JP5627077B2 - Method for heat treatment of synthetic silica glass body and optical member made of synthetic silica glass - Google Patents

Method for heat treatment of synthetic silica glass body and optical member made of synthetic silica glass Download PDF

Info

Publication number
JP5627077B2
JP5627077B2 JP2010085346A JP2010085346A JP5627077B2 JP 5627077 B2 JP5627077 B2 JP 5627077B2 JP 2010085346 A JP2010085346 A JP 2010085346A JP 2010085346 A JP2010085346 A JP 2010085346A JP 5627077 B2 JP5627077 B2 JP 5627077B2
Authority
JP
Japan
Prior art keywords
silica glass
synthetic silica
heat treatment
powder
glass body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010085346A
Other languages
Japanese (ja)
Other versions
JP2011213561A (en
Inventor
江崎 正信
正信 江崎
池田 吉謙
吉謙 池田
哲司 上田
哲司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2010085346A priority Critical patent/JP5627077B2/en
Publication of JP2011213561A publication Critical patent/JP2011213561A/en
Application granted granted Critical
Publication of JP5627077B2 publication Critical patent/JP5627077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

本発明は、合成シリカガラス体の歪除去及び純化を効果的に行うことのできる合成シリカガラス体の熱処理方法に関し、またこの合成シリカガラス体の熱処理方法を含む合成シリカガラス製光学部材の製造方法に関し、さらにこの合成シリカガラス製光学部材の製造方法によって製造され、紫外線、特にArFエキシマレーザー光の照射に対して長期間、優れた光透過性を示す合成シリカガラス製光学部材に関するものである。具体的には、本発明は、特に半導体チップ製造用のエキシマレーザーを用いたリソグラフィーの露光装置のレンズやその他の光学部品、また、エキシマレーザー本体に用いられる狭帯化用のプリズム、その他にArFエキシマレーザー光に使用される一般的な光学部材、レンズ、ビームスプリッター、プリズム、フォトマスク、ペリクルなどに好適に使用される合成シリカガラス製光学部材及びその製造に好適に使用される合成シリカガラス体の熱処理方法に関する。   The present invention relates to a heat treatment method for a synthetic silica glass body capable of effectively removing strain and purifying the synthetic silica glass body, and a method for producing an optical member made of synthetic silica glass including the heat treatment method for the synthetic silica glass body Further, the present invention relates to a synthetic silica glass optical member which is manufactured by the method for manufacturing a synthetic silica glass optical member and exhibits excellent light transmittance for a long period of time with irradiation of ultraviolet rays, particularly ArF excimer laser light. Specifically, the present invention particularly relates to a lens and other optical components of a lithography exposure apparatus using an excimer laser for manufacturing a semiconductor chip, a narrowing prism used for an excimer laser body, and ArF. Synthetic silica glass optical member suitably used for general optical members, lenses, beam splitters, prisms, photomasks, pellicles, etc. used for excimer laser light, and synthetic silica glass bodies suitably used for the production thereof It relates to a heat treatment method.

近年、LSIデザインルールの微細化に伴い露光技術としてArFエキシマレーザーリソグラフィー、特に液浸技術を併用した露光装置が急速に普及している
ArFエキシマレーザー露光装置用のシリカガラス部材には、更なる品質の向上が要求されている。一般的に要求される光学特性を列記すると、
1)193.4nmでの高い光透過性
2)屈折率均質性が高いこと
3)複屈折が低いこと
4)ArFエキシマレーザー照射に対して安定していること(耐レーザー性)
などが挙げられる。
In recent years, along with the miniaturization of LSI design rules, ArF excimer laser lithography as an exposure technique, in particular, an exposure apparatus using a liquid immersion technique has been rapidly spread. Silica glass members for an ArF excimer laser exposure apparatus have further quality. Improvement is demanded. List the generally required optical properties:
1) High light transmittance at 193.4 nm 2) High refractive index homogeneity 3) Low birefringence 4) Stable against ArF excimer laser irradiation (laser resistance)
Etc.

一般的に合成シリカガラスは紫外線の透過性が良いことから、これまで紫外線透過材料として多くの分野で用いられてきており、ArF露光装置においても例外無く、ほとんど全ての透過材料として合成シリカガラスが用いられてきた。しかしながら、近年液浸技術の併用により、光学系の高NA(開口数)化が進み、レンズの熱収差特性に影響を及ぼす合成シリカガラス光学部材の深紫外から真空紫外域の光透過特性に対する要求特性が、特に厳しくなってきている。光透過特性に影響を及ぼす因子として、アルカリ金属、アルカリ土類金属、遷移金属等が一般的に知られている。   In general, synthetic silica glass has been used in many fields as an ultraviolet transmissive material because of its good ultraviolet transparency, and there is no exception in ArF exposure apparatuses, and synthetic silica glass is used as almost all transmissive materials. Has been used. However, in recent years, combined use of immersion technology has led to an increase in the NA (numerical aperture) of the optical system, and there is a demand for light transmission characteristics in the deep ultraviolet to vacuum ultraviolet range of synthetic silica glass optical members that affect the thermal aberration characteristics of lenses. The characteristics are becoming particularly severe. Alkali metals, alkaline earth metals, transition metals, and the like are generally known as factors that affect light transmission characteristics.

これらの影響因子の中で、シリカガラス中のNa濃度の影響度が大きく、193.4nmの内部透過率が99.81%以上にするためには、Na重量濃度を0.2ppb以下に抑えなければならないことを、最新の評価装置を用いて新たに知見した。
光学部材の材料として超高純度合成シリカガラスが用いられており、屈折率均質性や複屈折を低減する為、歪除去の為の熱処理(アニール処理)を施すことが必要とされており、加熱炉内で高温に長時間保持することが一般的な方法とされている。しかし、使用される加熱炉の炉材や治具及び雰囲気等から放出ないし移動したアルカリ金属等の金属不純物をシリカガラス表層に取り込む工程汚染の問題があった。
Among these influencing factors, the Na concentration in the silica glass has a large influence, and in order to achieve an internal transmittance of 193.4 nm or more of 99.81% or more, the Na weight concentration must be suppressed to 0.2 ppb or less. We have newly discovered that it is necessary to use the latest evaluation equipment.
Ultra high-purity synthetic silica glass is used as a material for optical members, and heat treatment (annealing) for strain removal is required to reduce refractive index homogeneity and birefringence. It is a common method to maintain a high temperature in the furnace for a long time. However, there has been a problem of process contamination in which metal impurities such as alkali metals released or moved from furnace materials, jigs and atmospheres of the heating furnace used are taken into the silica glass surface layer.

以上のようなアルカリ金属不純物の工程汚染を改良するために、これまで多くの研究、開発がされてきた。例えば、特許文献1では、扁平円柱形の光学用部材熱アニール処理において、径方向と厚さ方向共に30mm以上の切断しろを設けて予め成型し、熱アニール処理後その部位を切断することでNa濃度が20ppb以下の光学部材が得られたとしている。また特許文献2では16×16×30cmの角柱成型ブロックから153×153×6.4mmの板状基板を作製した際には、基板中のNa濃度が2.3〜4.3ppbだが、17×17×25cm角柱成型ブロックから153×153×6.4mmの板状基板を作製した場合は<0.3〜1.9ppbとしており、切断部位を多く取ることで、熱アニール処理後の角柱ブロック内部へのNa元素の拡散を防ぐ手法は、特許文献1と全く同一である。本手法では切り捨てる部分の経済性が無視できないという課題があった。   In order to improve the process contamination of the alkali metal impurities as described above, many studies and developments have been made so far. For example, in Patent Document 1, in the thermal annealing treatment of a flat cylindrical optical member, a cutting margin of 30 mm or more in both the radial direction and the thickness direction is provided in advance, and after the thermal annealing treatment, the portion is cut to form Na. An optical member having a concentration of 20 ppb or less is obtained. In Patent Document 2, when a plate-like substrate of 153 × 153 × 6.4 mm is produced from a 16 × 16 × 30 cm prismatic molding block, the Na concentration in the substrate is 2.3 to 4.3 ppb, but 17 × When a plate substrate of 153 x 153 x 6.4 mm is produced from a 17 x 25 cm prism block molding block, it is <0.3 to 1.9 ppb, and by taking many cut parts, the inside of the prism block after thermal annealing treatment The technique for preventing the diffusion of Na element into the film is exactly the same as in Patent Document 1. In this method, there is a problem that the economy of the part to be discarded cannot be ignored.

特許文献3では電気炉中で処理物を石英ガラス製マッフル内で熱アニール処理することでNa汚染量の低減を試みているが、処理物である合成シリカガラス円柱状成型体の表層〜3mmでは内部透過率が99.78%で、内部透過率99.82%以上の特性を満たす為には、外表層2mm程度の研削量が必要としている。つまり、高額な高純度炉部材を使用したものの、合成シリカガラス製処理物の表層部へのNa元素汚染は完全には防げていない。   In Patent Document 3, an attempt is made to reduce the amount of Na contamination by thermally annealing the treated product in a quartz glass muffle in an electric furnace. In order to satisfy the internal transmittance of 99.78% and the internal transmittance of 99.82% or more, a grinding amount of about 2 mm for the outer surface layer is required. That is, although an expensive high-purity furnace member is used, Na element contamination on the surface layer portion of the processed product made of synthetic silica glass is not completely prevented.

特許文献4では溶存水素分子濃度が平均で1×1019個/cm以上であり、Na濃度が30ppb以下の合成シリカ粉体中の熱アニール処理例が記述されているが、合成シリカガラス製処理物のNa濃度は2ppbであり、光透過性に対しては不十分なレベルである。つまり被覆粉体のNa濃度と水素含有量濃度に着目しただけでは、被処理物のNa濃度を2ppb以下に低減することは不可能である。
また、従来シリカガラスのNa元素の純化方法として塩酸ガスや塩素ガス等のハロゲンガスが用いられてきた。これらのガスは人体に有毒であり、毒性を除害する為の経済性が問題であった。
Patent Document 4 describes an example of thermal annealing in synthetic silica powder having an average dissolved hydrogen molecule concentration of 1 × 10 19 molecules / cm 3 or more and an Na concentration of 30 ppb or less. The Na concentration of the processed product is 2 ppb, which is an insufficient level for light transmittance. That is, it is impossible to reduce the Na concentration of the workpiece to 2 ppb or less simply by focusing on the Na concentration and the hydrogen content concentration of the coated powder.
Conventionally, halogen gas such as hydrochloric acid gas and chlorine gas has been used as a method for purifying Na element in silica glass. These gases are toxic to the human body, and the economy for eliminating the toxicity has been a problem.

特許第42114496号Japanese Patent No. 42114496 特開2001−302275号公報JP 2001-302275 A 特開平10−279322号公報Japanese Patent Laid-Open No. 10-279322 特開2001−270725公報JP 2001-270725 A

本発明は、合成シリカガラス体の歪除去及び純化を効果的に行うことのできる合成シリカガラス体の熱処理方法、この合成シリカガラス体の熱処理方法を含む合成シリカガラス製光学部材の製造方法、及びこの合成シリカガラス製光学部材の製造方法によって製造され、紫外線、特にArFエキシマレーザー光の照射に対して長期間、優れた光透過性を示す合成シリカガラス製光学部材を提供することを目的とする。   The present invention relates to a method for heat treatment of a synthetic silica glass body capable of effectively removing strain and purifying the synthetic silica glass body, a method for producing an optical member made of synthetic silica glass including the heat treatment method of the synthetic silica glass body, and An object of the present invention is to provide a synthetic silica glass optical member that is manufactured by the method for manufacturing a synthetic silica glass optical member and exhibits excellent light transmittance for a long period of time with respect to irradiation with ultraviolet rays, particularly ArF excimer laser light. .

上記課題を解決するために、本発明の合成シリカガラス体の熱処理方法は、被処理物である合成シリカガラス体の歪除去及び純化を行う熱処理方法であって、前記被処理物の外表面の全てをAl濃度10ppm〜30ppm、且つNa濃度50ppb未満のSiO質粉体によって接触状態で被覆し、900℃〜1300℃の温度範囲で30分〜800時間の熱処理を行うことを特徴とする。 In order to solve the above-mentioned problems, a heat treatment method for a synthetic silica glass body according to the present invention is a heat treatment method for removing strain and purifying a synthetic silica glass body, which is an object to be processed, on the outer surface of the object to be processed. All are covered in a contact state with SiO 2 powder having an Al concentration of 10 ppm to 30 ppm and an Na concentration of less than 50 ppb, and a heat treatment is performed at a temperature range of 900 ° C. to 1300 ° C. for 30 minutes to 800 hours.

前記SiO質粉体としては、Al濃度及びNa濃度が上記した条件を満たす、天然石英粉体を用いるのが好ましい。また、天然石英粉体としてはα−石英結晶質の天然石英粉体を使用するのが好適である。 As the SiO 2 -based powder, it is preferable to use natural quartz powder in which the Al concentration and the Na concentration satisfy the above-described conditions. Further, it is preferable to use α-quartz crystalline natural quartz powder as the natural quartz powder.

本発明の合成シリカガラス製光学部材の製造方法は、本発明の合成シリカガラス体の熱処理方法を含むものである。   The method for producing an optical member made of synthetic silica glass of the present invention includes the heat treatment method for a synthetic silica glass body of the present invention.

本発明の合成シリカガラス製光学部材は、被処理物である合成シリカガラス体の外表面の全てをAl濃度10ppm〜30ppm、且つNa濃度50ppb未満のSiO 質粉体によって接触状態で被覆し、900℃〜1300℃の温度範囲で30分〜800時間の熱処理を行うことによって前記合成シリカガラス体の歪除去及び純化を行う合成シリカガラス体の熱処理方法を含む合成シリカガラス製光学部材の製造方法で製造される合成シリカガラス製光学部材であって
Na濃度が全領域0.5ppb未満で最大値と最小値の差が0.1ppb以下、OH基が100ppm以下、複屈折が0.5nm/cm以下、及び内部透過率が99.82%以上であり、
前記合成シリカガラス体がスート法又はプラズマ法によって製造されることを特徴とする。
The synthetic silica glass optical member of the present invention covers all of the outer surface of the synthetic silica glass body, which is the object to be processed, in a contact state with SiO 2 powder having an Al concentration of 10 ppm to 30 ppm and an Na concentration of less than 50 ppb . A method for producing an optical member made of synthetic silica glass, including a heat treatment method for synthetic silica glass body, wherein the synthetic silica glass body is subjected to heat treatment in a temperature range of 900 ° C. to 1300 ° C. for 30 minutes to 800 hours to remove strain and purify the synthetic silica glass body. in a synthetic silica glass optical member that will be produced,
When the Na concentration is less than 0.5 ppb in all regions, the difference between the maximum value and the minimum value is 0.1 ppb or less, the OH group is 100 ppm or less, the birefringence is 0.5 nm / cm or less, and the internal transmittance is 99.82% or more. Oh it is,
The synthetic silica glass body is characterized Rukoto produced by soot method or a plasma method.

本発明者らは、合成シリカガラス体中のNa濃度低減について鋭意検討した結果、合成シリカガラス体をAl及びNaの含有量を所定範囲内に制御したSiO質粉体中に埋没させて(換言すれば、合成シリカガラス体を上記した所定のSiO質粉体によって接触状態で被覆して)熱処理を行うと、合成シリカガラス体表層部のNa濃度が0.1ppb以下になるが、一方で合成シリカガラス体をAl及びNaの含有量を所定範囲外としたSiO質粉体中に埋没させて(換言すれば、合成シリカガラス体を所定外のSiO質粉体によって接触状態で被覆して)熱処理を行ってもNa濃度は2ppb以下にはならないという知見を得た。上記したAl及びNaの含有量を所定範囲内に制御したSiO質粉体としては、例えば、α−石英結晶質の天然石英粉を挙げることができる。 As a result of intensive studies on reducing the Na concentration in the synthetic silica glass body, the present inventors have buried the synthetic silica glass body in a SiO 2 powder whose Al and Na contents are controlled within a predetermined range ( In other words, when the synthetic silica glass body is covered with the above-mentioned predetermined SiO 2 powder and subjected to heat treatment, the Na concentration in the surface portion of the synthetic silica glass body becomes 0.1 ppb or less. The synthetic silica glass body is buried in a SiO 2 powder with the Al and Na contents outside the predetermined ranges in other words (in other words, the synthetic silica glass body is contacted by the SiO 2 powder outside the predetermined range. It was found that the Na concentration did not become 2 ppb or less even after heat treatment. Examples of the SiO 2 powder in which the Al and Na contents are controlled within a predetermined range include α-quartz crystalline natural quartz powder.

この現象は天然石英粉(α−石英)結晶中で、Alイオン(Al3+)がSiイオン(Si4+)と置換して、AlO四面体となり、AlO四面体の頂点(酸素イオン)が負(−)の結合手が一本余って常に負(−)に活性化された状態の、いわゆるAl−同型置換による作用と考えられる。つまり負の電荷を帯びたAlイオンに1価の陽イオンであるNaイオンが捕らえられる。今回、本発明者らは天然石英粉(α−石英結晶質)と合成シリカガラス(非晶質)異物質間で、Naイオンの移動が起こり、天然石英粉(α−石英結晶質)側のAlイオンにNaイオンが捕獲されるという新規な技術的事実を見出したものである。 This phenomenon is natural silica powder (alpha-quartz) in the crystal, Al ions (Al 3+) is replaced with Si ions (Si 4+), it becomes AlO 4 tetrahedra, AlO 4 tetrahedra vertices (oxygen ions) This is considered to be an effect of so-called Al-isomorphic substitution, in which one more negative (-) bond is always activated negatively (-). That is, Na + ions which are monovalent cations are captured by negatively charged Al ions. This time, the present inventors have performed Na + ion movement between the natural quartz powder (α-quartz crystalline) and the synthetic silica glass (amorphous) foreign material, and the natural quartz powder (α-quartz crystalline) side. The present inventors have found a novel technical fact that Na + ions are trapped by Al ions.

本発明の熱処理方法の熱処理対象となる被処理物である合成シリカガラス体のOH基濃度は100ppm以下に設定するのが好適である。この被処理物である合成シリカガラス体を製造する方法としてはスート法(VAD法、OVD法)、プラズマ法を挙げることができる。直接法で作製した合成シリカガラスではOH基濃度が500ppm以上となり、OH基によるNaイオンとのイオン結合が起こり、シリカガラス中での移動拡散係数が小さくなることが知られており、本発明の熱処理方法における被処理物である合成シリカガラス体としての使用には適さない。   It is preferable that the OH group concentration of the synthetic silica glass body, which is an object to be heat-treated in the heat treatment method of the present invention, is set to 100 ppm or less. Examples of the method for producing the synthetic silica glass body to be treated include a soot method (VAD method, OVD method) and a plasma method. Synthetic silica glass produced by the direct method is known to have an OH group concentration of 500 ppm or more, ionic bonds with Na ions due to OH groups, and a low migration diffusion coefficient in silica glass. It is not suitable for use as a synthetic silica glass body that is an object to be treated in the heat treatment method.

本発明の合成シリカガラス体の熱処理方法において、被処理物の合成シリカガラス体としては、スート法にてSiCl原料から作製した多孔質母材を、ヘリウムガス雰囲気もしくは1Pa以下の真空下で1300℃以上に加熱することで透明ガラス化処理をして得られたインゴット、もしくは光学用部材として所定の形状に加熱成型したものを用いることができる。本発明の熱処理方法において、被処理物の熱処理前には被処理物の表面に付着した汚れを除去するため、10%以上のふっ化水素酸にて10分以上浸漬させることが望ましいが、あくまでも付着物を除去するための洗浄であるから他の洗浄手段を用いても構わない。 In the heat treatment method for a synthetic silica glass body of the present invention, as a synthetic silica glass body to be processed, a porous base material produced from a SiCl 4 raw material by a soot method is used in a helium gas atmosphere or under a vacuum of 1 Pa or less in 1300. An ingot obtained by carrying out a transparent vitrification treatment by heating at a temperature of not lower than ° C., or an optical member that is heat-molded into a predetermined shape can be used. In the heat treatment method of the present invention, it is desirable to immerse in 10% or more of hydrofluoric acid for 10 minutes or more in order to remove dirt adhering to the surface of the object to be treated before heat treatment, Other cleaning means may be used because it is cleaning for removing the deposits.

本発明の熱処理方法において、被処理物を被覆するSiO質粉体のNa濃度は50ppb未満、好ましくは40ppb以下、特に30ppb以下であることが望ましい。またAl−同形置換としてAlO四面体を形成し、Naイオンをトラップする為には、α−石英結晶質のいわゆる天然石英粉でAl濃度が10ppm以上30ppm以下であることが望ましい。シリカガラス接触面との比表面積を大きくする為、天然石英粉体の粒径は1000μm以下、好ましくは5〜500μm程度のものを用いるとよい。Na濃度の調整は塩化水素ガス雰囲気中での熱処理にて行うのが好適である。 In the heat treatment method of the present invention, it is desirable that the Na concentration of the SiO 2 powder covering the workpiece is less than 50 ppb, preferably 40 ppb or less, particularly 30 ppb or less. In order to form an AlO 4 tetrahedron as an Al-isomorphous substitution and trap Na + ions, it is desirable that the Al concentration is 10 ppm or more and 30 ppm or less with a so-called natural quartz powder of α-quartz crystalline. In order to increase the specific surface area with the silica glass contact surface, the natural quartz powder should have a particle size of 1000 μm or less, preferably about 5 to 500 μm. The Na concentration is preferably adjusted by heat treatment in a hydrogen chloride gas atmosphere.

本発明の熱処理方法において、被処理物をSiO質粉体によって被覆する作業は後述する構造の蓋付容器を用いて行うのが好適である。この蓋付容器の材質は、使用するSiO質粉体と熱伝導度が近い溶融石英ガラス製もしくは合成シリカガラス製が被処理物の均熱性を保つ上でより好ましい。またSiO質粉体が熱処理中、炉体から拡散する金属不純物に直接曝されることが無くなり、容器及び蓋によって金属不純物のSiO質粉体への混入量を低減させる効果もある。 In the heat treatment method of the present invention, it is preferable that the work of covering the object to be treated with the SiO 2 powder is performed using a lidded container having a structure described later. The material of the container with lid is more preferably made of fused silica glass or synthetic silica glass having a thermal conductivity close to that of the SiO 2 powder to be used in order to maintain the heat uniformity of the object to be processed. Further, the SiO 2 powder is not directly exposed to the metal impurities diffusing from the furnace body during the heat treatment, and the container and the lid have an effect of reducing the amount of the metal impurities mixed into the SiO 2 powder.

本発明の合成シリカガラス体の熱処理方法によれば、合成シリカガラス体の歪除去及び純化を効果的に行うことができる。本発明の合成シリカガラス製光学部材の製造方法によれば、合成シリカガラス製光学部材を有効に製造することができる。本発明の合成シリカガラス製光学部材は、紫外線、特にArFエキシマレーザー光の照射に対して長期間、優れた光透過性を示す利点を有している。   According to the heat treatment method for a synthetic silica glass body of the present invention, it is possible to effectively remove strain and purify the synthetic silica glass body. According to the method for producing an optical member made of synthetic silica glass of the present invention, an optical member made of synthetic silica glass can be produced effectively. The optical member made of synthetic silica glass of the present invention has an advantage of exhibiting excellent light transmittance for a long period of time with irradiation of ultraviolet rays, particularly ArF excimer laser light.

本発明の合成シリカガラス体の熱処理方法において、被処理物である合成シリカガラス体を蓋付容器内でSiO質粉体によって接触状態で被覆した状態の一例を示す垂直断面説明図である。In the heat treatment method of the synthetic silica glass body of the present invention, it is a vertical cross-sectional explanatory view showing an example of a state in which a synthetic silica glass body as an object to be processed is covered in a contact state with SiO 2 powder in a lidded container. 図1のII‐II線に沿う断面図である。It is sectional drawing which follows the II-II line of FIG. 実施例1〜3及び比較例1〜2における熱処理後の被処理物である合成シリカガラス体のサンプリング位置を示す垂直断面図である。It is a vertical sectional view which shows the sampling position of the synthetic silica glass body which is the to-be-processed object in Examples 1-3 and Comparative Examples 1-2. 図3のIV‐IV線に沿う断面図である。It is sectional drawing which follows the IV-IV line of FIG. 図3のV‐V線に沿う断面図である。It is sectional drawing which follows the VV line of FIG. 実施例1における熱処理の温度プロファイルを示すグラフである。3 is a graph showing a temperature profile of heat treatment in Example 1.

以下に、本発明の合成石英ガラス体の熱処理方法において被処理物をSiO質粉体によって接触状態で被覆する作業を、蓋付容器を用いて行う場合の実施の形態を添付図面を参照して説明する。但し、この実施の形態は単なる例示または説明にすぎず、本発明の範囲を限定するものではない。 In the following, referring to the attached drawings, an embodiment in which the work of coating the object to be treated with SiO 2 powder in contact with the synthetic quartz glass body according to the present invention is carried out using a lidded container. I will explain. However, this embodiment is merely an example or explanation, and does not limit the scope of the present invention.

本発明の熱処理方法において、被処理物をSiO質粉体によって接触状態で被覆する作業は蓋付容器を用いて行うのが好適であるが、この蓋付容器による被処理物をSiO質粉体によって接触状態で被覆する作業を図1〜図2に基づいて説明する。 In the heat treatment method of the present invention, the work of coating in contact with the object to be processed by SiO 2 quality powder is preferably carried out using a container with a lid, SiO 2 quality of the object to be processed by the container with lid The operation | work which coat | covers with a powder in a contact state is demonstrated based on FIGS. 1-2.

図1〜図2において、符号10は蓋付容器であり、該蓋付容器10は内部に収納される被処理物である扁平な円柱合成シリカガラス体50と相似形の円筒状のものである。該蓋付容器10は、環状壁12と円盤状底板14とからなる容器本体15、円盤状蓋16及び内蓋18を備えている。上記環状壁12及び底板14は一体であっても、別体であってもよい。   1 to 2, reference numeral 10 denotes a container with a lid, and the container 10 with a lid has a cylindrical shape similar to a flat columnar synthetic silica glass body 50 that is an object to be treated. . The lidded container 10 includes a container body 15 including a circular wall 12 and a disk-like bottom plate 14, a disk-like lid 16, and an inner lid 18. The annular wall 12 and the bottom plate 14 may be integrated or separate.

被覆SiO質粉体である天然石英粉のNa濃度、Al濃度であるが、Na濃度及びAl濃度は塩酸雰囲気中で熱純化処理を行うことで、必要なNa濃度及びAl濃度へ純化可能である。天然石英粉の熱純化処理条件であるが、処理温度1100〜1300℃、処理時間1〜20時間、雰囲気塩化水素ガス濃度50〜100%で行うことが好ましい。本熱純化処理で純化される代表的な金属不純物元素はNa、K、Li、Mg、Ca、Fe、Cu、Al等が挙げられる。 It is the Na concentration and Al concentration of natural quartz powder, which is a coated SiO 2 powder, but the Na concentration and Al concentration can be purified to the required Na concentration and Al concentration by performing thermal purification treatment in a hydrochloric acid atmosphere. is there. Although it is the thermal purification treatment conditions of natural quartz powder, it is preferable to carry out at a treatment temperature of 1100 to 1300 ° C., a treatment time of 1 to 20 hours, and an atmospheric hydrogen chloride gas concentration of 50 to 100%. Typical metal impurity elements purified by this thermal purification treatment include Na, K, Li, Mg, Ca, Fe, Cu, Al and the like.

SiO質粉体20は扁平な円柱合成シリカガラス体50の全表面を接触状態で被覆するように前記蓋付容器10内に充填される。円柱合成シリカガラス体50の側面50aと環状壁12との間に充填される、SiO質粉体20の充填厚さは5〜150mmが望ましい。また扁平な円柱合成シリカガラス体50の上表面50bと内蓋18との間、及び扁平な円柱合成シリカガラス体50の下表面50cと底板14との間に充填される、SiO質粉体20の充填厚さは5〜100mmが望ましい。SiO質粉体20の充填量は処理物に必要な複屈折特性に応じて調節する。 The SiO 2 powder 20 is filled in the lidded container 10 so as to cover the entire surface of the flat cylindrical synthetic silica glass body 50 in a contact state. The filling thickness of the SiO 2 powder 20 filled between the side surface 50a of the cylindrical synthetic silica glass body 50 and the annular wall 12 is preferably 5 to 150 mm. Further, the SiO 2 powder is filled between the upper surface 50 b of the flat cylindrical synthetic silica glass body 50 and the inner lid 18 and between the lower surface 50 c of the flat cylindrical synthetic silica glass body 50 and the bottom plate 14. The filling thickness of 20 is desirably 5 to 100 mm. The filling amount of the SiO 2 powder 20 is adjusted according to the birefringence characteristics required for the processed material.

本発明の熱処理方法において、被処理物である合成シリカガラス体50に対して900℃〜1300℃の温度範囲で30分〜800時間の熱処理を行うことによって、当該合成シリカガラス体50の歪除去及び純化処理の目的は達成されるが、それぞれの目的に対応して次の熱処理条件を考慮するのがより好適に目的を達成することができる。   In the heat treatment method of the present invention, the synthetic silica glass body 50, which is an object to be treated, is subjected to a heat treatment at a temperature range of 900 ° C. to 1300 ° C. for 30 minutes to 800 hours, thereby removing the strain of the synthetic silica glass body 50. Although the purpose of the purification treatment is achieved, it is possible to achieve the purpose more suitably by considering the following heat treatment conditions corresponding to each purpose.

被処理物である合成シリカガラス体50の歪除去熱処理の目的は、当該合成シリカガラス体50の複屈折を0.2nm/cm以下に低減することであるから、1200℃から1000℃までの冷却を3℃/hr、好ましくは1℃/hrで行うことが好ましい。   The purpose of the strain removal heat treatment of the synthetic silica glass body 50 as the object to be treated is to reduce the birefringence of the synthetic silica glass body 50 to 0.2 nm / cm or less, so that the cooling from 1200 ° C. to 1000 ° C. is performed. Is carried out at 3 ° C./hr, preferably 1 ° C./hr.

被処理物50の純化熱処理の目的は、シリカガラス製被処理物のNa濃度を0.2ppb以下に低減することであるから、1100〜1200℃で100〜500時間処理することが望ましい。   Since the purpose of the purification heat treatment of the workpiece 50 is to reduce the Na concentration of the silica glass workpiece to 0.2 ppb or less, it is desirable to perform the treatment at 1100 to 1200 ° C. for 100 to 500 hours.

以下に、本発明の実施例を挙げてさらに具体的に説明するが、これらの実施例は例示的に示されるもので、限定的に解釈されるべきでないことはいうまでもない。
実施例、比較例に記述した物性値の測定方法、前処理方法は下記の通りである。
Hereinafter, the present invention will be described in more detail with reference to examples. However, it is needless to say that these examples are shown by way of example and should not be interpreted in a limited manner.
The physical property value measuring methods and pretreatment methods described in Examples and Comparative Examples are as follows.

1)熱処理後の被処理物のサンプリング:
図3〜図5に示されるように、円柱体もしくは扁平な円柱合成シリカガラス50の側面50aの表面中心部0〜5mm、上面50bの表面中心部0〜5mm、中心部50dの3ヵ所からサイズが10mm×10mm×5mmのサンプルの切り出しを行い、サンプリングを行って、それぞれ側面中心サンプル52、上表面中心サンプル54、中心部サンプル56を得た。
1) Sampling of workpieces after heat treatment:
As shown in FIGS. 3 to 5, the size of the cylindrical body or flat cylindrical synthetic silica glass 50 from three locations, that is, the surface center portion 0 to 5 mm of the side surface 50a, the surface center portion 0 to 5 mm of the upper surface 50b, and the center portion 50d. Cut out a sample of 10 mm × 10 mm × 5 mm and sampled to obtain a side center sample 52, an upper surface center sample 54, and a center sample 56, respectively.

2)被処理物、SiO質粉体のNa,Al金属不純物濃度測定:
ICP‐質量分析法による。Na元素の検出下限は0.1ppbである。
2) Na, Al metal impurity concentration measurement of the object to be treated and SiO 2 powder:
By ICP-mass spectrometry. The lower limit of detection of Na element is 0.1 ppb.

3)193.4nmの内部透過率測定:
Varian社製Cary4000紫外・可視分光光度計にて193.4nmの透過率を測定。193.4nmにおけるシリカガラスの理論透過率である90.86%から、レイリー散乱におけるロスとして知られる0.18%を減じた90.68%を用いて、厚さ10mmにおける見かけ透過率(T/90.68)×100より求めた。透過率測定前の被処理物から切り出したサンプルは400℃,4週間の水素雰囲気熱処理を行い、水素分子濃度が1〜2×1017mole/cmになるようドーピングを行い、シリカネットワーク中の構造型欠陥を水素で補填した。
3) Internal transmittance measurement at 193.4 nm:
The transmittance of 193.4 nm was measured with a Cary 4000 ultraviolet / visible spectrophotometer manufactured by Varian. The apparent transmittance (T / T) at a thickness of 10 mm is obtained by using 90.68% obtained by subtracting 0.18% known as a loss in Rayleigh scattering from 90.86% which is the theoretical transmittance of silica glass at 193.4 nm. 90.68) × 100. The sample cut out from the workpiece before the transmittance measurement was subjected to a hydrogen atmosphere heat treatment at 400 ° C. for 4 weeks, and doped so that the hydrogen molecule concentration became 1 to 2 × 10 17 mole / cm 3 . Structural type defects were filled with hydrogen.

4)複屈折の測定:
HINDS Instruments社製Exicor350ATで波長632.8nmの複屈折を測定した。測定光の入射方向は円柱体表面に対して垂直に入射させ、測定した。
4) Measurement of birefringence:
Birefringence at a wavelength of 632.8 nm was measured with an Exicor 350AT manufactured by HINDS Instruments. The measurement light was incident in the direction perpendicular to the surface of the cylindrical body.

(実験例1)
天然石英粉(商品名IOTA−STD、Unimin社製)を、処理温度1250℃、熱純化処理時間5時間、塩化水素雰囲気濃度100%で熱純化処理を行い、処理前後の金属不純物濃度の化学分析を行った。結果を表1に示した。
(Experimental example 1)
Natural quartz powder (trade name: IOTA-STD, Unimin) is subjected to thermal purification at a treatment temperature of 1250 ° C, a thermal purification treatment time of 5 hours, and a hydrogen chloride atmosphere concentration of 100%, and chemical analysis of metal impurity concentrations before and after treatment. Went. The results are shown in Table 1.

Figure 0005627077
Figure 0005627077

(実施例1)
合成シリカガラス体被処理物としてVAD法にて製造した直径100mm,厚さ100mmの合成シリカガラス製円柱体(熱処理前OH基濃度15ppm)を準備した。この合成シリカガラス体被処理物のNa濃度を測定したところ0.1ppb以下であった。被覆粉体として、実験例1で得た熱純化処理後の天然石英粉(粒径53〜71μm、Al濃度16ppm、Na濃度5ppbのα−石英結晶質の天然石英粉)を用いた。被処理物及び被覆粉体の条件を表2に示した。
Example 1
As a synthetic silica glass body treatment object, a cylindrical body made of synthetic silica glass having a diameter of 100 mm and a thickness of 100 mm (OH group concentration before heat treatment: 15 ppm) manufactured by the VAD method was prepared. It was 0.1 ppb or less when Na density | concentration of this synthetic silica glass body processed material was measured. As the coating powder, the natural quartz powder (α-quartz crystalline natural quartz powder having a particle size of 53 to 71 μm, an Al concentration of 16 ppm, and an Na concentration of 5 ppb) obtained in Experimental Example 1 was used. Table 2 shows the conditions of the workpiece and the coated powder.

前記合成シリカガラス体被処理物を、被覆粉体を充填した図1に示した蓋付容器と同様の形状の蓋付容器(外径が350mm×高さ200mm×肉厚5mmの容器本体、外径350mm×肉厚5mmの外蓋、外径330mm×肉厚3mmの内蓋)の容器本体内のほぼ中央に位置するよう、上記した被覆粉体中に埋め込んだ。
被処理物を12時間50分かけて1150℃とし、その後1150℃で45時間保持後、1050℃まで1℃/hrで徐冷を行った。図6に実施例1の熱処理条件を示す。
The synthetic silica glass body treatment object is covered with a lid-like container shown in FIG. 1 filled with coating powder (a container body having an outer diameter of 350 mm × height 200 mm × thickness 5 mm, outer It was embedded in the above-mentioned coated powder so as to be located at the approximate center in the container body of a diameter 350 mm × thickness 5 mm outer lid, outer diameter 330 mm × thickness 3 mm inner lid).
The object to be treated was brought to 1150 ° C. over 12 hours and 50 minutes, then held at 1150 ° C. for 45 hours, and then gradually cooled to 1050 ° C. at 1 ° C./hr. FIG. 6 shows the heat treatment conditions of Example 1.

前記熱処理後の合成シリカガラス体被処理物から得た側面中心サンプル52、上表面中心サンプル54及び中心部サンプル56のNa濃度を測定した。また、熱処理後の被処理物から得た側面中心サンプル52及び上表面中心サンプル54の193.4nmでの透過率を測定し、その透過率T%実測値から内部透過率を求めた。またさらに、熱処理後の被処理物の複屈折及びOH基濃度を測定した。結果を表3に示した。なお、透過率の結果は側面中心サンプル52及び上表面中心サンプル54の平均値を示した。   The Na concentration of the side surface center sample 52, the upper surface center sample 54, and the center portion sample 56 obtained from the synthetic silica glass body treated material after the heat treatment was measured. Moreover, the transmittance | permeability in 193.4 nm of the side surface center sample 52 obtained from the to-be-processed object and the upper surface center sample 54 was measured, and the internal transmittance was calculated | required from the transmittance | permeability T% measured value. Furthermore, the birefringence and OH group concentration of the object to be processed after the heat treatment were measured. The results are shown in Table 3. In addition, the result of the transmittance | permeability showed the average value of the side surface center sample 52 and the upper surface center sample 54. FIG.

(実施例2)
合成シリカガラス体被処理物として、本発明を適用する代表的な光学部材である露光装置用のレンズ用材料の大きさに加熱変形させた直径320mm,厚さ55mmの合成シリカガラス製扁平円柱体(熱処理前OH基濃度15ppm)を準備した。この合成シリカガラス体被処理物のNa濃度を測定したところ0.1ppb以下であった。被覆粉体として、実験例1で得た熱純化処理後の天然石英粉(粒径53〜71μm、Al濃度16ppm、Na濃度5ppbのα−石英結晶質の天然石英粉)を用いた。被処理物及び被覆粉体の条件を表2に示した。
(Example 2)
A synthetic silica glass flat cylindrical body having a diameter of 320 mm and a thickness of 55 mm, which is heated and deformed to the size of a lens material for an exposure apparatus, which is a typical optical member to which the present invention is applied, as a synthetic silica glass object (OH group concentration before heat treatment 15 ppm) was prepared. It was 0.1 ppb or less when Na density | concentration of this synthetic silica glass body processed material was measured. As the coating powder, the natural quartz powder (α-quartz crystalline natural quartz powder having a particle size of 53 to 71 μm, an Al concentration of 16 ppm, and an Na concentration of 5 ppb) obtained in Experimental Example 1 was used. Table 2 shows the conditions of the workpiece and the coated powder.

前記合成シリカガラス体被処理物を、被覆粉体を充填した図1に示した蓋付容器と同様の形状の蓋付容器(外径が360mm×高さ200mm×肉厚10mmの容器本体、外径360mm×肉厚10mmの外蓋、外径330mm×肉厚3mmの内蓋)の容器本体内のほぼ中央に位置するよう、上記した被覆粉体中に埋め込んだ。その後の被処理物の熱処理条件及び測定は実施例1と同様に行った。結果を表3に示した。   The synthetic silica glass body to be treated is covered with a lid having the same shape as the lidded container shown in FIG. 1 filled with coating powder (a container body having an outer diameter of 360 mm × height 200 mm × thickness 10 mm, an outer The outer cover of diameter 360 mm × thickness 10 mm, inner lid of outer diameter 330 mm × thickness 3 mm) was embedded in the above-mentioned coated powder so as to be located at the approximate center in the container body. The subsequent heat treatment conditions and measurement of the object to be processed were performed in the same manner as in Example 1. The results are shown in Table 3.

(実施例3)
天然石英粉(商品名IOTA−STD、Unimin社製)を、1200℃、2時間の100%塩酸雰囲気熱処理により純化処理を施し、粒径53〜71μm、Al濃度15ppm、Na濃度20ppbのα−石英結晶質の天然石英粉を得た。
被覆粉体として、実験例1で得た天然石英粉の代わりに、前記得られた天然石英粉を用いた以外は実施例1と同様に実験を行った。被処理物及び被覆粉体の条件を表2に示した。熱処理後の被処理物の測定結果を表3に示した。
Example 3
Natural quartz powder (trade name: IOTA-STD, manufactured by Unimin) is purified by heat treatment at 1200 ° C. for 2 hours in a 100% hydrochloric acid atmosphere to obtain α-quartz having a particle size of 53 to 71 μm, an Al concentration of 15 ppm, and an Na concentration of 20 ppb. Crystalline natural quartz powder was obtained.
An experiment was conducted in the same manner as in Example 1 except that the obtained natural quartz powder was used instead of the natural quartz powder obtained in Experimental Example 1 as the coating powder. Table 2 shows the conditions of the workpiece and the coated powder. Table 3 shows the measurement results of the workpieces after the heat treatment.

(比較例1)
合成シリカガラス体被処理物としてVAD法にて製造した直径120mm,厚さ72mmの合成シリカガラス製円柱体(OH基濃度15ppm)を準備した。この合成シリカガラス体被処理物のNa濃度を測定したところ0.1ppb以下であった。被覆粉体として、粒径が53〜71μm、Al濃度が15ppm、Na濃度が150ppbの未純化処理のα−石英結晶質の天然石英粉(商品名:IOTA−STD、Unimin社製))を用いた。被処理物及び被覆粉体の条件を表2に示した。
(Comparative Example 1)
A synthetic silica glass cylinder (OH group concentration: 15 ppm) having a diameter of 120 mm and a thickness of 72 mm manufactured by the VAD method was prepared as a synthetic silica glass body treatment object. It was 0.1 ppb or less when Na density | concentration of this synthetic silica glass body processed material was measured. As a coating powder, an unpurified α-quartz crystalline natural quartz powder (trade name: IOTA-STD, Unimin) having a particle size of 53 to 71 μm, an Al concentration of 15 ppm, and an Na concentration of 150 ppb is used. It was. Table 2 shows the conditions of the workpiece and the coated powder.

前記合成シリカガラス体被処理物を、被覆粉体を充填した図1に示した蓋付容器と同様の形状の蓋付容器(外径が350mm×高さ200mm×肉厚5mmの容器本体、外径350mm×肉厚5mmの外蓋、外径330mm×肉厚3mmの内蓋)の容器本体内のほぼ中央に位置するよう、被覆体中に埋め込んだ。その後の被処理物の熱処理条件及び測定は実施例1と同様に行った。結果を表3に示した。   The synthetic silica glass body treatment object is covered with a lid-like container shown in FIG. 1 filled with coating powder (a container body having an outer diameter of 350 mm × height 200 mm × thickness 5 mm, outer The outer lid (diameter 350 mm × thickness 5 mm, outer diameter 330 mm × thickness 3 mm inner lid) was embedded in the covering so as to be located at the approximate center in the container body. The subsequent heat treatment conditions and measurement of the object to be processed were performed in the same manner as in Example 1. The results are shown in Table 3.

Figure 0005627077
Figure 0005627077

Figure 0005627077
Figure 0005627077

表3から明らかなように、実施例1の被処理物である合成シリカガラス体においては、3ヵ所全てのサンプルのNa濃度は0.1ppb以下であった。また上表面0〜5mmおよび側面中心表面0〜5mmの内部透過率は99.82%であった。ArFエキシマレーザーを光源としたリソグラフィー装置向け光学部材として十分な紫外線透過性を示した。また円柱体の複屈折最大値は0.2nm/cmであり、非常に値は良好であった。   As is apparent from Table 3, in the synthetic silica glass body that is the object to be treated in Example 1, the Na concentration in all three samples was 0.1 ppb or less. The internal transmittance of the upper surface of 0 to 5 mm and the side surface center surface of 0 to 5 mm was 99.82%. The film showed sufficient UV transparency as an optical member for a lithography apparatus using an ArF excimer laser as a light source. Further, the birefringence maximum value of the cylindrical body was 0.2 nm / cm, and the value was very good.

実施例2の合成シリカガラス体では、被処理物の大きさが直径320mm×厚さ55mmと、リソグラフィー装置用部材の大きさであるが、Na濃度、内部透過率、複屈折最大値共に実施例1と同等であった。すなわち、実製品の大きさにも本発明は適用可能であることが示された。   In the synthetic silica glass body of Example 2, the size of the object to be processed is 320 mm in diameter × 55 mm in thickness, which is the size of a member for a lithography apparatus, but the Na concentration, internal transmittance, and maximum birefringence are all examples. It was equivalent to 1. That is, it was shown that the present invention can be applied to the size of an actual product.

実施例3の合成シリカガラス体では、被処理物を被覆する天然石英粉のNa濃度が20ppbであったが、被処理物表面0〜5mmのNa濃度は0.1ppb以下であった。よって、本発明においては、前述したように、Al−同形置換による、天然石英粉中のAlO四面体(酸素イオン)による被処理物に含有されるNaイオンの捕捉作用が行われていることが確認された。 In the synthetic silica glass body of Example 3, the Na concentration of the natural quartz powder covering the workpiece was 20 ppb, but the Na concentration of 0 to 5 mm on the surface of the workpiece was 0.1 ppb or less. Therefore, in the present invention, as described above, the action of trapping Na + ions contained in the object to be processed by the AlO 4 tetrahedron (oxygen ions) in natural quartz powder is performed by Al-isomorphous substitution. It was confirmed.

比較例1の合成シリカガラス体では、被処理物を被覆する天然石英粉のNa濃度が150ppbである未純化天然石英粉を用いたところ、被処理物表面0〜5mmのNa濃度は2.0ppbと高濃度であった。上表面0〜5mmおよび側面中心表面0〜5mmの内部透過率は99.78%で低い値であった。未純化天然石英粉中のAl濃度は15ppmで実施例1と同濃度だが、天然石英粉中のAlO四面体(酸素イオン)が熱処理前にNaイオンを捕捉しており、新たな捕捉作用が生じなかったことが確認された。以上の比較例により本発明の効果は明らかである。 In the synthetic silica glass body of Comparative Example 1, when the unpurified natural quartz powder in which the Na concentration of the natural quartz powder covering the object to be treated is 150 ppb was used, the Na concentration of the surface of the object to be treated of 0 to 5 mm was 2.0 ppb. And high concentration. The internal transmittance of the upper surface of 0 to 5 mm and the side center surface of 0 to 5 mm was a low value of 99.78%. The Al concentration in the unpurified natural quartz powder is 15 ppm, which is the same concentration as in Example 1. However, the AlO 4 tetrahedron (oxygen ions) in the natural quartz powder captures Na + ions before heat treatment. It was confirmed that no occurred. The effects of the present invention are apparent from the above comparative examples.

10:蓋付容器、12:環状壁、14:円盤状底板、15:容器本体、16:円盤状蓋、18:内蓋、20:SiO質粉体、50:円柱合成シリカガラス体、50a:円柱合成シリカガラスの側面、50b:円柱合成シリカガラスの上表面、50c:円柱合成シリカガラスの下表面、50d:円柱合成シリカガラスの中心部、52:側面中心サンプル、54:上表面中心サンプル、56:中心部サンプル。 10: Container with lid, 12: annular wall, 14: disk-shaped bottom plate, 15: container body, 16: disk-shaped lid, 18: inner lid, 20: SiO 2 powder, 50: cylindrical synthetic silica glass body, 50a : Side surface of cylindrical synthetic silica glass, 50b: upper surface of cylindrical synthetic silica glass, 50c: lower surface of cylindrical synthetic silica glass, 50d: center portion of cylindrical synthetic silica glass, 52: side center sample, 54: upper surface center sample 56: Center sample.

Claims (7)

被処理物である合成シリカガラス体の歪除去及び純化を行う熱処理方法であって、前記被処理物の外表面の全てをAl濃度10ppm〜30ppm、且つNa濃度50ppb未満のSiO質粉体によって接触状態で被覆し、900℃〜1300℃の温度範囲で30分〜800時間の熱処理を行うことを特徴とする合成シリカガラス体の熱処理方法 A heat treatment method for removing strain and purifying a synthetic silica glass body that is an object to be treated, wherein all of the outer surface of the object to be treated is made of SiO 2 powder having an Al concentration of 10 ppm to 30 ppm and an Na concentration of less than 50 ppb. coated with contact, heat treatment method of the synthetic silica glass body and performing heat treatment for 30 minutes to 800 hours at a temperature range of 900 ° C. to 1300 ° C.. 前記SiO質粉体が天然石英粉体であることを特徴とする請求項1記載の合成シリカガラス体の熱処理方法。 2. The heat treatment method for a synthetic silica glass body according to claim 1, wherein the SiO 2 powder is natural quartz powder. 前記天然石英粉体がα−石英結晶質の天然石英粉体であることを特徴とする請求項2記載の合成シリカガラス体の熱処理方法。   3. The method for heat treatment of a synthetic silica glass body according to claim 2, wherein the natural quartz powder is an α-quartz crystalline natural quartz powder. 請求項1〜3のいずれか1項記載の合成シリカガラス体の熱処理方法を含むことを特徴とする合成シリカガラス製光学部材の製造方法。   The manufacturing method of the optical member made from a synthetic silica glass characterized by including the heat processing method of the synthetic silica glass body of any one of Claims 1-3. 被処理物である合成シリカガラス体の外表面の全てをAl濃度10ppm〜30ppm、且つNa濃度50ppb未満のSiO 質粉体によって接触状態で被覆し、900℃〜1300℃の温度範囲で30分〜800時間の熱処理を行うことによって前記合成シリカガラス体の歪除去及び純化を行う合成シリカガラス体の熱処理方法を含む合成シリカガラス製光学部材の製造方法で製造される合成シリカガラス製光学部材であって、
Na濃度が全領域0.5ppb未満で最大値と最小値の差が0.1ppb以下、OH基が100ppm以下、複屈折が0.5nm/cm以下、及び内部透過率が99.82%以上であり、
前記合成シリカガラス体がスート法又はプラズマ法によって製造されることを特徴とする合成シリカガラス製光学部材。
All of the outer surface of the synthetic silica glass body to be treated is covered with SiO 2 powder having an Al concentration of 10 ppm to 30 ppm and an Na concentration of less than 50 ppb in a contact state, and a temperature range of 900 ° C. to 1300 ° C. for 30 minutes. A synthetic silica glass optical member manufactured by a method of manufacturing a synthetic silica glass optical member including a heat treatment method of a synthetic silica glass body that performs strain removal and purification of the synthetic silica glass body by performing heat treatment for ˜800 hours. There,
When the Na concentration is less than 0.5 ppb in all regions, the difference between the maximum value and the minimum value is 0.1 ppb or less, the OH group is 100 ppm or less, the birefringence is 0.5 nm / cm or less, and the internal transmittance is 99.82% or more. Oh it is,
Synthetic silica glass optical member, wherein the synthetic silica glass body is characterized Rukoto produced by soot method or a plasma method.
前記SiO質粉体が天然石英粉体であることを特徴とする請求項5記載の合成シリカガラス製光学部材。 6. The synthetic silica glass optical member according to claim 5, wherein the SiO 2 powder is natural quartz powder. 前記天然石英粉体がα−石英結晶質の天然石英粉体であることを特徴とする請求項6記載の合成シリカガラス製光学部材。   The synthetic silica glass optical member according to claim 6, wherein the natural quartz powder is α-quartz crystalline natural quartz powder.
JP2010085346A 2010-04-01 2010-04-01 Method for heat treatment of synthetic silica glass body and optical member made of synthetic silica glass Active JP5627077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085346A JP5627077B2 (en) 2010-04-01 2010-04-01 Method for heat treatment of synthetic silica glass body and optical member made of synthetic silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085346A JP5627077B2 (en) 2010-04-01 2010-04-01 Method for heat treatment of synthetic silica glass body and optical member made of synthetic silica glass

Publications (2)

Publication Number Publication Date
JP2011213561A JP2011213561A (en) 2011-10-27
JP5627077B2 true JP5627077B2 (en) 2014-11-19

Family

ID=44943701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085346A Active JP5627077B2 (en) 2010-04-01 2010-04-01 Method for heat treatment of synthetic silica glass body and optical member made of synthetic silica glass

Country Status (1)

Country Link
JP (1) JP5627077B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912903B2 (en) * 2012-06-21 2016-04-27 クアーズテック株式会社 Silica glass crucible for pulling silicon single crystal and method for producing the same
JP5912999B2 (en) 2012-08-27 2016-04-27 信越石英株式会社 Heat treatment method for synthetic quartz glass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279322A (en) * 1997-04-03 1998-10-20 Nikon Corp Heat treatment of quartz glass and heat treating apparatus therefor
JPH11228160A (en) * 1998-02-20 1999-08-24 Sumikin Sekiei Kk Quartz glass substrate
JP4462720B2 (en) * 2000-06-06 2010-05-12 信越石英株式会社 Heat treatment method for optical synthetic quartz glass

Also Published As

Publication number Publication date
JP2011213561A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
KR101378748B1 (en) Fused quartz glass and process for producing the same
JP5796492B2 (en) Deep UV optical member and method of manufacturing the same
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
WO1993000307A1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
JP2005194118A (en) Silica glass
US20110053059A1 (en) Mask blanks
JP4601022B2 (en) Synthetic quartz glass member for ArF excimer laser lithography
JP2009274947A (en) Silica glass for euv lithography optical component containing tio2
JP2009023898A (en) Synthetic quartz glass body, process for producing the same, optical element, and optical apparatus
JP5627077B2 (en) Method for heat treatment of synthetic silica glass body and optical member made of synthetic silica glass
TW201213263A (en) Tio2-containing quartz glass substrate and method for producing same
JPH09241030A (en) High purity silica glass for far ultraviolet and its production
JP5406439B2 (en) Chemical-resistant silica glass and method for producing chemical-resistant silica glass
JPH11302026A (en) Heat resistant synthetic silica glass for intercepting impurity metal
JP2008189547A (en) Synthetic quartz glass and its production method
JP2011026173A (en) Heat-treatment method of synthetic quartz glass
JP3926371B2 (en) Silica glass plate and method for producing the same
JP2000143258A (en) PRODUCTION OF SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER LITHOGRAPHY
JP2001220159A (en) Highly uniform synthetic quartz glass for optical use, and its producing method
JP5208677B2 (en) Method for producing synthetic quartz glass member for ArF excimer laser lithography
JP2008063151A (en) Synthetic quartz glass substrate for excimer laser and its production method
CN110066101B (en) Synthetic quartz glass substrate and method for producing same
WO2012008358A1 (en) Synthetic quartz glass for ultraviolet ray cut filter, and process for production thereof
JP4744046B2 (en) Method for producing synthetic quartz glass material
JP4159852B2 (en) Synthetic quartz glass material for optical components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5627077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250