JPH107434A - Composite silica glass and its production - Google Patents

Composite silica glass and its production

Info

Publication number
JPH107434A
JPH107434A JP18168496A JP18168496A JPH107434A JP H107434 A JPH107434 A JP H107434A JP 18168496 A JP18168496 A JP 18168496A JP 18168496 A JP18168496 A JP 18168496A JP H107434 A JPH107434 A JP H107434A
Authority
JP
Japan
Prior art keywords
silica glass
fine particles
ppm
content
composite silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18168496A
Other languages
Japanese (ja)
Inventor
Takayuki Togawa
貴之 外川
Shigeru Yamagata
茂 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP18168496A priority Critical patent/JPH107434A/en
Publication of JPH107434A publication Critical patent/JPH107434A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the heat resistance without contaminating a product to be treated with an impurity metallic element by mixing a specific silica powder with zirconium oxide and aluminum oxide and thermally melting the resultant mixture. SOLUTION: This composite silica glass is produced by uniformly mixing a silica powder having 10-500wt.ppm content of OH groups with 20-10000wt.ppm high-purity zirconium oxide fine particles and 20-5000wt.ppm high-purity aluminum oxide fine particles, thermally melting and transparently vitrifying the resultant mixture. The high-purity zirconium oxide fine particles are uniformly dispersed in a silica glass matrix having 10-500wt.ppm content of OH groups and the composite silica glass has <=0.5wt.ppm content of alkali metallic elements of Li, Na and K, <=1wt.ppm content of alkaline earth metallic elements of Ca and Mg and <=1×10<-10> cm<2> /sec diffusion coefficient of the Na at 1000 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、不純物金属元素の遮蔽
性に優れた複合シリカガラス、特にシリコンウエハー等
半導体材料の熱処理に使用する炉材や治具、或は光学材
料として有用な複合シリカガラス及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite silica glass excellent in shielding metallic impurities, particularly a composite silica glass useful as a furnace material or a jig for heat treatment of semiconductor materials such as silicon wafers, or an optical material. The present invention relates to glass and a method for manufacturing the same.

【0002】[0002]

【従来技術】従来、天然水晶や石英を溶融したいわゆる
“溶融石英”ガラスは、高純度で耐熱性が高く、しかも
耐急加熱急冷却性に優れているところから、シリコンウ
エハーボート、チャンバー、ベルジャー、洗浄槽、ルツ
ボ等の半導体工業用治具に、またSiCl4等の高純度
シリコン化合物を火炎加水分解法等で得た合成シリカガ
ラスは高純度で紫外域、赤外域の光透過性に優れている
ところから光ファイバ、光リソグラフィー用レンズ、プ
リズム等の光学材料として使用されてきた。前記治具に
あってはその製造時の歪除去のためのアニール処理、そ
の後製品として使用されるための加熱処理が行われ、ま
た光学材料にあっては複屈折の低減、屈折率分布を高均
質にするのためのアニール処理が行われるのが一般的で
ある。ところが、前記加熱処理は高温で長時間の処理で
あるところから、熱処理炉の炉材や治具中に存在するア
ルカリ金属やアルカリ土類元素が揮発、拡散し被処理製
品を汚染することが時々起こる。そのため前記炉材や治
具を例えば低酸素分圧下(N2気流中)、1300〜1
500℃で100〜120時間の空焼きをして不純物金
属元素を低減したり、或は市販の高純度Al23板を炉
床板として用い、その上に半導体製品を載置して熱処理
することが行われているが、前記空焼きでは不純物金属
元素の純化が充分に行われず、また市販の最高純度のA
23板にあってもアルカリ金属の含有量が数百ppm
以上と半導体製品中のアルカリ金属含有量の数ppb〜
数百ppbに比べ非常に高く、前記処理によっても前記
半導体製品の不純物金属元素、特にアルカリ金属元素に
よる汚染を防止できなかった。それで、炉床板を四塩化
珪素等の珪素化合物を原料として合成した高純度のシリ
カガラス板とすることが試みられたが、合成シリカガラ
スは耐熱性に劣る上に、熱処理炉材中のアルカリ金属元
素がこの合成シリカガラス炉床板を媒介として半導体製
品を汚染することがあった。こうした問題点を解決する
半導体製造用石英ガラス部材としてNa、K、Liのア
ルカリ金属の総含有量が2ppm以下、Zrを5〜10
ppm含有し、他の金属不純物の総含有量が30ppm
以下、残部SiO2である半導体製造用石英ガラス部材
が特公平7−102980号公報で提案されたが、同部
材を用いて900〜1300℃の高温で長時間熱処理す
るとアルカリ金属元素やアルカリ土類元素による汚染が
起こった。
2. Description of the Related Art Conventionally, so-called "fused quartz" glass obtained by melting natural quartz or quartz has high purity, high heat resistance, and excellent resistance to rapid heating and rapid cooling. Synthetic silica glass obtained by flame hydrolysis of high purity silicon compounds such as SiCl 4 for jigs for semiconductor industry, such as cleaning tanks and crucibles, and has excellent light transmittance in the ultraviolet and infrared regions. It has been used as an optical material for optical fibers, optical lithography lenses, prisms and the like. The jig is subjected to an annealing process for removing strain during manufacturing, and then to a heating process for use as a product, and to the optical material, the birefringence is reduced and the refractive index distribution is increased. Generally, an annealing process for homogenization is performed. However, since the heat treatment is performed at a high temperature for a long time, the alkali metal or alkaline earth element present in the furnace material or jig of the heat treatment furnace is sometimes volatilized and diffused to contaminate the product to be treated. Occur. Therefore, the furnace material and the jig are placed under a low oxygen partial pressure (in a stream of N 2 ) at 1300 to 1
Baking at 500 ° C. for 100 to 120 hours to reduce impurity metal elements, or using a commercially available high-purity Al 2 O 3 plate as a hearth plate, placing a semiconductor product thereon and performing heat treatment However, the above-mentioned baking does not sufficiently purify the impurity metal element, and also has the highest purity A in the market.
Even in l 2 O 3 plate, the content of alkali metal is several hundred ppm
The above and several ppb of alkali metal content in semiconductor products
It was much higher than several hundred ppb, and the treatment could not prevent the semiconductor product from being contaminated by an impurity metal element, particularly an alkali metal element. Therefore, an attempt was made to make the hearth plate a high-purity silica glass plate synthesized using a silicon compound such as silicon tetrachloride as a raw material. Elements may contaminate semiconductor products through the synthetic silica glass hearth plate. As a quartz glass member for semiconductor production which solves these problems, the total content of alkali metals of Na, K and Li is 2 ppm or less, and Zr is 5 to 10%.
ppm, the total content of other metal impurities is 30 ppm
In the following, a quartz glass member for manufacturing semiconductors having a balance of SiO 2 has been proposed in Japanese Patent Publication No. 7-102980. Elemental contamination occurred.

【0003】[0003]

【発明が解決しようとする課題】こうした現状に鑑み、
本発明者等は鋭意研究を重ねた結果、特定量のOH基を
含有する高純度シリカガラスマトリックス中に高純度酸
化ジルコニウム(ZrO2)の微粒子又は前記ZrO2
酸化アルミニウム(Al23)の微粒子を同時に均一に
分散することで半導体製品等を高温で長時間熱処理して
もアルカリ金属元素やアルカリ土類元素で汚染すること
の少ない複合シリカガラスが得られることを見出し、本
発明を完成したものである。すなわち、
In view of the current situation,
As a result of intensive studies, the present inventors have found that high-purity zirconium oxide (ZrO 2 ) fine particles or the above-mentioned ZrO 2 and aluminum oxide (Al 2 O 3 ) are contained in a high-purity silica glass matrix containing a specific amount of OH groups. The present invention has been completed by uniformly dispersing the fine particles of the present invention to obtain a composite silica glass which is less contaminated with an alkali metal element or an alkaline earth element even when a semiconductor product is heat-treated at a high temperature for a long time. It was done. That is,

【0004】本発明は、不純物金属元素、特にアルカリ
金属元素やアルカリ土類元素による汚染の起こらない複
合シリカガラスを提供することを目的とする。
An object of the present invention is to provide a composite silica glass free from contamination by an impurity metal element, particularly an alkali metal element or an alkaline earth element.

【0005】また、本発明は、900〜1300℃の高
温熱処理においてもアルカリ金属元素の汚染の起こらな
い炉材及び治具用シリカガラスを提供することを目的と
する。
It is another object of the present invention to provide a furnace material and a silica glass for a jig which are free from alkali metal element contamination even in a high-temperature heat treatment at 900 to 1300 ° C.

【0006】さらに、本発明は、上記シリカガラスの製
造方法を提供することを目的とする。
Another object of the present invention is to provide a method for producing the above silica glass.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明は、OH基含有量が10〜500wtppmのシリカ
ガラスマトリックス中に高純度酸化ジルコニウムの微粒
子が均一に分散するか、さらに前記酸化ジルコニウムに
加えて酸化アルミニウム微粒子をも均一に分散する複合
シリカガラス、及びその製造方法に係る。
According to the present invention, which achieves the above object, the present invention provides a method of dispersing fine particles of high-purity zirconium oxide uniformly in a silica glass matrix having an OH group content of 10 to 500 wt ppm, In addition, the present invention relates to a composite silica glass in which aluminum oxide fine particles are uniformly dispersed, and a method for producing the same.

【0008】本発明のシリカガラスは上述のとおりOH
基を10〜500wtppm、好ましくは100〜30
0wtppm含有するシリカガラスであり、このシリカ
ガラスマトリックス中に酸化ジルコニウム(ZrO2
の微粒子が均一、又は前記ZrO2と酸化アルミニウム
(Al23)の微粒子が均一に分散する。前記範囲のO
H基を含有することで900〜1300℃の高温で半導
体製品を長時間加熱しても熱処理雰囲気中に存在するア
ルカリ金属がシリカガラス中のOH基又はH+イオンと
イオン交換し、優先的にシリカガラス中に取り込まれ、
半導体製品を汚染することが少なくなる。OH基含有量
が10wtppm未満では前記作用がなく、また500
wtppmを超えるとシリカガラスの耐熱性が低下し熱
処理時に被処理製品と融着したり、或は変形を起こすた
め好ましくない。
As described above, the silica glass of the present invention is OH
The group is 10 to 500 wtppm, preferably 100 to 30
The silica glass contains 0 wtppm, and zirconium oxide (ZrO 2 ) is contained in the silica glass matrix.
Or the fine particles of ZrO 2 and aluminum oxide (Al 2 O 3 ) are uniformly dispersed. O in the above range
By containing the H group, even if the semiconductor product is heated at a high temperature of 900 to 1300 ° C. for a long time, the alkali metal present in the heat treatment atmosphere exchanges with the OH group or H + ion in the silica glass, and preferentially. Taken into silica glass,
Less contamination of semiconductor products. When the OH group content is less than 10 wtppm, the above-mentioned effect is not obtained.
If the content is more than wtppm, the heat resistance of the silica glass is reduced, and the silica glass is undesirably fused with a product to be processed or deformed during heat treatment.

【0009】本発明の複合シリカガラスは上記OH基含
有量とともに高純度のZrO2の微粒子が均一に分散す
る。前記高純度とは99.99%以上の純度のことをい
うが、この高純度のZrO2微粒子が分散量20〜1
0,000wtppmの範囲で均一に分散することで、
ZrO2微粒子のZr4+がSi−O結合中に組み込ま
れ、そのイオン半径がSi4+より大きいことからアルカ
リ金属イオンの拡散を遮蔽する。前記ZrO2微粒子を
加えてさらにAl23粒子を含有するとAl23粒子周
辺或はAl3+イオン周辺の電荷平衡が崩れ、正電荷の補
償が必要とされる状態となり熱処理時にアルカリ金属元
素、アルカリ土類元素、その他の不純物金属元素をトラ
ップし、半導体製品等の汚染を一層少なくする。Al2
3微粒子の含有は20〜5,000wtppmが好ま
しく、5,000wtppmの範囲を超えるとアルカリ
金属イオンの吸収量、すなわちシリカガラス中のアルカ
リ金属イオンの飽和量が大きくなり過ぎ、またシリカガ
ラスの再結晶化を助長し好ましくない。また、ZrO2
微粒子を含有させたガラスは、Al23微粒子のみ含有
させたガラスに比較して、高温下での耐再結晶性が高
く、900〜1,300℃の高温処理においても強度劣
化が少なく、治具用シリカガラスとして好ましいもので
ある。
In the composite silica glass of the present invention, fine particles of high-purity ZrO 2 are uniformly dispersed together with the OH group content. The high purity means a purity of 99.99% or more, and the high purity ZrO 2 fine particles have a dispersion amount of 20 to 1%.
By uniformly dispersing in the range of 000 wtppm,
Zr 4+ of the ZrO 2 fine particles is incorporated into the Si—O bond, and since the ionic radius is larger than Si 4+ , it blocks the diffusion of alkali metal ions. When the ZrO 2 fine particles are added and Al 2 O 3 particles are further contained, the charge balance around the Al 2 O 3 particles or around the Al 3+ ions is disrupted, so that a positive charge is required to be compensated. Elements, alkaline earth elements, and other impurity metal elements are trapped to further reduce contamination of semiconductor products and the like. Al 2
The content of the O 3 fine particles is preferably 20 to 5,000 wtppm, and if it exceeds 5,000 wtppm, the absorption amount of alkali metal ions, that is, the saturation amount of alkali metal ions in silica glass becomes too large, It promotes crystallization, which is not preferable. In addition, ZrO 2
Glass containing fine particles has higher recrystallization resistance at high temperatures than glass containing only Al 2 O 3 fine particles, and has less strength deterioration even at a high temperature treatment of 900 to 1,300 ° C. This is preferred as silica glass for jigs.

【0010】本発明の複合シリカガラス製造は、先ず原
料粉中のOH基濃度をガラス化した後のOH基含有量が
10〜500wtppm、好ましくは100〜300w
tppmとなるように調整しそれに高純度ZrO2粉又
は該ZrO2粉とAl23を混合し、それを電気加熱溶
融法、帯溶融法(ゾーンメルティング法)、アーク溶融
法又は酸水素炎ベルヌーイ法等で溶融し透明ガラス化す
ることで製造される。得られた複合シリカガラスをさら
に1700〜2200℃で短時間加熱処理することで複
合シリカガラスを任意の形状の部材とすることができ
る。
In the production of the composite silica glass of the present invention, the OH group content in the raw material powder after vitrification is 10 to 500 ppm by weight, preferably 100 to 300 wppm.
tppm, high-purity ZrO 2 powder or a mixture of the ZrO 2 powder and Al 2 O 3, and the mixture is subjected to electric heating melting, zone melting (zone melting), arc melting, or oxyhydrogen. It is manufactured by melting and clear vitrification by flame Bernoulli method or the like. By heating the obtained composite silica glass at 1700 to 2200 ° C. for a short time, the composite silica glass can be made into a member having an arbitrary shape.

【0011】原料中のOH基濃度の調整はガラス化する
条件によりシリカガラス中のOH基濃度が異なるところ
から一律に規定できないが、原料粉中のOH基濃度が少
ない場合には原料粉の表面に吸着水を付着させるのがよ
い。前記原料粉、ZrO2粉及びAl23粉中のLi、
Na及びKのアルカリ金属元素の含有量は夫々0.5p
pm以下、Ca及びMgのアルカリ土類金属元素の含有
量は夫々1ppm以下とすることが重要である。前記範
囲を超えるアルカリ金属元素及びアルカリ土類金属元素
を含有すると、900〜1300℃での熱処理において
前記元素が揮発し半導体製品を汚染することが起こる。
The concentration of the OH group in the raw material cannot be regulated uniformly because the OH group concentration in the silica glass varies depending on the vitrification conditions. It is good to make adsorption water adhere to the surface. Li in the raw material powder, ZrO 2 powder and Al 2 O 3 powder,
The content of alkali metal elements of Na and K is 0.5 p each.
It is important that the content of alkaline earth metal elements of Ca and Mg be 1 ppm or less, respectively. If the content of the alkali metal element and the alkaline earth metal element exceeds the above range, the element may be volatilized in the heat treatment at 900 to 1300 ° C. to contaminate the semiconductor product.

【0012】[0012]

【発明の実施の形態】次に具体例に基づいて本発明を詳
細に説明するが、本発明はそれにより限定されるもので
はない。
Next, the present invention will be described in detail with reference to specific examples, but the present invention is not limited thereto.

【0013】なお、実施例1〜4及び比較例1〜5で使
用するシリカ原料粉及びアルミナ粉、ジルコニア粉の不
純物濃度を表1に示す。
Table 1 shows the impurity concentrations of the raw silica powder, alumina powder and zirconia powder used in Examples 1 to 4 and Comparative Examples 1 to 5.

【0014】[0014]

【表1】 [Table 1]

【0015】また、実施例1〜4及び比較例1〜5の測
定値は 下記の方法に従った。 (i)OH基濃度濃度測定:赤外線吸光分光法(D.
M.Dodd, D.B.Fraser, Journ
al of Applied Physics,Vo
l.37, p. 3911(1966)) (ii)Naの拡散係数の測定:寸法20×20×5m
m、鏡面仕上げのサンプルを作成し、その上に食塩水を
塗り、100℃で乾燥し、ついで大気中において100
0℃で50時間加熱処理を行ったのち、LMA法(La
ser Micro Analysis法)によりガラ
ス表面から深さ方向におけるNa拡散濃度分布を測定
し、フィックの法則により拡散係数を求める方法。 (iii)不純物分析:原子吸光分光法
The measured values of Examples 1 to 4 and Comparative Examples 1 to 5 were measured according to the following methods. (I) OH group concentration measurement: infrared absorption spectroscopy (D.
M. Dodd, D .; B. Fraser, Journal
al of Applied Physics, Vo
l. 37, p. 3911 (1966)) (ii) Measurement of diffusion coefficient of Na: dimensions 20 × 20 × 5 m
m, a mirror-finished sample was prepared, and a saline solution was applied thereon, dried at 100 ° C., and then dried in air at 100 ° C.
After a heat treatment at 0 ° C. for 50 hours, the LMA method (La
a method of measuring the Na diffusion concentration distribution in the depth direction from the glass surface by the Ser Micro Analysis method, and obtaining the diffusion coefficient according to Fick's law. (Iii) Impurity analysis: Atomic absorption spectroscopy

【0016】[0016]

【実施例】【Example】

実施例1〜4、比較例1〜5 純化処理しOH基含有量を調整したシリカ粉であって、
その粒径が10〜200μm、アルカリ金属元素及びア
ルカリ土類元素の含有量が表1の合成クリストバライト
粉に粒径0.1〜10μmの表1の純度のZrO2粉、
又はZrO2粉及びAl23粉を表2に示す配合割合で
混合し、V型混合器で均一に混合した。前記混合物を加
熱溶融して複合シリカガラスを製造した。ガラスの溶融
条件、ガラス中のOH基含有量は表2のとおりである。
得られた複合シリカガラスから測定用サンプルを切り出
しNaの拡散係数を測定した。その結果を表2に示す。
Examples 1 to 4 and Comparative Examples 1 to 5 are silica powders which have been subjected to a purification treatment to adjust the OH group content,
ZrO 2 powder having a particle size of 10 to 200 μm, a content of an alkali metal element and an alkaline earth element, and a synthetic cristobalite powder of Table 1 having a particle size of 0.1 to 10 μm and a purity of Table 1;
Alternatively, the ZrO 2 powder and the Al 2 O 3 powder were mixed at the mixing ratio shown in Table 2 and uniformly mixed with a V-type mixer. The mixture was heated and melted to produce a composite silica glass. Table 2 shows the melting conditions of the glass and the OH group content in the glass.
A sample for measurement was cut out from the obtained composite silica glass, and the diffusion coefficient of Na was measured. Table 2 shows the results.

【0017】上記透明シリカガラス板(厚さ10mm)
を高温大気炉の底部に設置し、板中央部にシリカガラス
試料(信越石英(株)Heralux−LA)を配置し
その上に上記製造のシリカガラス製ベルジャーを被せ、
1100℃で1000時間加熱処理した。熱処理後の透
明シリカガラス板、ベルジャー及び試料を回収し分析用
サンプルを切り出し、シリカガラスの汚染量及び強度測
定を行った。その結果を表2に示す。
The above transparent silica glass plate (10 mm thick)
Is placed at the bottom of a high-temperature atmosphere furnace, a silica glass sample (Shin-Etsu Quartz Co., Ltd. Heralux-LA) is placed at the center of the plate, and the silica glass bell jar manufactured as described above is put thereon,
Heat treatment was performed at 1100 ° C. for 1000 hours. The transparent silica glass plate, the bell jar and the sample after the heat treatment were collected, a sample for analysis was cut out, and the contamination amount and strength of the silica glass were measured. Table 2 shows the results.

【0018】[0018]

【表2】 上記表2中の ◎;曲げ強度低下の非常に少ないことを示す。 △;曲げ強度低下が若干認められたことを示す。 X;強度低下が著しいことを示す。[Table 2] 中 in Table 2 above: Indicates that the decrease in bending strength is extremely small. Δ: Bending strength was slightly reduced. X: indicates that the strength is significantly reduced.

【0019】上記表2に示すように本発明の複合シリカ
ガラスは、1000℃におけるNaの拡散係数が少な
く、Naによる汚染が起こりにくいことが分かる。ま
た、1100℃の高温で長時間の熱処理であっても処理
サンプルはNaによる汚染が少なく優れたシリカガラス
であることが分かる。
As shown in Table 2 above, the composite silica glass of the present invention has a low diffusion coefficient of Na at 1000 ° C., indicating that contamination by Na is unlikely to occur. In addition, it can be seen that the treated sample is an excellent silica glass with little contamination by Na even when the heat treatment is performed at a high temperature of 1100 ° C. for a long time.

【0020】[0020]

【発明の効果】本発明の複合シリカガラスは、900〜
1300℃の高温熱処理においても被処理製品を不純物
金属元素、特にアルカリ金属元素やアルカリ土類元素で
汚染することがなく、しかも耐熱性に優れている。その
ため前記複合シリカガラスは半導体製品加熱炉用炉材、
治具及び光学レンズ熱処理用加熱炉材料として有用であ
る。
As described above, the composite silica glass of the present invention is 900 to 900%.
Even in the high-temperature heat treatment at 1300 ° C., the product to be treated is not contaminated with impurity metal elements, particularly alkali metal elements or alkaline earth elements, and has excellent heat resistance. Therefore, the composite silica glass is a furnace material for a semiconductor product heating furnace,
It is useful as a jig and a heating furnace material for optical lens heat treatment.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】OH基含有量が10〜500wtppmの
シリカガラスマトリックス中に高純度酸化ジルコニウム
の微粒子が均一に分散することを特徴とする複合シリカ
ガラス。
1. A composite silica glass characterized in that fine particles of high-purity zirconium oxide are uniformly dispersed in a silica glass matrix having an OH group content of 10 to 500 wt ppm.
【請求項2】OH基含有量が10〜500wtppmの
シリカガラスマトリックス中に高純度酸化ジルコニウム
及び高純度酸化アルミニウムの微粒子が均一に分散する
ことを特徴とする複合シリカガラス。
2. A composite silica glass, wherein fine particles of high-purity zirconium oxide and high-purity aluminum oxide are uniformly dispersed in a silica glass matrix having an OH group content of 10 to 500 wt ppm.
【請求項3】OH基含有量が100〜300wtppm
であることを特徴とする請求項1又は2記載の複合シリ
カガラス。
3. An OH group content of 100 to 300 wt ppm.
The composite silica glass according to claim 1 or 2, wherein
【請求項4】酸化ジルコニウム微粒子の含有量が20〜
10,000wtppmであることを特徴とする請求項
1記載の複合シリカガラス。
4. The content of the zirconium oxide fine particles is 20 to
2. The composite silica glass according to claim 1, wherein the content is 10,000 wtppm.
【請求項5】酸化ジルコニウム微粒子の含有量が20〜
10,000wtppm、酸化アルミニウム微粒子の含
有量が20〜5,000wtppmであることを特徴と
する請求項2記載の複合シリカガラス。
5. The content of the zirconium oxide fine particles is 20 to
The composite silica glass according to claim 2, wherein the content of the aluminum oxide fine particles is 10,000 wtppm, and the content of the aluminum oxide fine particles is 20 to 5,000 wtppm.
【請求項6】Li、Na及びKのアルカリ金属元素の含
有量が夫々0.5wtppm以下、Ca及びMgのアル
カリ土類金属元素の含有量が夫々1wtppm以下であ
ることを特徴とする請求項1又は2記載の複合シリカガ
ラス。
6. The method according to claim 1, wherein the contents of the alkali metal elements of Li, Na and K are 0.5 wt ppm or less, respectively, and the contents of the alkaline earth metal elements of Ca and Mg are 1 wt ppm or less, respectively. Or the composite silica glass according to 2.
【請求項7】1,000℃におけるNaの拡散係数が1
×10-10cm2/sec以下であることを特徴とする請
求項1又は2記載の複合シリカガラス。
7. The diffusion coefficient of Na at 1,000 ° C. is 1
3. The composite silica glass according to claim 1, wherein the composite silica glass is at most 10 × 10 −10 cm 2 / sec.
【請求項8】OH基濃度を調整したシリカ粉と酸化ジル
コニウム微粒子又は酸化ジルコニウムと酸化アルミニウ
ムとの微粒子を均一に混合し加熱溶融することを特徴と
する複合シリカガラスの製造方法。
8. A method for producing a composite silica glass, which comprises uniformly mixing silica powder and zirconium oxide fine particles or fine particles of zirconium oxide and aluminum oxide having an adjusted OH group concentration and melting by heating.
JP18168496A 1996-06-24 1996-06-24 Composite silica glass and its production Pending JPH107434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18168496A JPH107434A (en) 1996-06-24 1996-06-24 Composite silica glass and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18168496A JPH107434A (en) 1996-06-24 1996-06-24 Composite silica glass and its production

Publications (1)

Publication Number Publication Date
JPH107434A true JPH107434A (en) 1998-01-13

Family

ID=16105072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18168496A Pending JPH107434A (en) 1996-06-24 1996-06-24 Composite silica glass and its production

Country Status (1)

Country Link
JP (1) JPH107434A (en)

Similar Documents

Publication Publication Date Title
KR101378748B1 (en) Fused quartz glass and process for producing the same
US7452518B2 (en) Process for treating synthetic silica powder and synthetic silica powder treated thereof
US8915097B2 (en) Silica container and method for producing the same
TWI393689B (en) Component of quartz glass for use in semiconductor manufacture and method for producing the same
US8733127B2 (en) Silica container and method for producing the same
JP2010018470A (en) High-purity molten quartz glass, method of producing the same, member using the same and apparatus
JP3393063B2 (en) Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same
JP4181226B2 (en) Manufacturing method of high purity, high heat resistant quartz glass
CN106977095B (en) A kind of anhydrous oxyhalide tellurite glass and preparation method thereof
WO2016085915A1 (en) Doped silica-titania glass having low expansivity and methods of making the same
TW201345852A (en) Silica container for pulling up monoctrystalline silicon and preparation method thereof
JPH11310423A (en) Synthetic quartz glass and its production
JPH107434A (en) Composite silica glass and its production
JPH06219768A (en) Quartz glass material and its production
JPH0510286B2 (en)
JPH1017334A (en) Impurity metal isolating silica glass and its production
JP2000143258A (en) PRODUCTION OF SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER LITHOGRAPHY
JP5627077B2 (en) Method for heat treatment of synthetic silica glass body and optical member made of synthetic silica glass
Torikai et al. Comparison of high-purity H2/O2 and LPG/O2 flame-fused silica glasses from sol-gel silica powder
JP4256955B2 (en) High purity transparent quartz glass and method for producing the same
JP3687872B2 (en) Method for producing electric furnace material for heat treatment such as high purity silicon, and electric furnace material for heat treatment
JP3187510B2 (en) Method of manufacturing member for heat treatment of semiconductor wafer
JP2777858B2 (en) Silica glass tube for heat treatment of semiconductor and method for producing the same
JP2947703B2 (en) Ceramics composite opaque silica glass and method for producing the same
JP2010018471A (en) Quartz glass, method of producing the same, member using the same and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Effective date: 20061024

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A02 Decision of refusal

Effective date: 20070104

Free format text: JAPANESE INTERMEDIATE CODE: A02