JP4181226B2 - Manufacturing method of high purity, high heat resistant quartz glass - Google Patents

Manufacturing method of high purity, high heat resistant quartz glass Download PDF

Info

Publication number
JP4181226B2
JP4181226B2 JP22157194A JP22157194A JP4181226B2 JP 4181226 B2 JP4181226 B2 JP 4181226B2 JP 22157194 A JP22157194 A JP 22157194A JP 22157194 A JP22157194 A JP 22157194A JP 4181226 B2 JP4181226 B2 JP 4181226B2
Authority
JP
Japan
Prior art keywords
quartz glass
silica
purity
ppm
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22157194A
Other languages
Japanese (ja)
Other versions
JPH0881226A (en
Inventor
伸生 衛藤
英昭 岡田
俊幸 多賀
富義 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP22157194A priority Critical patent/JP4181226B2/en
Publication of JPH0881226A publication Critical patent/JPH0881226A/en
Application granted granted Critical
Publication of JP4181226B2 publication Critical patent/JP4181226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials
    • C03C2203/44Gas-phase processes using silicon halides as starting materials chlorine containing

Description

【0001】
【産業上の利用分野】
本発明は、高純度かつ高耐熱性石英ガラスの製造方法に関するものであり、特に、半導体工業用に用いられる石英ガラス製炉芯管、坩堝等の治具類や、液晶パネル基板等に有用な高純度かつ高耐熱性石英ガラスの製造方法に関するものである。
【0002】
【従来の技術】
一般的に、石英ガラスの耐熱性、即ち、高温下での粘性は、石英ガラス中に含有するOH基の濃度に大きく左右され、OH基の濃度が低いと耐熱性が良くなることが広く知られている。
【0003】
従来、このような用途に使用されている石英ガラスの製造方法としては、I型と呼ばれる天然水晶を電気炉中で溶融して石英ガラスを得る電気溶融法、II型と呼ばれる天然水晶を酸水素炎中で溶融して石英ガラスを得る火炎溶融法、III 型と呼ばれる四塩化珪素等の珪素化合物を酸水素炎中で加水分解後溶融して石英ガラスを得る合成溶融法などが挙げられる。
【0004】
また、最近では、四塩化珪素等の珪素化合物を酸水素炎中で加水分解させスートと呼ばれるシリカ多孔質体を形成させ、これを加熱溶融して石英ガラスを得るスート法、更には、アルキルシリケートの加水分解により得られるシリカ粉を成形した後、焼結して石英ガラスを得るゾル−ゲル法も試みられている。
【0005】
しかしながら、電気溶融法(I型)の場合、その他の製法と比較して耐熱性はあるものの、原料として天然水晶を使用しているために、金属不純物の混入は避けられないという欠点を有している。また、合成溶融法(III 型)の場合、高純度のものが得られるが、酸水素炎により溶融しているために、得られるガラス中にOH基が500〜1000ppm程度含まれており、高温下での耐熱性が低く、変形、たわみ等が生じるために、使用温度の上限が1000℃程度とされている。更に、火炎溶融法(II型)の場合では、I型の場合と同様に金属不純物の混入という欠点を有している。
【0006】
また、スート法の場合、高純度の原料を使用することにより容易に高純度の石英ガラスが得られるが、OH基が100〜200ppm程度含まれているために、合成溶融法よりも耐熱性があるが、電気溶融法よりも低く、満足できるものではない。そこで、OH基を減らすために、シリカ多孔質体をCl2等のハロゲンガスで処理する方法が公知であるが、この場合、得られたガラス中に塩素を500〜3000ppmも含んでしまい、高純度を要求される用途には使用されることができなくなる。さらに、塩素含有量が増加するにつれて、耐熱性も低下してしまう。
