
の前記未溶融層は充填原料粉層の半径方向の10〜70
%、厚さ方向の20%〜80%に存在することがわかっ
ている。この未溶融層を解消するため更に加熱を続ける
と、図4(b)に示すように石英ガラスブロック5の表
面層に気泡4の非常に多い層ができ、反対に底部には気
泡が大きいが数の少ない半透明層7が形成される。とこ
ろが、前記ガラス原料粉層の中心部に外側よりも粒径の
小さいガラス原料粉を充填し内部充填域2を形成し、電
気溶融すると、前記未溶融層の形成がなく均一な気泡が
分布した不透明石英ガラスブロックが得られる。
In the conventional filling type melting method, FIG.
As shown in FIG. 3A, a quartz powder 3 is filled in a graphite mold 3 and melted by an electro-melting method in which hydroxyl groups are less mixed to produce an opaque quartz glass block as shown in FIG. 3B. However, even when the outside is in a molten state, the unfused layer 6 remains inside the opaque quartz glass block 5, which becomes a large void, which hinders the production of a homogeneous opaque quartz glass block. According to the study of the present inventors, the unmelted layer of the block is 10 to 70 in the radial direction of the filling material powder layer.
%, 20% to 80% in the thickness direction. When the heating is further continued to eliminate the unmelted layer, a layer having a large number of bubbles 4 is formed on the surface layer of the quartz glass block 5 as shown in FIG. A small number of translucent layers 7 are formed. However, when the glass material powder having a smaller particle diameter than the outside was filled in the center portion of the glass material powder layer to form an inner filling region 2 and then electromelted, uniform bubbles were distributed without forming the unmelted layer. An opaque quartz glass block is obtained.

【0011】上記中心部に充填されるガラス原料粉の粒
度が小さいとは、粒度分布としてではなく、最大粒径差
として捕らえられ、中心部に充填されるガラス原料粉の
最大粒径が外層に充填されるガラス原料粉の最大粒径の
70%以下、望ましくは50%以下であればよい。一般
的に電気溶融法に使用されるガラス原料粉の粒度分布は
350μm〜50μmであるので、中心部に用いられる
ガラス原料粉の最大粒径は250μm以下、望ましくは
175μm以下とすればよく、250μm以上であった
場合には、内外部で均一な溶融が起らずに、未溶融部が
生じたり、気泡の分布が不均一になる。
The fact that the particle size of the glass raw material powder filled in the center portion is small is regarded not as a particle size distribution but as a maximum particle size difference. The glass raw material powder to be filled has a maximum particle size of 70% or less, preferably 50% or less. In general, the particle size distribution of the glass raw material powder used in the electric melting method is 350 μm to 50 μm, so that the maximum particle size of the glass raw material powder used in the central portion is 250 μm or less, preferably 175 μm or less, and 250 μm In the case of the above, uniform melting does not occur inside and outside, an unmelted portion occurs, and the distribution of bubbles becomes uneven.

【0012】上記粒径の小さいガラス原料粉の内部充填
域は、未溶融層の分布に鑑み、充填原料粉層の半径方向
の10〜70%、厚さ方向の20〜80%であればよ
い。
In view of the distribution of the unmelted layer, the internal filling area of the glass material powder having a small particle size may be 10 to 70% in the radial direction and 20 to 80% in the thickness direction of the filling material powder layer. .

【0013】以下に本発明を実施例で詳しく説明する
が、本発明はその実施例に限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples.

【0014】[0014]

【実施例1】高純度グレ−ドの水晶(不純物量:Na;
0.1ppm、K;0.2ppm、Li;0.2pp
m、Al;10ppm、Ca;0.3ppm、Fe;
0.1ppm、Cu;∠0.05ppm、Mg;0.1
ppm)を粉砕して表1の粒度分布を有する原料水晶粉
を得た。この水晶粉を篩別し、212μm以上の粒子を
除去した水晶粉A、250μm以上の粒子を除去した水
晶粉B、150μm以上の粒子を除去した水晶粉Cを得
た。これら水晶粉A〜Cの粒度分布は、使用した水晶粉
を篩分した際にメッシュの開口が粒径欄に示される篩上
に残った重量割合を示したものである。
Embodiment 1 High-purity grade quartz (impurity amount: Na;
0.1 ppm, K; 0.2 ppm, Li; 0.2 pp
m, Al; 10 ppm, Ca; 0.3 ppm, Fe;
0.1 ppm, Cu; @ 0.05 ppm, Mg; 0.1
ppm) to obtain a raw material quartz powder having a particle size distribution shown in Table 1. The crystal powder was sieved to obtain a crystal powder A from which particles of 212 μm or more were removed, a crystal powder B from which particles of 250 μm or more were removed, and a crystal powder C from which particles of 150 μm or more were removed. The particle size distribution of these quartz powders A to C shows the weight ratio of the openings of the mesh remaining on the sieve indicated in the particle size column when the used quartz powder is sieved.

【0015】[0015]

【表1】 注)表中、数値は重量%である。[Table 1] Note) In the table, numerical values are% by weight.

【0016】上記原料水晶粉を内径φ300mm、高さ
400mmのグラファイトの型3内に、底部から100
mm敷き詰め、その中心部に外径φ150mm、肉厚2
mmの石英管を立て、この石英管の内側に水晶粉Aを、
また外側には原料水晶粉をそれぞれ100mm充填し
た。次いでゆっくりと前記石英管を抜き去った後、更に
全体で50mm程度の原料水晶粉を充填した。
The above-mentioned raw material quartz powder is placed in a graphite mold 3 having an inner diameter of 300 mm and a height of 400 mm from the bottom to a depth of 100 mm.
mm, outer diameter φ150mm at center, thickness 2
mm quartz tube, and put quartz powder A inside the quartz tube,
The outside was filled with 100 mm of raw material quartz powder. Next, the quartz tube was slowly pulled out, and then a raw material quartz powder of about 50 mm in total was filled.

【0017】原料粉の充填が終了したところで、グラフ
ァイト型3を電気炉内に設置し、全体を真空排気した
後、窒素を20l/分の割合で流すとともに、炉内温度
を室温から1600℃までを20℃/分で、また160
0℃〜1800℃までを5℃/分の割合で昇温させ加熱
した。次いで、1800℃に1時間保持した後、グラフ
ァイト型を冷却し不透明石英ガラスブロック5を取り出
し、得られた不透明石英ガラスブロックの各部位から1
×4×4mm3の薄片を切り出し、顕微鏡にて気泡の個
数を測定し、体積を1cm3に換算して気泡密度(個/
cm3)を求めた。得れた結果を表2に示す。
When the charging of the raw material powder is completed, the graphite mold 3 is placed in an electric furnace, the whole is evacuated, nitrogen is flowed at a rate of 20 l / min, and the furnace temperature is raised from room temperature to 1600 ° C. At 20 ° C./min.
The temperature was raised from 0 ° C. to 1800 ° C. at a rate of 5 ° C./min and heated. Next, after maintaining the temperature at 1800 ° C. for 1 hour, the graphite mold was cooled and the opaque quartz glass block 5 was taken out.
A slice of × 4 × 4 mm 3 was cut out, the number of bubbles was measured with a microscope, the volume was converted to 1 cm 3 , and the bubble density (pieces /
cm 3 ). Table 2 shows the obtained results.

【0018】また、上記不透明石英ガラスブロックの縦
方向の断面写真を図2に示す。
FIG. 2 shows a vertical cross-sectional photograph of the opaque quartz glass block.

【0019】[0019]

【実施例2】実施例1において、外層を水晶粉Bに内層
を水晶Cで充填し、実施例1と同様にして不透明石英ガ
ラスブロックを得た。その気泡密度を測定し表2に示
す。
Example 2 An opaque quartz glass block was obtained in the same manner as in Example 1 except that the outer layer was filled with crystal powder B and the inner layer was filled with crystal C. The bubble density was measured and is shown in Table 2.

【0020】[0020]

【比較例1】グラファイト型に高純度水晶粉のみを充填
し、実施例1と同様にして不透明石英ガラスブロックを
製造した。得られた不透明石英ガラスブロックの表面か
ら50mm、周縁から80mm程度に未溶融層6が残
り、ガラス化されていなかった。
Comparative Example 1 An opaque quartz glass block was manufactured in the same manner as in Example 1 except that the graphite mold was filled with only high-purity quartz powder. The unmelted layer 6 remained 50 mm from the surface of the obtained opaque quartz glass block and about 80 mm from the periphery, and was not vitrified.

【0021】[0021]

【比較例2】グラファイト型に原料水晶粉のみを充填
し、実施例1と同様の雰囲気、昇温条件で加熱し、18
00℃に3時間保持した。全体的には溶融されているも
のの、上部に極めて微細な泡が集中し、中および底部の
気泡密度は疎となり、しかも気泡が大きくなった。
[Comparative Example 2] A graphite mold was filled with only raw material quartz powder, and heated under the same atmosphere and temperature raising conditions as in Example 1.
It was kept at 00 ° C. for 3 hours. Although melted as a whole, extremely fine bubbles were concentrated at the top, the bubble density at the middle and bottom portions was low, and the bubbles were large.

【0022】[0022]

【表2】 [Table 2]

【0023】上記表2に示す数値は不透明石英ガラスブ
ロックの各位置における気泡密度(個/cm3)である
が、同表から明らかなように本発明の製造方法で得られ
た不透明石英ガラスブロックには微細な気泡が均一に分
散していることがわかる。
The numerical values shown in Table 2 above are the cell densities (cells / cm 3 ) at each position of the opaque quartz glass block. As is clear from the table, the opaque quartz glass block obtained by the production method of the present invention is used. It can be seen that the fine bubbles are uniformly dispersed.

【0024】[0024]

【発明の効果】本発明では、上述のように単位体積当り
に含まれる気泡の表面積の総和およびその個数が大き
く、しかも均一に気泡が分散した不透明石英ガラスブロ
ックを製造することができ、それを切り出すことによっ
て、赤外線散乱および遮熱効果の高い不透明石英ガラス
板を効率的に製造することができる。
According to the present invention, as described above, it is possible to manufacture an opaque quartz glass block in which the total surface area and the number of bubbles contained per unit volume are large and the bubbles are uniformly dispersed. By cutting out, an opaque quartz glass plate having a high infrared scattering and heat shielding effect can be efficiently manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法を示す。FIG. 1 shows a manufacturing method of the present invention.

【図2】本発明の製造方法で得られた不透明石英ガラス
ブロックの組織断面写真を示す。
FIG. 2 shows a photograph of a cross-sectional structure of an opaque quartz glass block obtained by the manufacturing method of the present invention.

【図3】従来の充填式溶融法で製造された不透明石英ガ
ラスブロックの断面図を示す。
FIG. 3 is a cross-sectional view of an opaque quartz glass block manufactured by a conventional filling-type melting method.

【図4】従来の充填式溶融法で過加熱したときの不透明
石英ガラスブロックの断面図を示す。
FIG. 4 is a cross-sectional view of an opaque quartz glass block when overheated by a conventional filling-type melting method.

【符号の説明】[Explanation of symbols]

1 水晶粉 2 内部充填域 3 グラファイト型 4 気泡 5 不透明石英ガラス 6 未溶融層 7 半透明層 1 Quartz Powder 2 Internal Filling Area 3 Graphite Type 4 Bubbles 5 Opaque Quartz Glass 6 Unmelted Layer 7 Translucent Layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−61838(JP,A) 特開 平7−61827(JP,A) 特開 平5−254882(JP,A) 特開 平7−69661(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03C 1/00 - 14/00 C03B 20/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-61838 (JP, A) JP-A-7-61827 (JP, A) JP-A-5-254882 (JP, A) JP-A-7-618 69661 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03C 1/00-14/00 C03B 20/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 型内にガラス原料粉を充填し、加熱溶融
してなる微細な気泡を含有する不透明石英ガラスの製造
方法において、型内のガラス原料粉層の中心部を外側層
のガラス原料粉より小さい粒径を有するガラス原料粉で
充填することを特徴とする不透明石英ガラスの製造方
法。
1. A method for producing an opaque quartz glass containing fine bubbles formed by filling a glass raw material powder in a mold and heating and melting the glass raw material powder. A method for producing opaque quartz glass, characterized by filling with glass raw material powder having a smaller particle size than powder.
【請求項2】 粒径の小さいガラス原料粉の充填範囲が
ガラス原料粉層の半径に対して10〜70%、厚みに対
して20〜80%の範囲であることを特徴とする請求項
1記載の不透明石英ガラスの製造方法。
2. The glass material powder having a small particle size has a filling range of 10 to 70% with respect to the radius of the glass material powder layer and 20 to 80% with respect to the thickness of the glass material powder layer. A method for producing the opaque quartz glass described above.
【請求項3】 中心部に充填するガラス原料粉の最大径
が、外層部に充填されるガラス原料粉の最大粒径の70
%以下であることを特徴とする請求項1記載の不透明石
英ガラスの製造方法。
3. The maximum diameter of the glass raw material powder to be filled in the center part is 70 times the maximum particle diameter of the glass raw material powder to be filled in the outer layer part.
%. The method for producing opaque quartz glass according to claim 1, wherein
JP5229637A 1993-08-24 1993-08-24 Method for producing opaque quartz glass Expired - Fee Related JP3048800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5229637A JP3048800B2 (en) 1993-08-24 1993-08-24 Method for producing opaque quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5229637A JP3048800B2 (en) 1993-08-24 1993-08-24 Method for producing opaque quartz glass

Publications (2)

Publication Number Publication Date
JPH0761839A JPH0761839A (en) 1995-03-07
JP3048800B2 true JP3048800B2 (en) 2000-06-05

Family

ID=16895323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5229637A Expired - Fee Related JP3048800B2 (en) 1993-08-24 1993-08-24 Method for producing opaque quartz glass

Country Status (1)

Country Link
JP (1) JP3048800B2 (en)

Also Published As

Publication number Publication date
JPH0761839A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
US5302556A (en) Synthetic silica glass articles and a method for manufacturing them
US5772714A (en) Process for producing opaque silica glass
US5174801A (en) Manufacture of quartz glass crucible for use in the manufacture of single crystal silicon
US6672107B2 (en) Quartz glass crucible and process for the production thereof
JP2811290B2 (en) Quartz glass crucible for pulling silicon single crystal
JP2013519624A (en) Manufacturing method of quartz glass crucible
KR101446518B1 (en) Quartz glass crucible for pulling up of silicon single crystal and process for producing the quartz glass crucible
JP4014724B2 (en) Method for producing silica glass
JP3048800B2 (en) Method for producing opaque quartz glass
JP3050352B2 (en) Method for producing opaque quartz glass
JP3050351B2 (en) Method for producing opaque quartz glass
JP2732967B2 (en) Method for manufacturing high-resistance silicon wafer
JPS62212236A (en) Production of glass
JP2829227B2 (en) Opaque quartz glass
JP3449654B2 (en) Method for producing opaque quartz glass
DE69803643T3 (en) Opaque silicate glass article with transparent area and process for its preparation
JP4191271B2 (en) Opaque quartz glass having a transparent part and method for producing the same
JP3665664B2 (en) Method for producing opaque quartz glass
JP3478616B2 (en) Method for producing quartz glass block composite
JP3050353B2 (en) Method for producing opaque quartz glass
JP4035793B2 (en) Method for producing opaque quartz glass ring having transparent portion
JP4035794B2 (en) Method for producing opaque quartz glass ring
JP2005060152A (en) Manufacturing method for quartz crucible, quartz crucible, and manufacturing method for silicon single crystal using the same
JP7349779B2 (en) quartz glass crucible
JPS60215534A (en) Quartz glass jig

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees