JP3687872B2 - Method for producing electric furnace material for heat treatment such as high purity silicon, and electric furnace material for heat treatment - Google Patents

Method for producing electric furnace material for heat treatment such as high purity silicon, and electric furnace material for heat treatment Download PDF

Info

Publication number
JP3687872B2
JP3687872B2 JP17987196A JP17987196A JP3687872B2 JP 3687872 B2 JP3687872 B2 JP 3687872B2 JP 17987196 A JP17987196 A JP 17987196A JP 17987196 A JP17987196 A JP 17987196A JP 3687872 B2 JP3687872 B2 JP 3687872B2
Authority
JP
Japan
Prior art keywords
heat treatment
furnace material
electric furnace
gas
purity silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17987196A
Other languages
Japanese (ja)
Other versions
JPH107476A (en
Inventor
茂 山形
貴之 外川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP17987196A priority Critical patent/JP3687872B2/en
Publication of JPH107476A publication Critical patent/JPH107476A/en
Application granted granted Critical
Publication of JP3687872B2 publication Critical patent/JP3687872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1025Alkali-free or very low alkali-content materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高純度シリコン等の熱処理用電気炉材の製造方法及び前記製造方法で得られた熱処理用電気炉材、特に溶融石英ガラス、合成シリカガラス、シリコンウエハー等の半導体用材料、光学用材料等を熱処理するための電熱処理用電気炉材の製造方法、及び該製造方法で得られた熱処理用電気炉材に関する。
【0002】
【従来技術】
従来、天然水晶や石英を溶融したいわゆる“溶融石英”ガラスは、高純度で耐熱性が高く、しかも耐急加熱急冷却性に優れているところから、シリコンウエハーボート、チャンバー、ベルジャー、洗浄槽、ルツボ等の半導体工業用治具に、またSiCl4等の高純度シリコン化合物を火炎加水分解法等で得た合成シリカガラスは高純度で紫外域、赤外域の光透過性に優れているところから光ファイバ、光リソグラフィー用レンズ、プリズム等の光学材料として、さらにSi34、SiC等のシリコン化合物はその耐熱性の良さから炉内で使用する耐熱材料として使用されてきた。前記治具にあってはその製造時の歪除去のためのアニール処理、その後製品として使用されるための加熱処理が行われ、また光学材料にあっては複屈折の低減、屈折率分布を高均質にするのための加熱処理が行われる。さらに前記治具や耐熱材料には半導体製品を載置し加熱炉中で熱処理することが行われる。これらの加熱処理はいずれも高温で長時間行われるところから、処理中に電気炉の炉材から不純物金属元素が揮発し治具や光学材料、或は半導体製品等を汚染することが時々起こる。特に拡散速度の大きいNaの汚染が大きな問題となっており、中でも単結晶シリコン、シリコンウエハーの熱処理においてはさらにFe、Ni、Cu等の金属元素による汚染も問題点となっている。こうした炉材中の不純物金属元素による汚染を低減するため炉材を例えば低酸素分圧下(N2気流中)、1,300〜1,500℃で100〜120時間の空焼きしたり、或は高純度Al23板を炉床板として用い、その上に被処理物を載置する方法等が提案されているが、いずれも不純物金属元素の汚染を充分防ぐものではなかった。
【0003】
【発明が解決しようとする課題】
こうした現状に鑑み、本発明者等は鋭意研究を重ねた結果、アルミナを主成分とする熱処理用電気炉材を特定の処理条件で純化処理することでNa、Fe、Ni、Cu等の不純物金属元素、特に拡散速度の早いNaによる汚染の少ない炉材を製造できることを見出し、本発明を完成したものである。すなわち、
【0004】
本発明は、高純度シリコン等をNa、Fe、Ni、Cu等の不純物金属元素で汚染することの少ない熱処理用電気炉材の製造方法を提供することを目的とする。