【0007】
ゾル−ゲル法の場合は、比較的高純度の石英ガラスが得られるものの、液相で反応が生じるために、OH基は200〜300ppm程度含まれてしまうため耐熱性は低くなる。また、前記スート法と同様にハロゲンガスによりOH基を低減させることも可能であるが、この場合についても前記スート法と同じ欠点を有している。
【0008】
近年、含水量が20ppm以下の石英ガラスの製造方法が提案された(特開平3−109223)。その中で、ガラス形成原料を加熱加水分解させて形成される多孔質石英ガラス体を加熱して透明ガラス化する前に、その多孔質石英ガラス体を水素ガス等の還元性雰囲気中で加熱処理する方法が開示されている。しかしながら、この特許においては、含水量のみの評価しかしておらず、耐熱性の評価、例えば、高温での粘性値の評価等は全く実施されていない。
【0009】
このように、従来のいずれの方法においても、半導体工業用や液晶パネル基板用に有用な高純度で、かつ高耐熱性石英ガラスが得られておらず、新規な製造方法が望まれていた。
【0010】
【発明が解決しようとする課題】
本発明は、以上のような課題に鑑みてなされたもので、その目的は、半導体工業用や液晶パネル基板用に有用な全ての金属不純物に対して各々50ppb以下の高純度でかつ耐熱性を向上させた石英ガラスを提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、半導体工業用や液晶パネル基板用に有用な高純度でかつ高耐熱性の石英ガラスを製造する方法について鋭意検討した結果、珪素化合物を原料として使用して製造された高純度のシリカ多孔質体を、該シリカ多孔質体を予め水素を含有する雰囲気にて加熱処理を施す際に、該処理後の高純度シリカ多孔質体の嵩密度が0.9〜1.9g/cm3になるまで加熱処理した後、透明ガラス化処理することにより、高純度でかつガラス中のOH基濃度を充分低減することができ、耐熱性が向上されることを見出し、本発明に至ったものである。
【0012】
以下本発明を詳細に説明する。
【0013】
【作用】
本発明に使用されるシリカ多孔質体は、精製された四塩化珪素やアルキルシリケートなどの珪素化合物を原料として、気化した該原料を酸水素火炎中で加水分解させ、得られたシリカ粉をターゲットに堆積、軸方向に成長させることにより得られるシリカ多孔質体(いわゆる、VAD法により合成されたシリカ多孔質体)を形成させることにより得られるが、この際、原料(シリカ源)として使用される四塩化珪素やアルキルシリケートなどの珪素化合物に含有される金属元素、例えば、Na,Li,Kなどのアルカリ金属、Ca,Mgなどのアルカリ土類金属、Fe,Al,Cu,Zn,Co,Cr,Ni,Tiなどの遷移金属が、それぞれ、50ppb以下、好ましくは20ppb以下のものを使用することが重要なことである。
【0014】
このような純度の四塩化珪素やアルキルシリケートなどの珪素化合物は、例えば蒸留精製することにより容易に得ることができる。このような高純度の原料を使用することにより、金属不純物が50ppb以下の高純度シリカ多孔質体を得ることができ、その結果、高純度な石英ガラスを得ることができる。例えば、前記濃度の原料を使用して前記したVAD法によりシリカ多孔質母材を作成した場合、該原料を気化させる際にさらに精製され、各金属不純物濃度が50ppb以下、さらには10ppb以下の高純度なシリカ多孔質体を得ることができる。
【0015】
本発明においては、この様にして得られた高純度シリカ多孔質体を該シリカ多孔質体を予め水素を含有する雰囲気にて加熱処理を、該処理後の高純度シリカ多孔質体の嵩密度が0.9〜1.9g/cm3になるまで加熱処理した後、透明ガラス化処理することにより、ガラス中のOH基濃度を10ppm以下まで低減させることができ、また、前記ハロゲンガスで処理した場合と比較しても、ハロゲン元素による汚染もなく、高純度でOH基含有量の少ない石英ガラスを得ることができる。水素によりOH基が低減する機構については不明であるが、水素のもつ還元力が、OH基の脱離を促進させているものと推定される。
【0016】
本発明では、前記水素雰囲気中での加熱脱水処理後のシリカ多孔質体の嵩密度を0.9〜1.9g/cm3になるように調整することが特に重要である。この処理後の嵩密度が0.9g/cm3未満であると、脱OH基の効果が得られず、得られたガラスも充分な耐熱性を持たない。
【0017】
逆に、1.9g/cm3を超えるとシリカ多孔質体の表面でのシリカ微粒子の融着が先行して生じてしまうために、シリカ多孔質体内部に水素ガスが閉じ込められ透明なガラスが得られなくなる。
【0018】
この水素雰囲気下で加熱脱水処理させる際の温度及び時間は、前記処理後のシリカ多孔質体の嵩密度が0.9〜1.9g/cm3の範囲になるように調整されれば特に限定されない。即ち、加熱処理温度と処理時間の調整により可能となるが、その生産性及び効率的に脱OH基させるためには、処理温度は1200〜1350℃に、処理時間は30分〜15時間程度にすることが望ましい。
