JPS59129421A - Member for heat treatment of semiconductor - Google Patents

Member for heat treatment of semiconductor

Info

Publication number
JPS59129421A
JPS59129421A JP58003370A JP337083A JPS59129421A JP S59129421 A JPS59129421 A JP S59129421A JP 58003370 A JP58003370 A JP 58003370A JP 337083 A JP337083 A JP 337083A JP S59129421 A JPS59129421 A JP S59129421A
Authority
JP
Japan
Prior art keywords
quartz glass
semiconductor
heat treatment
viscosity
devitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58003370A
Other languages
Japanese (ja)
Other versions
JPH0450734B2 (en
Inventor
Nobuyuki Ueshima
上嶋 信幸
Masayuki Saito
正行 斉藤
Haruki Kimura
春樹 木村
Shigeru Abe
茂 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP58003370A priority Critical patent/JPS59129421A/en
Publication of JPS59129421A publication Critical patent/JPS59129421A/en
Priority to JP4125336A priority patent/JPH0714822B2/en
Publication of JPH0450734B2 publication Critical patent/JPH0450734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified

Abstract

PURPOSE:To prevent devitrification or deformation even by long time use by using a quartz glass which contains Na, K and Li at 0.05ppm or less respectively, and Cu at 0.05ppm, and has a viscosity of 10<12> poise or more at 1,200 deg.C. CONSTITUTION:The quartz glass for the heat treatment of a semiconductor dislikes devitrification or deformation during use. Even when alkaline metals such as Na, K and Li are restricted to 0.05ppm or less respectively, the devitrification can not be prevented in the case of excess of Cu, and further the viscosity has relation to the deformation by high temperature and long time use. Besides, when alkaline metals or Cu become much, they move through the quartz glass in use at a high temperature and scatter from the surface, thus decreasing the yield by affecting the semiconductor element. The use of the quartz glass which contains Na, K and Li at 0.05ppm or less respectively, and Cu at 0.05ppm, and has the viscosity of 10<12> poise or more at 1,200 deg.C enables to entirely avoid these hindrances, and accordingly the yield of the element improves.

Description

【発明の詳細な説明】 この発明は、3i等の半導体物質の熱処理に使用される
石英ガラス製炉芯管ならびにその付属部品、治具等の半
導体熱処理用部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor heat treatment members such as a quartz glass furnace core tube used for heat treatment of semiconductor materials such as 3i, its accessories, and jigs.

従来から半導体製造プロセス、特に熱処理プロセスにお
いて、その耐熱性と高純度の点から石英ガラス製の装置
、治具部品が使用されてきた。しかし、従来の石英ガラ
ス製品は天然産の水晶を原料としているため、アルミニ
ウム、アルカリ、アルカリ土類等の微量不一  1 − 細物元素の混入が避けられず、アルカリは通常各元素が
各々1〜31)rll11含まれていた。
BACKGROUND ART Equipment and jig parts made of quartz glass have traditionally been used in semiconductor manufacturing processes, particularly in heat treatment processes, because of their heat resistance and high purity. However, since conventional quartz glass products are made from naturally produced quartz, it is unavoidable that trace elements such as aluminum, alkali, and alkaline earth elements are mixed in. ~31) rll11 was included.

このにうな石英ガラスを半導体熱処理用部材、例えば炉
芯管として熱処理工程中の高温で使用した場合には、粘
性が低下して炉芯管の変形をもたらしたり、石英ガラス
の失透を促進させたりして長時間の使用が不可能であっ
た。
When this type of quartz glass is used as a semiconductor heat treatment component, such as a furnace core tube, at high temperatures during the heat treatment process, the viscosity may decrease, leading to deformation of the furnace core tube, or promoting devitrification of the quartz glass. It was impossible to use it for a long time.

これらの失透変形を起こすものは、石英ガラス中の不純
物の彰胃が大きく、従来は石英ガラス中の総不純物量を
下げることに留意してきた。しかし、その不純物の中で
も特にNa、l(、li等のアルカリ金属及び銅が大き
く影響することがわかった。また、網目修飾イオンであ
るアルカリ類が石英ガラス中に含有されると、粘性を下
げ、変形の一因となっていた。
Those that cause these devitrification deformations have a large concentration of impurities in the quartz glass, and conventionally attention has been paid to reducing the total amount of impurities in the quartz glass. However, it was found that among the impurities, alkali metals such as Na, L(, Li, etc.) and copper have a particularly large effect.Also, when alkalis, which are network modifying ions, are contained in quartz glass, the viscosity decreases. , which was a cause of deformation.

また、シリコン半導体素子の酸化膜中にイオン半径の小
さなアルカリイオンや銅イオンが存在する場合、これら
のイオンは酸化膜中−2− を比較的自由に移動するために高濃度になると、反転層
の生成や静電容量の変化等を起こして、素子として機能
しなくなる。この問題は近年の高密度化した素子の場合
、特に重要になってぎている。半導体のアルカリや銅に
よる汚染が半導体製造のどの工程で生ずるかを調べたと
ころ、熱処理工程で使用される拡散炉が最も大きな因子
であることがわかった。
In addition, when alkali ions or copper ions with small ionic radii exist in the oxide film of a silicon semiconductor device, these ions move relatively freely in the oxide film, so when the concentration becomes high, the inversion layer This causes the generation of electrostatic capacitance, changes in capacitance, etc., and the device no longer functions. This problem has become particularly important in the case of recent high-density devices. When we investigated which process in semiconductor manufacturing causes alkali and copper contamination of semiconductors, we found that the diffusion furnace used in the heat treatment process is the biggest factor.

すなわち、従来の石英ガラス製炉芯管を使用する拡散炉
において、石英ガラス中ではシリコン酸化膜中と同様に
アルカリや銅は移動しやすく、特に高温では石英ガラス
製炉芯管表面から飛び出して、熱処理中の半導体表面を
汚染することがわかった。
In other words, in a diffusion furnace that uses a conventional quartz glass furnace core tube, alkali and copper easily move in the quartz glass as in silicon oxide films, and especially at high temperatures, they jump out from the surface of the quartz glass furnace tube. It was found that it contaminates the semiconductor surface during heat treatment.

上記のような欠点を補うために、アルカリや銅の少ない
合成石英ガラス製炉芯管の使用が検討されたが、これは
合成石英のため高価になるばかりでなく、粘性が低いた
め、低温熱処理にしか使用できない。従って、素子の歩
留が悪くても、通常の石英ガラス製炉芯管−3− を使用するほかなかった。
In order to compensate for the above drawbacks, the use of a synthetic quartz glass furnace core tube with low alkali and copper content was considered, but this is not only expensive because it is synthetic quartz, but also has low viscosity, so it requires low-temperature heat treatment. Can only be used. Therefore, even if the yield of elements was poor, there was no choice but to use a normal quartz glass furnace core tube -3-.

この発明の目的は半導体熱処理用部材として長時間使用
しても失透や変形を起こさず、半導体素子の製造歩留を
向上させることのできる石英ガラス製の半導体熱処理用
部材を提供することにある。
An object of the present invention is to provide a semiconductor heat treatment member made of quartz glass that does not cause devitrification or deformation even when used for a long time as a semiconductor heat treatment member, and can improve the manufacturing yield of semiconductor devices. .

本発明の要旨とηるところは、Na 、K。The gist of the present invention is that Na, K.

liのアルカリ金属がそれぞれ0.5ppm以下で、か
つCuが0.0511r1m以下であり、1200℃に
おいて1012ポイズ以上の粘性を右覆る石英ガラスか
らなることを特徴とする半導体熱処理用部材にある。
The semiconductor heat treatment member is characterized in that it is made of quartz glass having an alkali metal content of 0.5 ppm or less, a Cu content of 0.0511 r1 m or less, and a viscosity of 1012 poise or more at 1200°C.

この発明は前)小のように崖導体熱処理用の石英ガラス
中の不純物総理に留意するのみでなく、その中でも特に
Na、に、l−iのアルカリ金属、C1の不純物量、さ
らには粘性を規制することににす、熱処理用部材の失透
や変形を防止できるとともに、高温において石英ガラス
中を移動しやすい上記元素の少ない石英ガラスを半導体
の熱処理に使用すること−4− によって半導体素子の製造歩留の向上をはかったもので
ある。
This invention not only pays attention to the impurities in silica glass for cliff conductor heat treatment as described in the previous article, but also takes into account the amount of impurities in Na, l-i alkali metals, C1, and even viscosity. In order to prevent devitrification and deformation of heat treatment members, the use of quartz glass containing less of the above elements, which easily move in quartz glass at high temperatures, is used for heat treatment of semiconductors. The aim is to improve manufacturing yield.

熱処理■稈で使用中の失透や変形を防止するためには、
Na 、に、 Ltのアルカリ金属ばかりでなく、Cu
も規制する必要がある。
Heat treatment ■To prevent devitrification and deformation during use with culms,
Not only alkali metals such as Na, Lt, but also Cu
also needs to be regulated.

アルカリ金属を各々Q、5ppm以下にしても、CLI
が過剰な場合には、失透を防止することができず、両者
を規制する必要がある。さらに、変形防止には粘性も大
きな要因の1つであり、1200℃における粘性が10
12ポイズ以上でないと、高温での使用中に変形を起こ
し、長時間の使用ができなくなる。
Even if the alkali metal content is Q and 5ppm or less, CLI
If it is excessive, devitrification cannot be prevented, and it is necessary to regulate both. Furthermore, viscosity is also a major factor in preventing deformation, and the viscosity at 1200°C is 10
If it is not 12 poise or higher, it will deform during use at high temperatures and cannot be used for a long time.

また、アルカリ金属とCLIが多くなると、前述のよう
に半導体熱処理用部材として高温で使用した場合には、
石英ガラス中を移動し、石英ガラス表面から飛散し、半
導体素子に悪影響を与え、製造歩留を低下させる。その
ためにNa、に、I−+を各々0.5ppm 以下ニし
、Cuを0.Q3ppm3pp:スル必Wカする。アル
カリ金属を各々0.5flpHl以下にし、−5− 石英ガラス表面からの飛散を防止しても、CUが過剰な
場合には、C0が飛び出して悪影響を与えるため、アル
カリ金属とC1lの両方を規制することが必要である。
In addition, when the alkali metal and CLI increase, as mentioned above, when used as a semiconductor heat treatment member at high temperatures,
It moves through the quartz glass and scatters from the quartz glass surface, adversely affecting semiconductor devices and reducing manufacturing yield. For this purpose, Na, I-+ is added to 0.5 ppm or less, and Cu is added to 0.5 ppm or less. Q3ppm3pp: Suru must W power. Even if alkali metals are each kept below 0.5flpHl and scattering from the quartz glass surface is prevented, if CU is excessive, C0 will fly out and have an adverse effect, so both alkali metals and C1l should be regulated. It is necessary to.

実施例(1) 天然水晶を微粉砕し、150〜250#に篩別し、鋭鉄
した後、浮遊選鉱法により精鉱し、さらに60℃以上で
濃咋5%のフッ化水素酸液に10時間浸漬して精製粉に
した。これをCLIとアルカリ金属を飛散させるために
長時間(12時間)溶融してから成形し、外径1001
111111肉厚3mm1長さ1820mmの炉芯管な
らびにそれに使用するウェハーポートを得た。このウェ
ハーボートの化学分析値を表1に示す。
Example (1) Natural quartz is finely ground, sieved to 150-250#, sharpened, concentrated by flotation method, and further added to a concentrated 5% hydrofluoric acid solution at 60°C or higher. It was soaked for 10 hours and made into refined powder. This was melted for a long time (12 hours) to scatter the CLI and alkali metal, and then molded.
111111 A furnace core tube with a wall thickness of 3 mm and a length of 1820 mm and a wafer port used therein were obtained. Table 1 shows the chemical analysis values of this wafer boat.

実施例(2) 実施例(1)で49られた精粉を7時間溶融してインゴ
ットをつくり、そのインゴットを1200℃以上の加熱
下で10〜50kVの直流で5時間以上電解し、アルカ
リおよび銅−6− を移動させ、純化された部分を成形して外径100mm
、肉厚3mm、長さ1820mmの炉芯管ならびにそれ
に使用するウェハーポートを得た。このウェハーポート
の化学分析値を表1に示す。
Example (2) The refined powder obtained in Example (1) was melted for 7 hours to make an ingot, and the ingot was electrolyzed with a direct current of 10 to 50 kV for 5 hours or more under heating at 1200°C or higher to form an alkali and Move the copper-6- and mold the purified part to an outer diameter of 100mm.
A furnace core tube with a wall thickness of 3 mm and a length of 1820 mm and a wafer port used therein were obtained. Table 1 shows the chemical analysis values of this wafer port.

比較例(7)及び(2) 前)本の実施例(1)(2)と同じ形状に合成石英で成
形した炉芯管およびウェハーポート(比較例1)ならび
に天然水晶を微粉砕して50〜250#に篩別して脱鉄
した後、浮遊選鉱法により精鉱し、フッ酸処理した原料
粉を溶融して従来の高純度石英ガラス炉芯管及びウェハ
ーポートに前述の実施例(1)〈2)と同じ形状に成形
した〈比較例2〉。
Comparative Examples (7) and (2) Previous) Furnace core tube and wafer port molded from synthetic quartz in the same shape as Examples (1) and (2) (Comparative Example 1) and natural quartz were pulverized to 50% After sieving to ~250# to remove iron, the ore was concentrated by a flotation method, and the raw material powder treated with hydrofluoric acid was melted and transferred to a conventional high-purity quartz glass furnace core tube and wafer port as described in Example (1). Comparative Example 2 was molded into the same shape as 2).

これらの物の化学分析値を表1に示す。The chemical analysis values of these products are shown in Table 1.

上述した実施例(1)(2)及び比較例(1)(2)で
得た炉芯管内に、半導体素子を載置したウェハーポート
を内装し、該炉芯管をs+ c−st系均熱管をライナ
ー管として拡散炉に取り付けた均熱管内に挿入し、1−
 7 − 250℃に111熱して半導体を製造する作業を1年続
(Jた後、各石英管の状態を調べた。これらの結果を表
2に示す。
A wafer port on which a semiconductor element was mounted was installed inside the furnace core tube obtained in Examples (1) (2) and Comparative Examples (1) and (2) described above, and the furnace core tube was subjected to s+ c-st system equalization. Insert the heating tube as a liner tube into the soaking tube attached to the diffusion furnace, and
After one year of continuous heating to manufacture semiconductors at 7-250°C, the condition of each quartz tube was examined. The results are shown in Table 2.

ここで用いた5iC−8i系均熱管は、Na、に、lj
等のアルカリ金属が各々1pI′1m以下である高純度
に処理した物を使用した。
The 5iC-8i soaking tube used here contains Na, lj
The alkali metals treated with high purity, each having an alkali metal content of 1 pI'1m or less, were used.

表1と表2とを見れば明らかなように、Na。As is clear from Tables 1 and 2, Na.

K、Liのアルカリ金属が各々0.5ppm以下で、か
つCuが0.03prl11以下テアリ、1200℃に
おいて1012ボイズ以上の粘性を有するものは1年間
使用しても、石英ガラス炉芯管に失透や変形がなく、し
がも得られた半導体のライフタイムが長く、フラットバ
ンドの電圧差]ΔVrnlが0.1以下であり、極めて
高品質のものが19られた。
If the alkali metals of K and Li are each 0.5 ppm or less, and the Cu content is 0.03 prl11 or less, and the viscosity is 1012 or more at 1200°C, the silica glass furnace core tube will devitrify even if used for one year. The obtained semiconductor had a long lifetime without deformation or deformation, and had a flat band voltage difference [ΔVrnl] of 0.1 or less, and was of extremely high quality.

これに対し、合成石英のもの(比較例1)はアルカリと
C1が少なく、得られた半導体は高品質のものであった
が、粘性が低いため、使用後1〜2か月で炉芯管に変形
をきたし、使用不可能となった。また、従来のアルカリ
−8− と011を1〜3 ppm含有する石英ガラス(比較例
2)は使用後2〜3が月で石英ガラス炉芯管が失透し、
また変形をきたした。得られた半導体も低品質のもので
あった。
On the other hand, synthetic quartz (Comparative Example 1) contained less alkali and C1, and the obtained semiconductor was of high quality, but due to its low viscosity, the furnace core tube was removed after 1 to 2 months of use. It became deformed and became unusable. Furthermore, in the conventional quartz glass containing 1 to 3 ppm of alkali-8- and 011 (Comparative Example 2), the quartz glass furnace core tube devitrified within 2 to 3 months after use.
It was transformed again. The obtained semiconductor was also of low quality.

以上、詳述したように、本発明によれば、石英ガラス中
のアルカリを0.!Mr+m以下とし、(lを0.O3
ppm以下にすることにより、石英ガラスの失透を防止
でき、長時間の使用が可能となる。また、実施例(1)
及び(2)で例示したように、炭化珪素質の均熱管を使
用する場合、上記均熱管のアルカリ金属が1 ppm以
下〈好ましくはo、5ppm以下)のものを使用するこ
とにより、さらに長時間の使用が可能となるものである
。また、得られる半導体も高品質のものである。
As described in detail above, according to the present invention, the alkali in the quartz glass is reduced to 0. ! Mr+m or less, (l is 0.O3
By controlling the content to ppm or less, devitrification of the quartz glass can be prevented and long-term use becomes possible. Also, Example (1)
As exemplified in (2) above, when a silicon carbide soaking tube is used, by using the heat soaking tube with an alkali metal content of 1 ppm or less (preferably o, 5 ppm or less), the heating time can be maintained even longer. This enables the use of Moreover, the semiconductor obtained is also of high quality.

本発明の石英ガラスはm目修飾イオンであるアルカリ類
を減することにより、粘性を高めることができる効宋も
併せ持っている。
The quartz glass of the present invention also has the effect of increasing viscosity by reducing alkalis, which are m-order modifying ions.

さらに、本発明の石英ガラスは原料粉の高純度化処理、
長時間溶融によるアルカリ及び−〇    − CLIの除去、あるいけ溶融インボッ1〜の電解処理等
により得ることができるため、安価に製造することがで
きる。
Furthermore, the quartz glass of the present invention is produced by high purity treatment of raw material powder.
Since it can be obtained by removing alkali and -0-CLI by long-time melting, electrolytically treating a melted ingot, etc., it can be manufactured at low cost.

前述の実施例では、長時間溶融とインゴットの電解によ
る製造方法を示したが、本発明はこれに限定されるもの
ではなく、他の製造方法を採用できる。
In the above embodiment, a manufacturing method using long-time melting and ingot electrolysis was shown, but the present invention is not limited to this, and other manufacturing methods can be adopted.

また、炭化珪素質均熱管とともに使用したが、石英ガラ
ス炉芯管を所定の肉厚にし、石英ガラス炉芯管のみで使
用することも可能であり、灼熱管を用いる場合には、炭
化■1素質のbのに限らず、ΔQ20a’M等、アルカ
リが1ppmにl、下のものであれば何でもよい。
In addition, although it was used together with a silicon carbide soaking tube, it is also possible to make the quartz glass furnace core tube a certain thickness and use it alone with the quartz glass furnace core tube. It is not limited to the quality b, but anything with an alkali content of 1 ppm or less, such as ΔQ20a'M, may be used.

特許出願人 東芝セラミックス株式会社−10−Patent applicant: Toshiba Ceramics Corporation -10-

Claims (1)

【特許請求の範囲】[Claims] Na、に、Liのアルカリ金属がそれぞれ0.5ppm
以下で、かつCuが0.O3ppm以下であり、120
0℃において1012ポイズ以上の粘性を有する石英ガ
ラスからなることを特゛徴とする半導体熱処理用部材。
Alkali metals of Na, Li and 0.5 ppm each
or less, and Cu is 0. O3ppm or less, 120
A member for semiconductor heat treatment characterized by being made of quartz glass having a viscosity of 1012 poise or more at 0°C.
JP58003370A 1983-01-14 1983-01-14 Member for heat treatment of semiconductor Granted JPS59129421A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58003370A JPS59129421A (en) 1983-01-14 1983-01-14 Member for heat treatment of semiconductor
JP4125336A JPH0714822B2 (en) 1983-01-14 1992-04-20 Quartz glass purification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58003370A JPS59129421A (en) 1983-01-14 1983-01-14 Member for heat treatment of semiconductor
JP4125336A JPH0714822B2 (en) 1983-01-14 1992-04-20 Quartz glass purification method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4125336A Division JPH0714822B2 (en) 1983-01-14 1992-04-20 Quartz glass purification method

Publications (2)

Publication Number Publication Date
JPS59129421A true JPS59129421A (en) 1984-07-25
JPH0450734B2 JPH0450734B2 (en) 1992-08-17

Family

ID=26336931

Family Applications (2)

Application Number Title Priority Date Filing Date
JP58003370A Granted JPS59129421A (en) 1983-01-14 1983-01-14 Member for heat treatment of semiconductor
JP4125336A Expired - Lifetime JPH0714822B2 (en) 1983-01-14 1992-04-20 Quartz glass purification method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP4125336A Expired - Lifetime JPH0714822B2 (en) 1983-01-14 1992-04-20 Quartz glass purification method

Country Status (1)

Country Link
JP (2) JPS59129421A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236723A (en) * 1987-03-26 1988-10-03 Shinetsu Sekiei Kk Quartz glass products for semiconductor industry
JPH05105577A (en) * 1990-06-25 1993-04-27 Shinetsu Quartz Prod Co Ltd Quartz glass crucible for pulling up silicon single crystal and its production
JPH0784328B2 (en) * 1984-11-05 1995-09-13 三菱マテリアル株式会社 Method for improving the quality of glassy silica containers or pipes
WO1995034091A1 (en) * 1994-06-09 1995-12-14 Heraeus Quarzglas Gmbh Semifinished product for electronic or opto-electronic semiconductor component
US6133178A (en) * 1997-12-03 2000-10-17 Tosoh Corporation High purity transparent silica glass
JP2011132073A (en) * 2009-12-24 2011-07-07 Tosoh Corp Quartz glass with metal impurity diffusion-stopping ability

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557441B2 (en) * 2000-03-17 2010-10-06 ジャパンスーパークォーツ株式会社 Method and apparatus for refining quartz powder and quartz glass product
JP4204374B2 (en) * 2003-04-21 2009-01-07 信越石英株式会社 Manufacturing method of quartz glass jig

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784328B2 (en) * 1984-11-05 1995-09-13 三菱マテリアル株式会社 Method for improving the quality of glassy silica containers or pipes
JPS63236723A (en) * 1987-03-26 1988-10-03 Shinetsu Sekiei Kk Quartz glass products for semiconductor industry
JPH05105577A (en) * 1990-06-25 1993-04-27 Shinetsu Quartz Prod Co Ltd Quartz glass crucible for pulling up silicon single crystal and its production
WO1995034091A1 (en) * 1994-06-09 1995-12-14 Heraeus Quarzglas Gmbh Semifinished product for electronic or opto-electronic semiconductor component
US6133178A (en) * 1997-12-03 2000-10-17 Tosoh Corporation High purity transparent silica glass
DE19855915B4 (en) * 1997-12-03 2007-08-23 Tosoh Corp., Shinnanyo Transparent high-purity quartz glass and process for its production
DE19855915C5 (en) * 1997-12-03 2009-09-24 Tosoh Corp., Shinnanyo Transparent high-purity quartz glass and process for its production
JP2011132073A (en) * 2009-12-24 2011-07-07 Tosoh Corp Quartz glass with metal impurity diffusion-stopping ability

Also Published As

Publication number Publication date
JPH0714822B2 (en) 1995-02-22
JPH05301731A (en) 1993-11-16
JPH0450734B2 (en) 1992-08-17

Similar Documents

Publication Publication Date Title
JP5177950B2 (en) Method for treating synthetic silica powder and synthetic silica powder treated therewith
JPS59129421A (en) Member for heat treatment of semiconductor
US2419561A (en) Crystal contact of which one element is mainly silicon
JPS60137892A (en) Quartz glass crucible
JP3268049B2 (en) Quartz glass material and its manufacturing method
JPS60138915A (en) Furnace core tube of silicon carbide
JPS63236723A (en) Quartz glass products for semiconductor industry
JPH11310423A (en) Synthetic quartz glass and its production
JP2759763B2 (en) Cordierite-based crystallized glass and method for producing the same
JPS6144793A (en) Quartz glass crucible for pulling up silicon single crystal
DE2532969A1 (en) METHOD OF MANUFACTURING GLASS
WO2005056887A1 (en) Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby
US2901342A (en) Purification of indium
JPS5849519B2 (en) Quartz glass crucible for pulling silicon single crystals
JPS6230632A (en) Production of high-purity quartz glass
JPH0761827A (en) Opaque silica glass
JPS59121193A (en) Silicon crystal
JP2777858B2 (en) Silica glass tube for heat treatment of semiconductor and method for producing the same
JPS6123315A (en) Silica material for heat-treatment of semiconductor
JPH0612762B2 (en) Quartz glass furnace core tube manufacturing method
JPS63215600A (en) Quartz glass component for production of semiconductor
JPS6123316A (en) Structural material for semiconductor heat-treatment furnace
JP3294356B2 (en) Quartz glass furnace core tube for semiconductor wafer processing
JP2878916B2 (en) Silica glass member for semiconductor heat treatment and method for producing the same
JPH07172977A (en) Production of quartz glass crucible