【0005】
また、本発明は、上記の製造方法で得られた熱処理用電気炉材を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明は、アルミナ70〜99wt%、シリカ30〜1wt%を主成分とする原料粉を焼成して得た嵩密度が0.1〜1 g/cm 3 熱処理用電気炉材を塩化水素ガス、塩素ガス、フッ素ガス及びフッ化水素ガスから選ばれる少なくとも1種を含有するガス雰囲気中で、400〜1400℃で純化処理するか、またはさらに硝酸、塩酸、硫酸及びフッ酸から選ばれる少なくとも1種の水溶液を用い20〜80℃で洗浄純化する高純度シリコン等の熱処理用電気炉材の製造方法、及び該製造方法で得られた熱処理用電気炉材に関する。
【0007】
上記のとおり本発明の炉材は、アルミナ70〜99wt%、シリカ30〜1wt%を主成分とする原料粉を焼成して得た嵩密度が0.1〜1 g/cm 3 熱処理用電気炉材であるが、該炉材の製造原料粉としては粒径1〜500μm、純度99.99wt%のアルミナ粉及びシリカ粉が用いられる。前記原料が30〜1wt%のシリカ粉含有することで焼結が容易となるがその含有量が30wt%を超えると炉材の使用最高温度が約1400℃以下と低くなり、またシリカ粉の含有量が1wt%未満では焼成温度が高温過ぎ、かつ高緻密化し純化処理が困難となる。
【0008】
本発明の熱処理用電気炉材の製造方法にあっては、前記原料に、さらに必要に応じて少量のバインダーを加えそれらをV型混合器、ボールミル等で均一に混合したのち、押出成形、流延成形等で炉材に成形し、それを約1,500〜1,800℃で焼成し、嵩密度0.1〜1g/cm3の炉材をえ、さらに(i)塩化水素ガス、塩素ガス、フッ素ガス及びフッ化水素ガスから選ばれる少なくとも1種を含有するガス雰囲気中で、加熱純化処理するか、又は(ii)前記加熱純化処理に続いてさらに硝酸、塩酸、硫酸及びフッ酸から選ばれる少なくとも1種の水溶液による洗浄純化処理をする。炉材の嵩密度が0.1〜1g/cm3の範囲にあることで純化処理が良好に行える。
【0009】
上記加熱純化処理でのガス雰囲気は塩化水素ガス、塩素ガス、フッ素ガス及びフッ化水素ガスから選ばれる少なくとも1種を窒素、アルゴン等の不活性ガスで希釈するのがよく、その雰囲気ガス中での処理温度は400〜1400℃、好ましくは600〜1,000℃の範囲がよい。また洗浄純化処理においては硝酸、塩酸、硫酸及びフッ酸から選ばれる少なくとも1種の水溶液で20〜80℃、好ましくは30〜60℃で洗浄するのがよい。前記加熱純化処理は単独でもまた複数回繰り返してもよく、さらにこの加熱純化処理に洗浄処理を組み合わせてもよい。より好ましくは加熱純化処理に引き続き洗浄処理を行うのがよい。
【0010】
上記純化処理で熱処理用電気炉材中のNa含有量を0.02wt%以下、好ましくは1〜100wtppmとする。特に(ii)の純化方法を実施することでNa含有量が0.02wt%以下、Cuの含有量が50wtppm以下、Niの含有量が50wtppm以下及びFeの含有量が1000wtppm以下とすることができ800〜1,300℃の温度で単結晶シリコン、シリコンウエハー等の高純度シリコン、又はレンズ用高純度合成シリカガラス等を処理しても不純物金属元素による汚染が殆ど起こることがなく、しかも嵩密度が上記範囲にあることから1000℃における熱伝導率が0.1〜1kcal/mh℃となり保温効果が高い。
【0011】
【発明の実施の形態】
次に具体例に基づいて本発明を詳細に説明するが、本発明はそれにより限定されるものではない。
【0013】
【実施例】
実施例1〜6
99.99wt%以上のアルミナ粉(α−アルミナ粉)約10kgとシリカ粉約2kgを準備し、それを表1の組成割合でアルミナ製ボールで混合し、さらに少量のバインダーを添加したのち押出成形して炉材を形成し、それを約1,500〜1,800℃で常圧焼成して150×150×20mmの板状母材を作成した。該母材の蛍光X線分光法による組成は表1のとおりであった。
【0014】
上記板状母材を横型円筒電気炉に約直径200×長さ1000mmのシリカガラス炉芯管を挿込した内部に設置し、窒素ガスで置換したのち、表1に示す成分の純化ガスを50〜100ml/minの流量で流した。処理温度及び処理時間は表1のとおりである。前記加熱純化処理した板状母材を表1に示す組成のフッ化水素酸水溶液で洗浄処理し、次いでイオン交換水で洗浄し、乾燥した。得られた板状母材を中のNa、Cu、Ni、Feの濃度分析を原子吸光光度法で行い、また25℃における嵩密度の測定および1000℃における熱伝導率測定をそれぞれ行った。その結果を表1に示す。
【0015】
また、板状母材を二ケイ化モリブデンをヒータとする高温大気炉内の炉材とし使用し、該炉の床面上に寸法100×100×5mmのSuprasil−F310(信越石英(株)シリカガラス製品)を敷き、その上に汚染評価用サンプルとしてフッ化水素酸により表層部約3μmをエッチング処理した直径10×長さ50mmのHeralux−E−LA(信越石英(株)シリカガラス製品)を置き1,100℃、100時間加熱処理した。
【0016】
次いで、このサンプルをフッ化水素酸により表層部約10μmをエッチング除去して、残りのサンプルをすべて溶解調整し、これを原子吸光光度法にて不純物濃度分析を行った。その測定結果を表1に示す。
【0017】
【表1】

Figure 0003687872
Figure 0003687872
【0018】
比較例1
実施例1と同一の板状母材の高純化処理を行わないものをそのまま加熱処理用炉材として用い、実施例1と同様のサンプルの加熱処理汚染評価を行った。その結果を表2に示す。
【0019】
比較例2
比較例1において、アルミナ組成比が小さく、不純物金属元素含有量の大きい加熱処理用炉材を用いて、実施例1と同様のサンプルの加熱処理汚染評価を行った。その結果を表2に示す。
【0020】
比較例3
実施例1において高純化処理の加熱純化処理温度を200℃で行った加熱処理用炉材を用いて、実施例1のサンプルの加熱処理汚染評価を行った。その結果を表2に示す。
【0021】
【表2】
Figure 0003687872
【0022】
〈評価〉
本発明の製造方法で得られた熱処理用炉材を用いて電気炉を作成し、該電気炉でシリカガラスサンプルを加熱処理しても表1、2から明らかなように前記サンプルを殆ど汚染することがない。
【0023】
一方、比較例1〜3に示すように純化処理しない熱処理用炉材の場合には不純物金属元素による汚染、特にNa汚染が大きい。また、比較例2にみるようにアルミナ含有量が少ない炉材は最高使用温度が約1300℃と低く、その嵩密度も0.09g/cm3と低く機械的強度が弱く、炉材としての基本性能が好ましくなかった。
【0024】
【発明の効果】
本発明の製造方法では、高純度の原料粉を用いて熱処理用炉材を製造し、それを純化処理するという簡便な方法で不純物金属元素を発生させることが少ない加熱処理用炉材を容易に製造できる。前記加熱処理用炉材で電気炉を構築することで高純度シリコン等を800〜1300℃で熱処理しても不純物金属元素、特にアルカリ金属元素で汚染されることがなく、その工業的価値の高い炉材である。[0001]
[Industrial application fields]
The present invention relates to a method for producing an electric furnace material for heat treatment such as high-purity silicon, and an electric furnace material for heat treatment obtained by the production method, in particular, semiconductor materials such as fused silica glass, synthetic silica glass, silicon wafer, and optical The present invention relates to a method for manufacturing an electric furnace material for electric heat treatment for heat-treating materials and the like, and an electric furnace material for heat treatment obtained by the manufacturing method.
[0002]
[Prior art]
Conventionally, so-called “fused quartz” glass, which is made by melting natural quartz or quartz, has high purity, high heat resistance, and excellent resistance to rapid heating and rapid cooling. From silicon wafer boats, chambers, bell jars, cleaning tanks, Synthetic silica glass obtained from semiconductor industry jigs such as crucibles, and high-purity silicon compounds such as SiCl 4 by flame hydrolysis, etc. has high purity and is excellent in light transmittance in the ultraviolet and infrared regions. Silicon compounds such as Si 3 N 4 and SiC have been used as heat-resistant materials for use in furnaces as optical materials for optical fibers, optical lithography lenses, prisms, and the like. The jig is annealed to remove strain during its manufacture, and then heated to be used as a product. In the optical material, birefringence is reduced and the refractive index distribution is increased. Heat treatment for homogenization is performed. Further, a semiconductor product is placed on the jig or the heat-resistant material and heat-treated in a heating furnace. Since all of these heat treatments are performed at a high temperature for a long time, the impurity metal elements volatilize from the furnace material of the electric furnace during the treatment and sometimes contaminate jigs, optical materials, or semiconductor products. In particular, contamination of Na, which has a high diffusion rate, is a serious problem. In particular, contamination by metal elements such as Fe, Ni, Cu, etc. is also a problem in the heat treatment of single crystal silicon and silicon wafers. In order to reduce the contamination by the impurity metal elements in the furnace material, the furnace material is baked, for example, at 1,300 to 1,500 ° C. for 100 to 120 hours under a low oxygen partial pressure (in a N 2 stream), or A method has been proposed in which a high-purity Al 2 O 3 plate is used as a hearth plate, and an object to be processed is placed thereon. However, none of these methods sufficiently prevent contamination with impurity metal elements.
[0003]
[Problems to be solved by the invention]
In view of the current situation, the present inventors have conducted extensive research, and as a result, by purifying the electric furnace material for heat treatment mainly composed of alumina under specific processing conditions, impurity metals such as Na, Fe, Ni, Cu, etc. The inventors have found that a furnace material with low contamination by Na, which has a high diffusion rate, can be produced, and the present invention has been completed. That is,
[0004]
An object of this invention is to provide the manufacturing method of the electric furnace material for heat processing which hardly contaminates high purity silicon etc. with impurity metal elements, such as Na, Fe, Ni, and Cu.
[0005]
Moreover, an object of this invention is to provide the electric furnace material for heat processing obtained by said manufacturing method.
[0006]
[Means for Solving the Problems]
The present invention to achieve the above object, alumina 70~99Wt%, heat-treating furnace of bulk density silica 30~1Wt% was obtained by firing a raw material powder whose main component is 0.1 to 1 g / cm 3 The material is purified at 400 to 1400 ° C. in a gas atmosphere containing at least one selected from hydrogen chloride gas, chlorine gas, fluorine gas and hydrogen fluoride gas, or nitric acid, hydrochloric acid, sulfuric acid and hydrofluoric acid The present invention relates to a method for producing an electric furnace material for heat treatment such as high-purity silicon that is cleaned and purified at 20 to 80 ° C. using at least one aqueous solution selected from the above, and an electric furnace material for heat treatment obtained by the production method.
[0007]
Furnace material of the present invention as described above, alumina 70~99Wt%, the heat treatment for the electrical bulk density silica 30~1Wt% was obtained by firing a raw material powder whose main component is 0.1 to 1 g / cm 3 Although it is a furnace material, alumina powder and silica powder having a particle size of 1 to 500 μm and a purity of 99.99 wt% are used as the raw material powder for manufacturing the furnace material. When the raw material contains 30 to 1 wt% of silica powder , sintering becomes easy, but when the content exceeds 30 wt%, the maximum use temperature of the furnace material is reduced to about 1400 ° C or lower, and the silica powder If the content is less than 1 wt%, the firing temperature is too high and the density becomes high and the purification process becomes difficult.
[0008]
In the method for producing an electric furnace material for heat treatment according to the present invention, a small amount of binder is further added to the raw material as necessary, and these are uniformly mixed with a V-type mixer, a ball mill, etc. It is formed into a furnace material by rolling or the like, fired at about 1,500 to 1,800 ° C. to obtain a furnace material having a bulk density of 0.1 to 1 g / cm 3 , and (i) hydrogen chloride gas, chlorine Heat purification in a gas atmosphere containing at least one selected from gas, fluorine gas and hydrogen fluoride gas, or (ii) following nitric acid, hydrochloric acid, sulfuric acid and hydrofluoric acid following the heat purification treatment A cleaning purification treatment is performed with at least one selected aqueous solution. When the bulk density of the furnace material is in the range of 0.1 to 1 g / cm 3 , the purification treatment can be performed satisfactorily.
[0009]
The gas atmosphere in the heat purification treatment is preferably diluted with an inert gas such as nitrogen or argon at least one selected from hydrogen chloride gas, chlorine gas, fluorine gas and hydrogen fluoride gas. The processing temperature is 400 to 1400 ° C, preferably 600 to 1,000 ° C. In the cleaning purification treatment, it is preferable to wash at 20 to 80 ° C., preferably 30 to 60 ° C. with at least one aqueous solution selected from nitric acid, hydrochloric acid, sulfuric acid and hydrofluoric acid. The heat purification treatment may be repeated alone or a plurality of times, and a cleaning treatment may be combined with the heat purification treatment. More preferably, the cleaning process is performed subsequent to the heat purification process.
[0010]
In the above purification treatment, the Na content in the electric furnace material for heat treatment is set to 0.02 wt% or less, preferably 1 to 100 wt ppm. In particular, by performing the purification method (ii), the Na content can be 0.02 wt% or less, the Cu content can be 50 wtppm or less, the Ni content can be 50 wtppm or less, and the Fe content can be 1000 wtppm or less. Even if high-purity silicon such as single crystal silicon, silicon wafer, or high-purity synthetic silica glass for lenses is processed at a temperature of 800 to 1,300 ° C., contamination with impurity metal elements hardly occurs, and bulk density Is in the above range, the thermal conductivity at 1000 ° C. is 0.1 to 1 kcal / mh ° C., and the heat retention effect is high.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail based on specific examples, but the present invention is not limited thereto.
[0013]
【Example】
Examples 1-6
About 10 kg of alumina powder (α-alumina powder) of 99.99 wt% or more and about 2 kg of silica powder are prepared, mixed with alumina balls at the composition ratio shown in Table 1, and a small amount of binder is added, followed by extrusion. Then, a furnace material was formed, and this was fired at normal pressure at about 1,500 to 1,800 ° C. to prepare a plate-like base material of 150 × 150 × 20 mm. The composition of the base material by fluorescent X-ray spectroscopy was as shown in Table 1.
[0014]
The plate-shaped base material is installed in a horizontal cylindrical electric furnace with a silica glass furnace core tube having a diameter of about 200 × 1000 mm in length, and is replaced with nitrogen gas. It flowed at a flow rate of ˜100 ml / min. The processing temperature and processing time are as shown in Table 1. The heat-purified plate-like base material was washed with a hydrofluoric acid aqueous solution having the composition shown in Table 1, then washed with ion-exchanged water and dried. The obtained plate-like base material was analyzed for the concentration of Na, Cu, Ni, and Fe by atomic absorption photometry, and the bulk density at 25 ° C and the thermal conductivity at 1000 ° C were measured. The results are shown in Table 1.
[0015]
In addition, a plate-shaped base material is used as a furnace material in a high-temperature atmospheric furnace using molybdenum disilicide as a heater, and Suprasil-F310 (Shin-Etsu Quartz Co., Ltd. Heralux-E-LA (Shin-Etsu Quartz Co., Ltd. silica glass product) 10 mm in diameter and 50 mm in length with a surface layer of about 3 μm etched with hydrofluoric acid as a contamination evaluation sample. The plate was heat-treated at 1,100 ° C. for 100 hours.
[0016]
Subsequently, about 10 μm of the surface layer portion of this sample was removed by etching with hydrofluoric acid, all the remaining samples were dissolved and adjusted, and the impurity concentration analysis was performed by atomic absorption spectrophotometry. The measurement results are shown in Table 1.
[0017]
[Table 1]
Figure 0003687872
Figure 0003687872
[0018]
Comparative Example 1
The same plate-like base material that was not subjected to the purification treatment as in Example 1 was used as it was as a furnace material for heat treatment, and the same heat treatment contamination evaluation as in Example 1 was performed. The results are shown in Table 2.
[0019]
Comparative Example 2
In Comparative Example 1, the heat treatment contamination evaluation of the sample similar to Example 1 was performed using a heat treatment furnace material having a small alumina composition ratio and a large impurity metal element content. The results are shown in Table 2.
[0020]
Comparative Example 3
The heat treatment contamination evaluation of the sample of Example 1 was performed using the furnace material for heat treatment that was performed at 200 ° C. in the heat purification treatment temperature of the high purification treatment in Example 1. The results are shown in Table 2.
[0021]
[Table 2]
Figure 0003687872
[0022]
<Evaluation>
Even if an electric furnace is prepared using the furnace material for heat treatment obtained by the production method of the present invention, and the silica glass sample is heat-treated in the electric furnace, the sample is almost contaminated as apparent from Tables 1 and 2. There is nothing.
[0023]
On the other hand, as shown in Comparative Examples 1 to 3, in the case of a furnace for heat treatment that is not purified, contamination by impurity metal elements, particularly Na contamination, is large. Further, as seen in Comparative Example 2, the furnace material having a low alumina content has a low maximum use temperature of about 1300 ° C., a bulk density of 0.09 g / cm 3 and a low mechanical strength. The performance was not favorable.
[0024]
【The invention's effect】
In the production method of the present invention, a furnace material for heat treatment is produced with a simple method of producing a furnace material for heat treatment using high-purity raw material powder and purifying it. Can be manufactured. By constructing an electric furnace with the furnace material for heat treatment, high-purity silicon and the like are not contaminated with impurity metal elements, particularly alkali metal elements, even when heat-treated at 800 to 1300 ° C., and have high industrial value. It is a furnace material.

Claims (5)

アルミナ70〜99wt%、シリカ30〜1wt%を主成分とする原料粉を焼成して得た嵩密度が0.1〜1 g/cm 3 熱処理用電気炉材を塩化水素ガス、塩素ガス、フッ素ガス及びフッ化水素ガスから選ばれる少なくとも1種を含有するガス雰囲気中で、400〜1400℃で純化処理することを特徴とする高純度シリコン等の熱処理用電気炉材の製造方法。Alumina 70~99Wt%, silica 30~1Wt% main component to hydrogen chloride gas for heat treatment furnace material bulk density obtained by firing a raw material powder 0.1 to 1 g / cm 3, and chlorine gas, A method for producing an electric furnace material for heat treatment such as high-purity silicon, wherein the purification treatment is performed at 400 to 1400 ° C. in a gas atmosphere containing at least one selected from fluorine gas and hydrogen fluoride gas. アルミナ70〜99wt%、シリカ30〜1wt%を主成分とする原料粉を焼成して得た嵩密度が0.1〜1 g/cm 3 熱処理用電気炉材を塩化水素ガス、塩素ガス、フッ素ガス及びフッ化水素ガスから選ばれる少なくとも1種を含有するガス雰囲気中で、400〜1400℃で純化処理したのち、さらに硝酸、塩酸、硫酸及びフッ酸から選ばれる少なくとも1種の水溶液を用い20〜80℃で洗浄純化することを特徴とする高純度シリコン等の熱処理用電気炉材の製造方法。Alumina 70~99Wt%, silica 30~1Wt% main component to hydrogen chloride gas for heat treatment furnace material bulk density obtained by firing a raw material powder 0.1 to 1 g / cm 3, and chlorine gas, After purifying at 400 to 1400 ° C. in a gas atmosphere containing at least one selected from fluorine gas and hydrogen fluoride gas, at least one aqueous solution selected from nitric acid, hydrochloric acid, sulfuric acid and hydrofluoric acid is used. A method for producing an electric furnace material for heat treatment such as high-purity silicon, which is purified by washing at 20 to 80 ° C. 請求項1記載の製造方法で得られNa含有量0.02wt%以下であることを特徴とする高純度シリコン等の熱処理用電気炉材。Heat-treating furnace material of the high purity silicon and the like, wherein the Na content obtained by the process according to claim 1, wherein is equal to or less than 0.02 wt%. 請求項2記載の製造方法で得られNa含有量が0.02wt%以下、Cu含有量が50wtppm以下、Ni含有量が50wtppm以下、Fe含有量が1000wtppm以下であることを特徴とする高純度シリコン等の熱処理用電気炉材。A high-purity silicon obtained by the manufacturing method according to claim 2, wherein the Na content is 0.02 wt% or less, the Cu content is 50 wtppm or less, the Ni content is 50 wtppm or less, and the Fe content is 1000 wtppm or less. Electric furnace material for heat treatment. Na含有量が1〜100wtppmであることを特徴とする請求項3又は4記載の高純度シリコン等の熱処理用電気炉材。The electric furnace material for heat treatment such as high-purity silicon according to claim 3 or 4 , wherein the Na content is 1 to 100 wtppm.
JP17987196A 1996-06-21 1996-06-21 Method for producing electric furnace material for heat treatment such as high purity silicon, and electric furnace material for heat treatment Expired - Fee Related JP3687872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17987196A JP3687872B2 (en) 1996-06-21 1996-06-21 Method for producing electric furnace material for heat treatment such as high purity silicon, and electric furnace material for heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17987196A JP3687872B2 (en) 1996-06-21 1996-06-21 Method for producing electric furnace material for heat treatment such as high purity silicon, and electric furnace material for heat treatment