【0019】
処理温度が高過ぎるとシリカ多孔質体表面部でガラス微粒子間の融着が先行して生じてしまうために雰囲気のガスがガラス内に閉じ込められてしまい透明なガラスが得られない。また低過ぎた場合にはシリカ多孔質体の焼結速度が低下してしまうため生産性が著しく低下してしまう。処理時間が長過ぎる場合には生産性が著しく低下してしまい、また、処理時間が短か過ぎる場合にはシリカ多孔質体が短時間で急激に収縮してしまうため、得られるガラス中に気泡が残存しやすくなる。
【0020】
また、加熱脱水処理させる際の水素濃度は、低過ぎるとOH基を低減することができなくなるため50〜100vol%が好ましく、さらに、効率的に脱OH基させるためには75〜100vol%が好ましい。このようなガス組成にするためには、He、N2、Arなどの不活性ガスと混合すればよい。
【0021】
特に、本発明においてはこの雰囲気中の露点が−80℃以上になると、水素ガスの脱水能力が大幅に低下するため、雰囲気ガスの露点を−80℃以下にしなければならない。また、酸素ガスが混入すると、爆発の恐れがあり、さらに水素ガスの脱水作用が弱まるために、雰囲気中に酸素ガスを含まないように充分注意する必要がある。
【0022】
また、水素含有雰囲気中高温下で処理するため、電気炉からの金属不純物、特にNa,K等のアルカリ金属や水素ガスにより還元される恐れのあるFe、Cr等の汚染を防止するため、石英ガラス製炉芯管中で行なうことが好ましい。また、脱OH基をその径方向および軸方向において均一に行なうため、電気炉の均熱長(例えば、温度差が10℃以内となる温度域)が、被処理物の長さよりも長い、均熱加熱方式の電気炉で行なうことが好ましい。
【0023】
次に、このようにして水素含有雰囲気中高温下で処理を行ったシリカ多孔質体は、引続き、1450〜1600℃、He雰囲気もしくは真空雰囲気下で加熱処理することにより、容易に透明な石英ガラスとなる。この際、石英ガラス製炉芯管の熱変形を防ぐために、前記加熱処理とは別々の電気炉で使用することが好ましい。また、特に、He雰囲気で透明ガラス化処理する場合には、電気炉の均熱長(例えば、温度差が10℃以内となる温度域)が、被処理物の長さよりも短い、ゾーン加熱方式の電気炉で、上部より引下げながら透明ガラス化を行なう方が残存気泡も少なくなり好ましい。
【0024】
以下、実施例により本発明を説明する。
【0025】
【実施例】
実施例1
蒸留精製することにより得られた四塩化珪素(Fe,Ca:20ppb、その他の金属元素は<10ppb)を気化させ、酸水素火炎を形成しているバーナーの中心層に導入することにより、加水分解させ、シリカ粉をターゲット上に付着させ、軸方向に引上げ成長させることにより、350mmφ、嵩密度0.30g/cm3のシリカ多孔質体を得た。このシリカ多孔質体をフッ酸に溶解させ、ICP−質量分析装置にて金属不純物の濃度を測定したところ、全ての金属について10ppb以下であった。
【0026】
前記した方法により作成された別のシリカ多孔質体を、石英ガラス製炉芯管を装着した均熱加熱方式の縦型管状炉内に挿入し、下部ノズルより、100vol%N2ガスを流通させ、炉芯管内の酸素濃度を測定し、N2ガスと充分置換していることを確認した。引続き、露点−95℃以下の75vol%水素−25vol%窒素の混合ガスを流通させ、この電気炉を1300℃まで昇温、12時間処理した後、冷却した。
【0027】
このシリカ多孔質体を取り出し、嵩密度を測定したところ1.30g/cm3であった。次に、ゾーン加熱方式の縦型管状炉内の上部に挿入した。100vol%Heガスを流通し、温度を1550℃まで昇温させ、上部より高温域に引下げることにより透明ガラス化し、160mmφの透明な石英ガラスインゴットを得た。この石英ガラスインゴット中の一部を切断し、中心部でのサンプルについて、赤外吸収スペクトルによりOH基濃度を測定したところ、1ppmであった。また、石英ガラスサンプルをHF水溶液中に溶解させ、ICP−質量分析装置にて、含有金属元素を分析したところ、前記した全ての金属元素について10ppb以下であった。更に、切出された石英ガラス片を用いてビームベンディング法により、1200℃に於ける石英ガラスの粘度を測定したところ、logη(poise)=13.3であった。
【0028】
実施例2〜5、比較例1〜6
実施例1と同様にして、シリカ多孔質体を作成し、このシリカ多孔質体を、石英ガラス製炉芯管を装着した均熱加熱方式の縦型管状炉内に挿入した後、表1に示すように処理条件(処理温度、処理時間、水素濃度、雰囲気の露点)を変えて、テストを行なった。処理後、このシリカ多孔質体を取り出し、嵩密度を測定し、実施例1と同様にして透明ガラス化処理を行なった。得られた石英ガラスインゴットは、実施例1と同様な手法でOH基濃度、耐熱性(1200℃に於ける石英ガラスの粘度)を測定した。得られた結果を、表1に示した。
【0029】
【表1】

Figure 0004181226
【0030】
尚、得られた石英ガラスインゴットについてICP−質量分析装置にて、含有金属元素を分析したところ、全ての石英ガラスインゴットで前記した全ての金属元素について10ppb以下であった。
【0031】
比較例7
天然水晶を電気炉中で溶融して得られた石英ガラスインゴット(I型)についても同様に測定したところ、OH基濃度は8ppmであったが、金属元素については、Na 0.5ppm、K、Li 0.5ppm、Fe、Ca 0.6ppm、Al 17ppm、Mg 0.2ppm、Cu 0.05ppmであった。1200℃に於ける石英ガラスの粘度を測定したところ、logη(poise)=13.3であった。
【0032】
比較例8
精製した四塩化珪素を酸水素火炎を形成しているバーナー中に導入して、加水分解後、溶融して石英ガラスインゴット(III型)を得た。この石英ガラスインゴットについても測定したところ、OH基濃度は850ppmであり、Na、K、Li;0.5ppm、Fe、Ca;0.6ppm、Al;17ppm、Mg;0.2ppm、Cu;0.05ppmであった。1200℃に於ける石英ガラスの粘度を測定したところ、logη(poise)=11.6であった。
【0033】
比較例9
実施例1と同様にして、シリカ多孔質体を作成し、このシリカ多孔質体を、炉芯管を装着した均熱加熱方式の縦型管状炉内に挿入した。下部ノズルより1vol%Cl2含有N2ガスを流通させ、この電気炉を1300℃まで昇温、8時間加熱処理し、冷却した。以下実施例1と同様にしてガラス化し、透明な石英ガラスインゴットを得た。
【0034】
この石英ガラスインゴットのOH基濃度を測定したところ1ppm以下であり、蛍光X線分析装置にて塩素濃度を測定したところ1300ppmであった。また、含有金属元素を分析したところ、全ての金属元素について10ppb以下であった。1200℃に於ける石英ガラスの粘度を測定したところ、logη(poise)=12.2であった。
【0035】
【発明の効果】
以上詳細に説明したように、本発明の方法によれば、金属元素について各々50ppb以下と極めて高純度で、また、スート法、ゾル−ゲル法では得られなかった高耐熱性の石英ガラスを得ることができる。さらに、条件の最適化によりI型の天然石英ガラスと同等もしくはそれ以上の高耐熱性を有する石英ガラスが比較的容易な方法で製造することができる。このような高純度かつ高耐熱性の石英ガラスは、従来のいずれの方法でも得られなかったものである。このため、この石英ガラスは、半導体工業用や液晶パネル基板用に適した石英ガラスである。[0001]
[Industrial application fields]
The present invention relates to a method for producing high-purity and high-heat-resistant quartz glass, and is particularly useful for jigs such as quartz glass furnace core tubes and crucibles used in the semiconductor industry, liquid crystal panel substrates, and the like. The present invention relates to a method for producing high purity and high heat resistant quartz glass.
[0002]
[Prior art]
In general, the heat resistance of quartz glass, that is, the viscosity at high temperature, is greatly influenced by the concentration of OH groups contained in the quartz glass, and it is widely known that heat resistance improves when the concentration of OH groups is low. It has been.
[0003]
Conventionally, as a method for producing quartz glass used for such applications, an electric melting method in which natural quartz called I type is obtained in an electric furnace to obtain quartz glass, and natural quartz called II type is oxyhydrogen. Examples include a flame melting method for obtaining quartz glass by melting in a flame, and a synthetic melting method for obtaining quartz glass by hydrolyzing a silicon compound such as silicon tetrachloride, which is called type III, after hydrolysis in an oxyhydrogen flame.
[0004]
Recently, silicon compounds such as silicon tetrachloride are hydrolyzed in an oxyhydrogen flame to form a porous silica called soot, which is heated and melted to obtain quartz glass. Furthermore, alkyl silicate A sol-gel method has also been attempted in which silica powder obtained by hydrolysis is obtained and then sintered to obtain quartz glass.
[0005]
However, in the case of the electric melting method (type I), although it has heat resistance as compared with other manufacturing methods, it has a drawback that it is inevitable to mix metal impurities because it uses natural quartz as a raw material. ing. In addition, in the case of the synthetic melting method (type III), a high-purity one is obtained, but since it is melted by an oxyhydrogen flame, the obtained glass contains about 500 to 1000 ppm of OH groups, Since the heat resistance below is low and deformation, deflection, and the like occur, the upper limit of the use temperature is set to about 1000 ° C. Further, the flame melting method (type II) has a defect that metal impurities are mixed in as in the case of type I.
[0006]
In the case of the soot method, a high-purity quartz glass can be easily obtained by using a high-purity raw material. However, since the OH group is contained in an amount of about 100 to 200 ppm, the heat resistance is higher than that of the synthetic melting method. Although it is lower than the electric melting method, it is not satisfactory. Therefore, in order to reduce the OH groups, a method of treating the porous silica with a halogen gas such as Cl 2 is known, but in this case, the obtained glass contains 500 to 3000 ppm of chlorine, and high It cannot be used for applications that require purity. Furthermore, as the chlorine content increases, the heat resistance also decreases.
[0007]
In the case of the sol-gel method, although relatively high-purity quartz glass is obtained, the reaction occurs in the liquid phase, so that about 200 to 300 ppm of OH groups are contained, resulting in low heat resistance. Further, as in the soot method, it is possible to reduce OH groups with a halogen gas, but this case also has the same drawbacks as the soot method.
[0008]
In recent years, a method for producing quartz glass having a water content of 20 ppm or less has been proposed (Japanese Patent Laid-Open No. 3-109223). Among them, before the porous quartz glass body formed by heating and hydrolyzing the glass forming raw material is heated to become transparent glass, the porous quartz glass body is heated in a reducing atmosphere such as hydrogen gas. A method is disclosed. However, in this patent, only the water content is evaluated, and the evaluation of heat resistance, for example, the evaluation of the viscosity value at a high temperature is not performed at all.
[0009]
Thus, in any of the conventional methods, a high-purity and high heat-resistant quartz glass useful for the semiconductor industry and liquid crystal panel substrates has not been obtained, and a new production method has been desired.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the problems as described above, and its purpose is to provide high purity and heat resistance of 50 ppb or less for all metal impurities useful for the semiconductor industry and liquid crystal panel substrates. The object is to provide an improved quartz glass.
[0011]
[Means for Solving the Problems]
As a result of intensive studies on a method for producing high-purity and heat-resistant quartz glass useful for the semiconductor industry and liquid crystal panel substrates, the present inventors have obtained high-purity produced using a silicon compound as a raw material. When the silica porous body is heat-treated in an atmosphere containing hydrogen in advance, the bulk density of the high-purity silica porous body after the treatment is 0.9 to 1.9 g / It was found that high-purity and OH group concentration in the glass can be sufficiently reduced and heat resistance is improved by carrying out a transparent vitrification treatment after heating to cm 3 , leading to the present invention. It is a thing.
[0012]
The present invention will be described in detail below.
[0013]
[Action]
The porous silica used in the present invention is obtained by hydrolyzing a vaporized raw material in an oxyhydrogen flame using a purified silicon compound such as silicon tetrachloride or alkylsilicate as a raw material, and targeting the obtained silica powder. It is obtained by forming a silica porous body obtained by depositing and growing in the axial direction (so-called silica porous body synthesized by the VAD method). At this time, it is used as a raw material (silica source). Metal elements contained in silicon compounds such as silicon tetrachloride and alkyl silicate, for example, alkali metals such as Na, Li and K, alkaline earth metals such as Ca and Mg, Fe, Al, Cu, Zn, Co, It is important to use transition metals such as Cr, Ni, and Ti, each having a value of 50 ppb or less, preferably 20 ppb or less.
[0014]
Silicon compounds such as silicon tetrachloride and alkyl silicate having such purity can be easily obtained by, for example, distillation purification. By using such a high-purity raw material, a high-purity silica porous body having a metal impurity of 50 ppb or less can be obtained, and as a result, a high-purity quartz glass can be obtained. For example, when a silica porous base material is prepared by the above-described VAD method using a raw material of the above concentration, it is further refined when the raw material is vaporized, and each metal impurity concentration is as high as 50 ppb or less, further 10 ppb or less. A pure silica porous body can be obtained.
[0015]
In the present invention, the high-purity silica porous body thus obtained is subjected to a heat treatment in an atmosphere containing hydrogen in advance, and the bulk density of the high-purity silica porous body after the treatment Is heated to 0.9 to 1.9 g / cm 3 and then transparent vitrification treatment can reduce the OH group concentration in the glass to 10 ppm or less, and it is treated with the halogen gas. Compared to the case, quartz glass having high purity and low OH group content can be obtained without contamination by halogen elements. The mechanism by which OH groups are reduced by hydrogen is unknown, but it is presumed that the reducing power of hydrogen promotes the elimination of OH groups.
[0016]
In the present invention, it is particularly important to adjust the bulk density of the porous silica after the heat dehydration treatment in the hydrogen atmosphere to be 0.9 to 1.9 g / cm 3 . When the bulk density after this treatment is less than 0.9 g / cm 3 , the effect of de-OH group cannot be obtained, and the obtained glass does not have sufficient heat resistance.
[0017]
On the other hand, if it exceeds 1.9 g / cm 3 , silica fine particles are fused in advance on the surface of the porous silica material, so that hydrogen gas is confined inside the porous silica material and transparent glass is formed. It cannot be obtained.
[0018]
The temperature and time during the heat dehydration treatment in this hydrogen atmosphere are particularly limited as long as the bulk density of the silica porous material after the treatment is adjusted to be in the range of 0.9 to 1.9 g / cm 3. Not. That is, it is possible by adjusting the heat treatment temperature and the treatment time. However, in order to achieve the productivity and efficient deOH grouping, the treatment temperature is 1200 to 1350 ° C., and the treatment time is about 30 minutes to 15 hours. It is desirable to do.
[0019]
If the treatment temperature is too high, fusion between the glass fine particles occurs in advance on the surface of the porous silica material, so that the gas in the atmosphere is confined in the glass and a transparent glass cannot be obtained. On the other hand, if the temperature is too low, the sintering speed of the porous silica material is lowered, so that productivity is remarkably lowered. When the treatment time is too long, the productivity is remarkably lowered, and when the treatment time is too short, the porous silica body rapidly shrinks in a short time, so that bubbles are formed in the obtained glass. Tends to remain.
[0020]
Further, the hydrogen concentration during the heat dehydration treatment is preferably 50 to 100 vol% because it is impossible to reduce the OH group if it is too low, and 75 to 100 vol% is preferable for efficient deOH grouping. . In order to obtain such a gas composition, it may be mixed with an inert gas such as He, N 2 or Ar.
[0021]
In particular, in the present invention, when the dew point in the atmosphere becomes −80 ° C. or higher, the dehydration ability of the hydrogen gas is greatly reduced. Therefore, the dew point of the atmospheric gas must be −80 ° C. or lower. In addition, if oxygen gas is mixed, there is a risk of explosion, and the dehydration action of hydrogen gas is weakened. Therefore, it is necessary to be careful not to include oxygen gas in the atmosphere.
[0022]
In addition, since it is treated at high temperature in a hydrogen-containing atmosphere, quartz is used to prevent contamination of metal impurities from the electric furnace, especially alkali metals such as Na and K, and Fe, Cr, etc. that may be reduced by hydrogen gas. It is preferably carried out in a glass furnace core tube. In addition, in order to perform de-OH groups uniformly in the radial direction and the axial direction, the soaking length of the electric furnace (for example, the temperature range where the temperature difference is within 10 ° C.) is longer than the length of the workpiece. It is preferable to carry out in a heat heating type electric furnace.
[0023]
Next, the porous silica material treated at a high temperature in a hydrogen-containing atmosphere in this manner is then subjected to heat treatment at 1450 to 1600 ° C. in a He atmosphere or a vacuum atmosphere, so that the transparent quartz glass can be easily transparent. It becomes. At this time, in order to prevent thermal deformation of the quartz glass furnace core tube, it is preferably used in an electric furnace separate from the heat treatment. In particular, in the case of transparent vitrification treatment in a He atmosphere, the zone heating method in which the soaking length of the electric furnace (for example, the temperature range where the temperature difference is within 10 ° C.) is shorter than the length of the workpiece. It is preferable to carry out transparent vitrification while pulling down from the upper part in an electric furnace because the remaining bubbles are reduced.
[0024]
Hereinafter, the present invention will be described by way of examples.
[0025]
【Example】
Example 1
By hydrolyzing silicon tetrachloride (Fe, Ca: 20 ppb, other metal elements <10 ppb) obtained by distillation purification and introducing it into the central layer of the burner forming the oxyhydrogen flame Then, silica powder was deposited on the target and pulled up and grown in the axial direction to obtain a porous silica body having a diameter of 350 mmφ and a bulk density of 0.30 g / cm 3 . When this porous silica was dissolved in hydrofluoric acid and the concentration of metal impurities was measured with an ICP-mass spectrometer, it was 10 ppb or less for all metals.
[0026]
Another silica porous body produced by the above-described method is inserted into a soaking-heating type vertical tubular furnace equipped with a quartz glass furnace core tube, and 100 vol% N2 gas is circulated from the lower nozzle, The oxygen concentration in the furnace core tube was measured, and it was confirmed that it was sufficiently substituted with N2 gas. Subsequently, a mixed gas of 75 vol% hydrogen and 25 vol% nitrogen having a dew point of −95 ° C. or lower was circulated, the electric furnace was heated to 1300 ° C., treated for 12 hours, and then cooled.
[0027]
This silica porous body was taken out and its bulk density was measured and found to be 1.30 g / cm 3 . Next, it was inserted into the upper part of a zone heating type vertical tubular furnace. A 100 vol% He gas was circulated, the temperature was raised to 1550 ° C., and the glass was turned into a transparent glass by lowering it from the upper part to a high temperature region, and a 160 mmφ transparent quartz glass ingot was obtained. A part of the quartz glass ingot was cut, and the OH group concentration of the sample at the center was measured by infrared absorption spectrum. Further, when the quartz glass sample was dissolved in an HF aqueous solution and the contained metal elements were analyzed with an ICP-mass spectrometer, it was 10 ppb or less for all the metal elements described above. Furthermore, when the viscosity of the quartz glass at 1200 ° C. was measured by a beam bending method using the cut quartz glass piece, logη (poise) = 13.3.
[0028]
Examples 2-5, Comparative Examples 1-6
In the same manner as in Example 1, a porous silica material was prepared, and this porous silica material was inserted into a soaking-heating vertical tubular furnace equipped with a quartz glass furnace core tube. As shown, the test was conducted under different processing conditions (processing temperature, processing time, hydrogen concentration, atmospheric dew point). After the treatment, the porous silica material was taken out, the bulk density was measured, and a transparent vitrification treatment was performed in the same manner as in Example 1. The obtained quartz glass ingot was measured for OH group concentration and heat resistance (viscosity of quartz glass at 1200 ° C.) in the same manner as in Example 1. The obtained results are shown in Table 1.
[0029]
[Table 1]
Figure 0004181226
[0030]
In addition, when the contained metal element was analyzed with the ICP-mass spectrometer about the obtained quartz glass ingot, it was 10 ppb or less about all the metal elements mentioned above with all the quartz glass ingots.
[0031]
Comparative Example 7
A quartz glass ingot (type I) obtained by melting natural quartz in an electric furnace was measured in the same manner. The OH group concentration was 8 ppm, but for metal elements, Na 0.5 ppm, K, Li was 0.5 ppm, Fe, Ca 0.6 ppm, Al 17 ppm, Mg 0.2 ppm, and Cu 0.05 ppm. When the viscosity of the quartz glass at 1200 ° C. was measured, log η (poise) = 13.3.
[0032]
Comparative Example 8
Purified silicon tetrachloride was introduced into a burner forming an oxyhydrogen flame, hydrolyzed, and melted to obtain a quartz glass ingot (type III). When this quartz glass ingot was also measured, the OH group concentration was 850 ppm, Na, K, Li; 0.5 ppm, Fe, Ca; 0.6 ppm, Al; 17 ppm, Mg; 0.2 ppm, Cu; It was 05 ppm. When the viscosity of the quartz glass at 1200 ° C. was measured, log η (poise) = 11.6.
[0033]
Comparative Example 9
In the same manner as in Example 1, a porous silica material was prepared, and this porous silica material was inserted into a soaking-heating type vertical tubular furnace equipped with a furnace core tube. 1 vol% Cl 2 containing N 2 gas was circulated from the lower nozzle, and this electric furnace was heated to 1300 ° C., heated for 8 hours, and cooled. Thereafter, it was vitrified in the same manner as in Example 1 to obtain a transparent quartz glass ingot.
[0034]
When the OH group concentration of this quartz glass ingot was measured, it was 1 ppm or less, and when the chlorine concentration was measured with a fluorescent X-ray analyzer, it was 1300 ppm. Moreover, when the contained metal element was analyzed, it was 10 ppb or less for all the metal elements. When the viscosity of the quartz glass at 1200 ° C. was measured, log η (poise) = 12.2.
[0035]
【The invention's effect】
As described above in detail, according to the method of the present invention, a highly heat-resistant quartz glass having a very high purity of 50 ppb or less for each metal element and not obtained by the soot method or the sol-gel method is obtained. be able to. Furthermore, by optimizing the conditions, quartz glass having high heat resistance equal to or higher than that of type I natural quartz glass can be produced by a relatively easy method. Such high-purity and high-heat-resistant quartz glass has not been obtained by any conventional method. For this reason, this quartz glass is suitable for the semiconductor industry and liquid crystal panel substrates.

Claims (1)

精製された素化合物を原料として、気化した該原料を酸水素火炎中で加水分解させ、得られたシリカ粉をターゲットに堆積、軸方向に成長させることにより得られる高純度のシリカ多孔質体を加熱処理することにより石英ガラスを製造する方法に於いて、該シリカ多孔質体を予め水素を50〜100vol%含有し、露点が−80℃以下の雰囲気下で、高純度シリカ多孔質体の嵩密度が0.9〜1.9g/cmになるまで加熱処理した後、透明ガラス化処理することを特徴とし、OH基濃度が10ppm以下であり、かつ1200℃での粘度が1013.0ポイズ以上である高純度、高耐熱性石英ガラスの製造方法。The purified silicofluoride-containing compound as a starting material, the vaporized raw material is hydrolyzed in an oxyhydrogen flame, depositing the target obtained silica powder, high-purity porous silica obtained by growing in the axial direction In the method for producing quartz glass by heat-treating the silica porous body, the silica porous body previously contains hydrogen in an amount of 50 to 100 vol% and has a dew point of -80 ° C or lower . Heat treatment is performed until the bulk density becomes 0.9 to 1.9 g / cm 3 , followed by transparent vitrification treatment. The OH group concentration is 10 ppm or less, and the viscosity at 1200 ° C. is 10 13.0 poise. The manufacturing method of the high purity and high heat-resistant quartz glass which is the above.
JP22157194A 1994-09-16 1994-09-16 Manufacturing method of high purity, high heat resistant quartz glass Expired - Fee Related JP4181226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22157194A JP4181226B2 (en) 1994-09-16 1994-09-16 Manufacturing method of high purity, high heat resistant quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22157194A JP4181226B2 (en) 1994-09-16 1994-09-16 Manufacturing method of high purity, high heat resistant quartz glass

Publications (2)

Publication Number Publication Date
JPH0881226A JPH0881226A (en) 1996-03-26
JP4181226B2 true JP4181226B2 (en) 2008-11-12

Family

ID=16768826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22157194A Expired - Fee Related JP4181226B2 (en) 1994-09-16 1994-09-16 Manufacturing method of high purity, high heat resistant quartz glass

Country Status (1)

Country Link
JP (1) JP4181226B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1101741B1 (en) * 1999-11-15 2005-07-13 Heraeus Quarzglas GmbH & Co. KG Quartz glass product for an optical element and process of its manufacture
JP3415533B2 (en) * 2000-01-12 2003-06-09 エヌイーシーマイクロ波管株式会社 High pressure discharge lamp
JP3498182B2 (en) 2001-12-05 2004-02-16 東芝セラミックス株式会社 Silica glass member for semiconductor and manufacturing method thereof
CN108698880B (en) 2015-12-18 2023-05-02 贺利氏石英玻璃有限两合公司 Preparation of opaque quartz glass bodies
CN108698893A (en) 2015-12-18 2018-10-23 贺利氏石英玻璃有限两合公司 It is melted in crucible in refractory metal and prepares quartz glass body
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass
CN108698888A (en) 2015-12-18 2018-10-23 贺利氏石英玻璃有限两合公司 Preparation in quartz glass preparation as the silica dioxide granule through carbon doping of intermediary
WO2017103166A2 (en) 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Production of a silica glass article in a multichamber furnace
KR20180094087A (en) 2015-12-18 2018-08-22 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 Preparation of Silica Glass Products from Silica Granules
CN108698883A (en) 2015-12-18 2018-10-23 贺利氏石英玻璃有限两合公司 The mist projection granulating of silica in quartz glass preparation
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
CN111943215B (en) * 2019-05-14 2022-02-22 中天科技精密材料有限公司 Preparation method of quartz powder
CN111320177B (en) * 2020-04-13 2023-09-15 黄冈师范学院 Method for removing hydroxyl groups in quartz sand powder

Also Published As

Publication number Publication date
JPH0881226A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
TWI393689B (en) Component of quartz glass for use in semiconductor manufacture and method for producing the same
US7452518B2 (en) Process for treating synthetic silica powder and synthetic silica powder treated thereof
JP4181226B2 (en) Manufacturing method of high purity, high heat resistant quartz glass
JP2007126296A (en) Method and apparatus for manufacturing optical glass
JP3128451B2 (en) Manufacturing method of synthetic quartz glass
JP3931351B2 (en) Method for producing high-purity, high-heat-resistant silica glass
US7082789B2 (en) Silica glass member for semiconductor and production method thereof
JPH11310423A (en) Synthetic quartz glass and its production
JP3672592B2 (en) Method for producing synthetic quartz glass member
WO2022209515A1 (en) Fluorine-containing silica glass powder and method for producing fluorine-containing silica glass powder
JP3574577B2 (en) High viscosity synthetic quartz glass and method for producing the same
JP2522830B2 (en) Quartz glass material for semiconductor heat treatment and manufacturing method thereof
JP3187510B2 (en) Method of manufacturing member for heat treatment of semiconductor wafer
JPS63166730A (en) Production of quartz glass
JP3188517B2 (en) Manufacturing method of quartz glass
CN117107357B (en) Germanium rod for vapor deposition, preparation method thereof and germanium tetrachloride reduction device
JP2777858B2 (en) Silica glass tube for heat treatment of semiconductor and method for producing the same
JPH03279238A (en) Quartz glass for light transmission and production thereof
CN115626771B (en) High-hardness Ge-As-Se chalcogenide glass and preparation method and application thereof
JP2878916B2 (en) Silica glass member for semiconductor heat treatment and method for producing the same
US6802269B2 (en) Alumina refractories and methods of treatment
JPS62113729A (en) Production of quartz glass
JP2007126297A (en) Method of and device for producing optical glass
JPH0337119A (en) Production of heat-resistant synthetic quartz glass
US20040089024A1 (en) Preparation of high purity, low water content fused silica glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees