JPH0761839A - Production of opaque quarts glass - Google Patents

Production of opaque quarts glass

Info

Publication number
JPH0761839A
JPH0761839A JP22963793A JP22963793A JPH0761839A JP H0761839 A JPH0761839 A JP H0761839A JP 22963793 A JP22963793 A JP 22963793A JP 22963793 A JP22963793 A JP 22963793A JP H0761839 A JPH0761839 A JP H0761839A
Authority
JP
Japan
Prior art keywords
raw material
quartz glass
glass raw
material powder
opaque quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22963793A
Other languages
Japanese (ja)
Other versions
JP3048800B2 (en
Inventor
Akira Fujinoki
朗 藤ノ木
Tatsuhiro Sato
龍弘 佐藤
Toru Yokota
透 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP5229637A priority Critical patent/JP3048800B2/en
Publication of JPH0761839A publication Critical patent/JPH0761839A/en
Application granted granted Critical
Publication of JP3048800B2 publication Critical patent/JP3048800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain an opaque quartz glass block high in heat resistance and excellent in the IR light-scattering property and the heat-shielding property. CONSTITUTION:The method for producing an opaque quartz glass containing fine cells by charging the powder of glass raw materials in a mold and subsequently thermally melting the charged glass raw materials, comprises charging the powder of glass raw materials having a smaller particle diameter than that of the powder of the glass raw materials in the external layer into a space occupying 10-70% of the glass raw material powder layer and 20-80% of its thickness in the mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高純度で耐熱性が高
く、しかも遮熱性の優れた不透明石英ガラス、特に熱処
理炉の赤外線散乱および遮熱材料として有用な不透明石
英ガラス板を効率よく製造するための中実な不透明石英
ガラスブロックの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention efficiently produces an opaque quartz glass having high purity, high heat resistance and excellent heat shielding properties, particularly an opaque quartz glass plate useful as an infrared scattering and heat shielding material for a heat treatment furnace. And a method for manufacturing a solid opaque quartz glass block.

【0002】[0002]

【従来の技術】従来、石英ガラスは、高い純度を有し、
耐熱性に優れているところから半導体工業用の熱処理炉
や熱処理治具として用いられてきた。ところが、前記半
導体工業用の熱処理炉は、炉内の温度分布が非常に重要
であり、炉内温度を均一にするため、例えば特開平5−
900号公報に開示されているような不透明石英ガラス
で炉芯管を形成したり、あるいは実開平1−16223
4号公報に開示されているような半導体ウエハ−を載置
するボ−トの両端に不透明石英ガラスの熱線散乱板を設
けたりしていた。
2. Description of the Related Art Conventionally, quartz glass has a high purity,
Since it has excellent heat resistance, it has been used as a heat treatment furnace or heat treatment jig for the semiconductor industry. However, in the heat treatment furnace for the semiconductor industry, the temperature distribution in the furnace is very important, and in order to make the temperature in the furnace uniform, for example, Japanese Patent Laid-Open No.
A furnace core tube is made of opaque quartz glass as disclosed in Japanese Patent Publication No. 900, or is actually disclosed in Japanese Utility Model Publication No. Hei 1-162223.
A heat ray scattering plate made of opaque quartz glass has been provided at both ends of a boat on which a semiconductor wafer as disclosed in Japanese Patent Publication No. 4 is placed.

【0003】ところが、上記特開平5−900号公報記
載の不透明石英ガラス炉芯管は、確かに石英ガラス自体
の均熱性を改善するが、炉芯管端部に対する熱線の散乱
を防ぐことができなかった。炉芯管端部の熱線散乱を防
ぐには例えば実開平1−162234号公報に記載する
ような不透明石英ガラス板の熱線散乱材を設置するのが
望ましい。かかる熱線散乱材の製造には中実な石英ガラ
スブロックを板状に切り出すのが効率的であり、そのた
めガラス原料粉、特に水晶粉を耐熱性型内に充填した
後、電気炉で加熱溶融して不透明石英ガラスブロックを
製造する方法(以下充填式溶融法という)が採用されて
きた。ところが、この従来の充填式溶融法ではブロック
の中心部に大きな空洞等が生じ均一な気泡を含有し赤外
線散乱および遮熱性に優れた高純度の不透明石英ガラス
ブロックを製造することができなかった。
However, the opaque quartz glass furnace core tube described in the above-mentioned JP-A-5-900 certainly improves the soaking property of the quartz glass itself, but can prevent the scattering of heat rays to the end of the furnace core tube. There wasn't. In order to prevent the heat ray scattering at the end of the furnace core tube, it is desirable to install a heat ray scattering material of an opaque quartz glass plate as described in, for example, Japanese Utility Model Laid-Open No. 1-162234. For the production of such a heat ray scattering material, it is efficient to cut a solid quartz glass block into a plate shape.Therefore, glass raw material powder, in particular, crystal powder is filled in a heat resistant mold and then heated and melted in an electric furnace. A method of producing an opaque quartz glass block (hereinafter referred to as a filling-type melting method) has been adopted. However, in this conventional filling-type melting method, it was not possible to manufacture a high-purity opaque quartz glass block having a large void or the like in the center of the block and containing uniform bubbles and having excellent infrared scattering and heat shielding properties.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明者等は
上記問題点を解決すべく鋭意研究を重ねた結果、ガラス
原料粉を充填するに当り、ガラス原料粉層の内層に充填
する原料粉を外層に充填する原料粉より粒径の小さいガ
ラス原料粉とすると、均一な気泡を含有する不透明石英
ガラスブロックが得られることを発見し、本発明を完成
したものである。
The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, in filling the glass raw material powder, the raw material powder to be filled in the inner layer of the glass raw material powder layer. The present invention has been completed by discovering that an opaque quartz glass block containing uniform bubbles can be obtained by using a glass raw material powder having a particle size smaller than that of the raw material powder filling the outer layer.

【0005】すなわち本発明は、高純度で耐熱性が高
く、赤外線散乱および遮熱性に優れた不透明石英ガラス
の新規な製造方法を提供することを目的とする。
That is, an object of the present invention is to provide a novel method for producing opaque quartz glass having high purity, high heat resistance, and excellent infrared scattering and heat shielding properties.

【0006】また、本発明は、シリコンウエハ−の熱処
理炉用遮熱材として有用な不透明石英ガラスの製造方法
を提供することを目的とする。
Another object of the present invention is to provide a method for producing opaque quartz glass useful as a heat shield for a silicon wafer heat treatment furnace.

【0007】[0007]

【課題を解決するための手段】本発明は、型内にガラス
原料粉を充填し、加熱溶融してなる微細な気泡を含有す
る不透明石英ガラスの製造方法において、型内のガラス
原料粉層の中心部を外側層のガラス原料粉より小さい粒
径を有するガラス原料粉で充填することを特徴とする不
透明石英ガラスの製造方法に係る。
The present invention is a method for producing an opaque quartz glass containing fine bubbles formed by filling a glass raw material powder in a mold and heating and melting the glass raw material powder. The present invention relates to a method for producing opaque quartz glass, which comprises filling the center portion with glass raw material powder having a particle size smaller than that of the glass raw material powder of the outer layer.

【0008】上記不透明石英ガラスとは、ガラス原料粉
を非酸化性の雰囲気中で加熱溶融して得られた気泡を含
有する不透明な石英ガラスをいう。前記ガラス原料粉と
しては、結晶質石英粉もしくは非晶質粉が用いられが、
結晶質粉としては、超高純度の水晶粉または高純度の水
晶粉を米国特許第4,983,370号明細書の純化処
理した水晶粉が純度の点から好ましい。また、非晶質粉
としては高純度の石英ガラスあるいは合成石英ガラスを
粉砕、洗浄し粒度を350μm〜50μmに調整した粉
体がよい。
The opaque quartz glass is an opaque quartz glass containing bubbles obtained by heating and melting glass raw material powder in a non-oxidizing atmosphere. As the glass raw material powder, crystalline quartz powder or amorphous powder is used,
As the crystalline powder, ultrapure crystal powder or crystal powder obtained by purifying high-purity crystal powder according to US Pat. No. 4,983,370 is preferable in terms of purity. Further, as the amorphous powder, powder of high-purity quartz glass or synthetic quartz glass crushed and washed to adjust the particle size to 350 μm to 50 μm is preferable.

【0009】ところで、石英ガラスへの熱伝導は、温度
が1000℃以上になると輻射熱伝導が支配的になると
いわれている。そして前記温度において石英ガラス中に
気泡が存在すると熱線の反射はガラス表面にとどまらず
内部の気泡においても起るため不透明石英ガラス中の気
泡の表面積とその分布が熱線の反射および透過に大きな
影響を及ぼす。そのため不透明石英ガラスを熱処理炉の
遮熱材料として使用するには単位体積当りに含まれる気
泡の表面積の総和を大きくするとともに気泡の個数を多
くし、かつ均一に分散させることが肝要である。
By the way, it is said that the radiant heat conduction is dominant in the heat conduction to the quartz glass when the temperature is 1000 ° C. or higher. When bubbles are present in the quartz glass at the above temperature, reflection of heat rays occurs not only on the glass surface but also on the bubbles inside, so the surface area of the bubbles and their distribution in the opaque quartz glass have a great influence on the reflection and transmission of heat rays. Exert. Therefore, in order to use opaque quartz glass as a heat shield material for a heat treatment furnace, it is important to increase the total surface area of bubbles contained in a unit volume, increase the number of bubbles, and disperse the bubbles uniformly.

【0010】従来の充填式溶融法にあっては、図3
(a)に示すようにグラファイト型3内に水晶粉1を充
填し、それを水酸基の混入の少ない電気溶融法で溶融し
て不透明石英ガラスブロックを図3(b)のように製造
していたが、外側が溶融状態であっても不透明石英ガラ
スブロック5の内部に未溶融層6が残り、それが大きな
空隙となって均質な不透明石英ガラスブロックの製造の
障害となっていた。本発明者等の研究によればブロック
の前記未溶融層は充填原料粉層の半径方向の10〜70
%、厚さ方向の20%〜80%に存在することがわかっ
ている。この未溶融層を解消するため更に加熱を続ける
と、図4(b)に示すように石英ガラスブロック5の表
面層に気泡4の非常に多い層ができ、反対に底部には気
泡が大きいが数の少ない半透明層7が形成される。とこ
ろが、前記ガラス原料粉層の中心部に外側よりも粒径の
小さいガラス原料粉を充填し内部充填域2を形成し、電
気溶融すると、前記未溶融層の形成がなく均一な気泡が
分布した不透明石英ガラスブロックが得られる。
In the conventional filling type melting method, as shown in FIG.
As shown in FIG. 3A, the graphite mold 3 was filled with the crystal powder 1 and melted by an electric melting method in which hydroxyl groups were less mixed to produce an opaque quartz glass block as shown in FIG. 3B. However, even if the outer side is in a molten state, the unmelted layer 6 remains inside the opaque quartz glass block 5, and it becomes a large void, which is an obstacle to the production of a homogeneous opaque quartz glass block. According to the study by the present inventors, the unmelted layer of the block is 10 to 70 in the radial direction of the packing material powder layer.
%, 20% to 80% in the thickness direction. When heating is further continued in order to eliminate this unmelted layer, as shown in FIG. 4 (b), a very large layer of bubbles 4 is formed on the surface layer of the quartz glass block 5, and on the contrary, there are large bubbles at the bottom. A small number of semitransparent layers 7 are formed. However, when the central portion of the glass raw material powder layer was filled with the glass raw material powder having a smaller particle size than the outside to form the inner filling region 2 and electromelted, the unmelted layer was not formed and uniform bubbles were distributed. An opaque quartz glass block is obtained.

【0011】上記中心部に充填されるガラス原料粉の粒
度が小さいとは、粒度分布としてではなく、最大粒径差
として捕らえられ、中心部に充填されるガラス原料粉の
最大粒径が外層に充填されるガラス原料粉の最大粒径の
70%以下、望ましくは50%以下であればよい。一般
的に電気溶融法に使用されるガラス原料粉の粒度分布は
350μm〜50μmであるので、中心部に用いられる
ガラス原料粉の最大粒径は250μm以下、望ましくは
175μm以下とすればよく、250μm以上であった
場合には、内外部で均一な溶融が起らずに、未溶融部が
生じたり、気泡の分布が不均一になる。
The fact that the particle size of the glass raw material powder filled in the central portion is small is understood not as a particle size distribution but as a maximum particle diameter difference, and the maximum particle diameter of the glass raw material powder filled in the central portion is the outer layer. It may be 70% or less, preferably 50% or less of the maximum particle diameter of the glass raw material powder to be filled. Since the particle size distribution of the glass raw material powder generally used in the electric melting method is 350 μm to 50 μm, the maximum particle size of the glass raw material powder used in the central portion is 250 μm or less, preferably 175 μm or less, and 250 μm. In the case of the above, uniform melting does not occur inside and outside, an unmelted portion is generated, and the distribution of bubbles becomes uneven.

【0012】上記粒径の小さいガラス原料粉の内部充填
域は、未溶融層の分布に鑑み、充填原料粉層の半径方向
の10〜70%、厚さ方向の20〜80%であればよ
い。
In view of the distribution of the unmelted layer, the internal filling region of the glass raw material powder having the small particle diameter may be 10 to 70% in the radial direction of the filling raw material powder layer and 20 to 80% in the thickness direction. .

【0013】以下に本発明を実施例で詳しく説明する
が、本発明はその実施例に限定されるものではない。
The present invention is described in detail below with reference to examples, but the present invention is not limited to the examples.

【0014】[0014]

【実施例1】高純度グレ−ドの水晶(不純物量:Na;
0.1ppm、K;0.2ppm、Li;0.2pp
m、Al;10ppm、Ca;0.3ppm、Fe;
0.1ppm、Cu;∠0.05ppm、Mg;0.1
ppm)を粉砕して表1の粒度分布を有する原料水晶粉
を得た。この水晶粉を篩別し、212μm以上の粒子を
除去した水晶粉A、250μm以上の粒子を除去した水
晶粉B、150μm以上の粒子を除去した水晶粉Cを得
た。これら水晶粉A〜Cの粒度分布は、使用した水晶粉
を篩分した際にメッシュの開口が粒径欄に示される篩上
に残った重量割合を示したものである。
Example 1 Quartz crystal of high purity grade (amount of impurities: Na;
0.1 ppm, K; 0.2 ppm, Li; 0.2 pp
m, Al; 10 ppm, Ca; 0.3 ppm, Fe;
0.1 ppm, Cu; ∠0.05 ppm, Mg; 0.1
(ppm) was pulverized to obtain a raw material crystal powder having a particle size distribution shown in Table 1. The crystal powder was sieved to obtain crystal powder A from which particles of 212 μm or more were removed, crystal powder B from which particles of 250 μm or more were removed, and crystal powder C from which particles of 150 μm or more were removed. The particle size distributions of the crystal powders A to C show the weight ratios of the openings of the mesh left on the sieve shown in the particle size column when the used crystal powders were sieved.

【0015】[0015]

【表1】 注)表中、数値は重量%である。[Table 1] Note) In the table, the values are% by weight.

【0016】上記原料水晶粉を内径φ300mm、高さ
400mmのグラファイトの型3内に、底部から100
mm敷き詰め、その中心部に外径φ150mm、肉厚2
mmの石英管を立て、この石英管の内側に水晶粉Aを、
また外側には原料水晶粉をそれぞれ100mm充填し
た。次いでゆっくりと前記石英管を抜き去った後、更に
全体で50mm程度の原料水晶粉を充填した。
The above raw quartz powder is placed in a graphite mold 3 having an inner diameter of 300 mm and a height of 400 mm from the bottom to 100 mm.
mm spread, outer diameter φ150 mm, thickness 2 at the center
mm quartz tube is erected, and quartz powder A is placed inside the quartz tube.
In addition, 100 mm of each raw material crystal powder was filled on the outside. Then, after slowly removing the quartz tube, a total of about 50 mm of raw material crystal powder was filled.

【0017】原料粉の充填が終了したところで、グラフ
ァイト型3を電気炉内に設置し、全体を真空排気した
後、窒素を20l/分の割合で流すとともに、炉内温度
を室温から1600℃までを20℃/分で、また160
0℃〜1800℃までを5℃/分の割合で昇温させ加熱
した。次いで、1800℃に1時間保持した後、グラフ
ァイト型を冷却し不透明石英ガラスブロック5を取り出
し、得られた不透明石英ガラスブロックの各部位から1
×4×4mm3の薄片を切り出し、顕微鏡にて気泡の個
数を測定し、体積を1cm3に換算して気泡密度(個/
cm3)を求めた。得れた結果を表2に示す。
When the filling of the raw material powder is completed, the graphite mold 3 is placed in an electric furnace, the whole is evacuated, then nitrogen is flowed at a rate of 20 l / min, and the furnace temperature is from room temperature to 1600 ° C. At 20 ° C / min and again 160
The temperature was raised from 0 ° C to 1800 ° C at a rate of 5 ° C / minute and heated. Next, after holding at 1800 ° C. for 1 hour, the graphite mold was cooled, the opaque quartz glass block 5 was taken out, and 1 was taken from each part of the obtained opaque quartz glass block.
Cut out a thin piece of × 4 × 4 mm 3 , measure the number of bubbles with a microscope, convert the volume to 1 cm 3 , and measure the bubble density (number /
cm 3 ). The results obtained are shown in Table 2.

【0018】また、上記不透明石英ガラスブロックの縦
方向の断面写真を図2に示す。
FIG. 2 shows a photograph of a cross section of the opaque quartz glass block in the vertical direction.

【0019】[0019]

【実施例2】実施例1において、外層を水晶粉Bに内層
を水晶Cで充填し、実施例1と同様にして不透明石英ガ
ラスブロックを得た。その気泡密度を測定し表2に示
す。
Example 2 In Example 1, an outer layer was filled with crystal powder B and an inner layer was filled with crystal C, and an opaque quartz glass block was obtained in the same manner as in Example 1. The bubble density was measured and is shown in Table 2.

【0020】[0020]

【比較例1】グラファイト型に高純度水晶粉のみを充填
し、実施例1と同様にして不透明石英ガラスブロックを
製造した。得られた不透明石英ガラスブロックの表面か
ら50mm、周縁から80mm程度に未溶融層6が残
り、ガラス化されていなかった。
Comparative Example 1 An opaque quartz glass block was manufactured in the same manner as in Example 1, except that a graphite mold was filled with only high-purity quartz powder. The unmelted layer 6 remained 50 mm from the surface of the obtained opaque quartz glass block and about 80 mm from the periphery, and was not vitrified.

【0021】[0021]

【比較例2】グラファイト型に原料水晶粉のみを充填
し、実施例1と同様の雰囲気、昇温条件で加熱し、18
00℃に3時間保持した。全体的には溶融されているも
のの、上部に極めて微細な泡が集中し、中および底部の
気泡密度は疎となり、しかも気泡が大きくなった。
[Comparative Example 2] A graphite mold was filled with only raw material crystal powder, and heated under the same atmosphere and temperature raising conditions as in Example 1, and
Hold at 00 ° C for 3 hours. Although it was melted as a whole, extremely fine bubbles were concentrated in the upper part, the bubble densities in the middle and bottom were sparse, and the bubbles were large.

【0022】[0022]

【表2】 [Table 2]

【0023】上記表2に示す数値は不透明石英ガラスブ
ロックの各位置における気泡密度(個/cm3)である
が、同表から明らかなように本発明の製造方法で得られ
た不透明石英ガラスブロックには微細な気泡が均一に分
散していることがわかる。
The numerical values shown in Table 2 above are bubble densities (cells / cm 3 ) at each position of the opaque quartz glass block. As is clear from the table, the opaque quartz glass block obtained by the production method of the present invention. It can be seen that fine air bubbles are uniformly dispersed in.

【0024】[0024]

【発明の効果】本発明では、上述のように単位体積当り
に含まれる気泡の表面積の総和およびその個数が大き
く、しかも均一に気泡が分散した不透明石英ガラスブロ
ックを製造することができ、それを切り出すことによっ
て、赤外線散乱および遮熱効果の高い不透明石英ガラス
板を効率的に製造することができる。
As described above, according to the present invention, it is possible to manufacture an opaque quartz glass block in which the total surface area and the number of bubbles contained in a unit volume are large and the bubbles are uniformly dispersed. By cutting out, an opaque quartz glass plate having a high infrared scattering and heat shielding effect can be efficiently manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を示す。1 shows a manufacturing method of the present invention.

【図2】本発明の製造方法で得られた不透明石英ガラス
ブロックの断面写真を示す。
FIG. 2 shows a cross-sectional photograph of an opaque quartz glass block obtained by the manufacturing method of the present invention.

【図3】従来の充填式溶融法で製造された不透明石英ガ
ラスブロックの断面図を示す。
FIG. 3 is a sectional view of an opaque quartz glass block manufactured by a conventional filling-type melting method.

【図4】従来の充填式溶融法で過加熱したときの不透明
石英ガラスブロックの断面図を示す。
FIG. 4 shows a cross-sectional view of an opaque quartz glass block when overheated by a conventional filling-type melting method.

【符号の説明】[Explanation of symbols]

1 水晶粉 2 内部充填域 3 グラファイト型 4 気泡 5 不透明石英ガラス 6 未溶融層 7 半透明層 1 Crystal powder 2 Internal filling area 3 Graphite type 4 Bubbles 5 Opaque quartz glass 6 Unmelted layer 7 Semi-transparent layer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月14日[Submission date] June 14, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】本発明の製造方法で得られた不透明石英ガラス
ブロックの組織断面写真を示す。
FIG. 2 shows a photograph of a cross section of the structure of an opaque quartz glass block obtained by the production method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 型内にガラス原料粉を充填し、加熱溶融
してなる微細な気泡を含有する不透明石英ガラスの製造
方法において、型内のガラス原料粉層の中心部を外側層
のガラス原料粉より小さい粒径を有するガラス原料粉で
充填することを特徴とする不透明石英ガラスの製造方
法。
1. A method for producing an opaque quartz glass containing fine bubbles formed by filling glass raw material powder in a mold and heating and melting the glass raw material powder layer in the mold, wherein the central portion of the glass raw material powder layer is the outer glass raw material. A method for producing an opaque quartz glass, which comprises filling with a glass raw material powder having a particle size smaller than that of the powder.
【請求項2】 粒径の小さいガラス原料粉の充填範囲が
ガラス原料粉層の半径に対して10〜70%、厚みに対
して20〜80%の範囲であることを特徴とする請求項
1記載の不透明石英ガラスの製造方法。
2. The filling range of the glass raw material powder having a small particle diameter is 10 to 70% with respect to the radius of the glass raw material powder layer and 20 to 80% with respect to the thickness thereof. A method for producing the opaque quartz glass described above.
【請求項3】 中心部に充填するガラス原料粉の最大径
が、外層部に充填されるガラス原料粉の最大粒径の70
%以下であることを特徴とする請求項1記載の不透明石
英ガラスの製造方法。
3. The maximum diameter of the glass raw material powder filled in the central portion is 70 times the maximum particle diameter of the glass raw material powder filled in the outer layer portion.
% Or less, The method for producing an opaque quartz glass according to claim 1, wherein
JP5229637A 1993-08-24 1993-08-24 Method for producing opaque quartz glass Expired - Fee Related JP3048800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5229637A JP3048800B2 (en) 1993-08-24 1993-08-24 Method for producing opaque quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5229637A JP3048800B2 (en) 1993-08-24 1993-08-24 Method for producing opaque quartz glass

Publications (2)

Publication Number Publication Date
JPH0761839A true JPH0761839A (en) 1995-03-07
JP3048800B2 JP3048800B2 (en) 2000-06-05

Family

ID=16895323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5229637A Expired - Fee Related JP3048800B2 (en) 1993-08-24 1993-08-24 Method for producing opaque quartz glass

Country Status (1)

Country Link
JP (1) JP3048800B2 (en)

Also Published As

Publication number Publication date
JP3048800B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
US5772714A (en) Process for producing opaque silica glass
US6672107B2 (en) Quartz glass crucible and process for the production thereof
EP0647600B1 (en) High-purity, opaque quartz glass, method for producing same and use thereof
EP1290250B1 (en) Multilayered quartz glass crucible and method of its production
JPH05105577A (en) Quartz glass crucible for pulling up silicon single crystal and its production
JP4014724B2 (en) Method for producing silica glass
KR101446518B1 (en) Quartz glass crucible for pulling up of silicon single crystal and process for producing the quartz glass crucible
JPH11310423A (en) Synthetic quartz glass and its production
JPS62212236A (en) Production of glass
JP3449654B2 (en) Method for producing opaque quartz glass
JPH0761839A (en) Production of opaque quarts glass
JP3050352B2 (en) Method for producing opaque quartz glass
EP0909743B2 (en) Opaque silica glass article having transparent portion and process for producing same
JP3478616B2 (en) Method for producing quartz glass block composite
JP3050351B2 (en) Method for producing opaque quartz glass
JP4191271B2 (en) Opaque quartz glass having a transparent part and method for producing the same
JPH0761827A (en) Opaque silica glass
JP3665664B2 (en) Method for producing opaque quartz glass
JP4035793B2 (en) Method for producing opaque quartz glass ring having transparent portion
US20020078709A1 (en) Opaque silica glass article having transparent portion and process for producing same
JP4035794B2 (en) Method for producing opaque quartz glass ring
JP3050353B2 (en) Method for producing opaque quartz glass
JP2005060152A (en) Manufacturing method for quartz crucible, quartz crucible, and manufacturing method for silicon single crystal using the same
JPS60215534A (en) Quartz glass jig
JP4176872B2 (en) Opaque silica glass, method for producing the same, and silica glass molding

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100324

LAPS Cancellation because of no payment of annual fees