Publications (2)

Publication Number Publication Date
JPH107476A JPH107476A (en) 1998-01-13
JP3687872B2 true JP3687872B2 (en) 2005-08-24

Family

ID=16073371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17987196A Expired - Fee Related JP3687872B2 (en) 1996-06-21 1996-06-21 Method for producing electric furnace material for heat treatment such as high purity silicon, and electric furnace material for heat treatment

Country Status (1)

Country Link
JP (1) JP3687872B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574991B1 (en) 1998-08-13 2003-06-10 Corning Incorporated Pure fused silica, furnace and method
JP3723396B2 (en) 1999-02-23 2005-12-07 サンゴバン・ティーエム株式会社 High purity crystalline inorganic fiber and method for producing the same

Also Published As

Publication number Publication date
JPH107476A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP5825722B2 (en) Fused quartz glass and manufacturing method thereof
JP5394734B2 (en) Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage
KR101044771B1 (en) Component of quartz for use in semiconductor manufacture and method for producing the same
JP2010018470A (en) High-purity molten quartz glass, method of producing the same, member using the same and apparatus
EP1471039B1 (en) Method for producing a quartz glass jig
JP4181226B2 (en) Manufacturing method of high purity, high heat resistant quartz glass
JP2003171128A (en) Silica glass member for semiconductor, and production method therefor
JP3687872B2 (en) Method for producing electric furnace material for heat treatment such as high purity silicon, and electric furnace material for heat treatment
JPH11310423A (en) Synthetic quartz glass and its production
JP2000314034A (en) High purity crystalline inorganic fiber, its formed product and production thereof
JP2522830B2 (en) Quartz glass material for semiconductor heat treatment and manufacturing method thereof
JPH10114532A (en) Production of jig for heat-treating quartz-glass semiconductor
US7536875B2 (en) Method for suppressing metal contamination in high temperature treatment of materials
JP3188517B2 (en) Manufacturing method of quartz glass
JP4169325B2 (en) Quartz glass jig and manufacturing method thereof
JP2003012333A (en) Quarts glass member and method for producing the same
JP2002160930A (en) Porous quartz glass and method of producing the same
JP2010018471A (en) Quartz glass, method of producing the same, member using the same and apparatus
JP3407961B2 (en) Semiconductor heat treatment materials
JPH05254859A (en) Tool for heat-treatment of semiconductor wafer and its production
JPH08165134A (en) Quartz glass for heat-treating jig for silicon semiconductor element
JPH07115881B2 (en) Quartz glass material for heat treatment
JPH1017334A (en) Impurity metal isolating silica glass and its production
WO2019195635A1 (en) Purified aluminosilicate refractory compositions
JPH107434A (en) Composite silica glass and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees