JP3931351B2 - Method for producing high-purity, high-heat-resistant silica glass - Google Patents

Method for producing high-purity, high-heat-resistant silica glass Download PDF

Info

Publication number
JP3931351B2
JP3931351B2 JP32501694A JP32501694A JP3931351B2 JP 3931351 B2 JP3931351 B2 JP 3931351B2 JP 32501694 A JP32501694 A JP 32501694A JP 32501694 A JP32501694 A JP 32501694A JP 3931351 B2 JP3931351 B2 JP 3931351B2
Authority
JP
Japan
Prior art keywords
silica
silica glass
purity
porous body
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32501694A
Other languages
Japanese (ja)
Other versions
JPH08183621A (en
Inventor
伸生 衛藤
英昭 岡田
俊幸 多賀
富義 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP32501694A priority Critical patent/JP3931351B2/en
Publication of JPH08183621A publication Critical patent/JPH08183621A/en
Application granted granted Critical
Publication of JP3931351B2 publication Critical patent/JP3931351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高純度かつ高耐熱性シリカガラスの製造方法に関するものであり、特に、半導体工業用に用いられるシリカガラス製炉芯管、坩堝等の治具類や、液晶パネル基板等に有用な高純度かつ高耐熱性シリカガラスの製造方法に関するものである。
【0002】
【従来の技術】
一般的に、シリカガラスの耐熱性、即ち、高温下での粘性は、シリカガラス中に含有するOH基の濃度に大きく影響され、OH基の濃度が高いと耐熱性は低下し、逆にOH基の濃度が低いと耐熱性は高くなることが広く知られている。
【0003】
従来、このような用途に使用されているシリカガラスの製造方法としては、I型と呼ばれる天然水晶を電気炉中で溶融してシリカガラスを得る電気溶融法、II型と呼ばれる天然水晶を酸水素炎中で溶融してシリカガラスを得る火炎溶融法、III 型と呼ばれる四塩化珪素等の珪素化合物を酸水素炎中で加水分解後溶融してシリカガラスを得る合成溶融法などが挙げられる。
【0004】
また、最近では、四塩化珪素等の珪素化合物を酸水素炎中で加水分解させスートと呼ばれるシリカ多孔質体を形成させ、これを加熱溶融してシリカガラスを得るスート法、更には、アルキルシリケートの加水分解により得られるシリカ粉を成形した後、焼結してシリカガラスを得るゾル−ゲル法も試みられている。
【0005】
しかしながら、電気溶融法(I型)の場合、その他の製法と比較して耐熱性はあるものの、原料として天然水晶を使用しているために、金属不純物の混入は避けられないという欠点を有している。また、合成溶融法(III 型)の場合、高純度のものが得られるが、酸水素炎により溶融しているために、得られるガラス中にOH基が500〜1000ppm程度含まれており、高温下での耐熱性が低く、変形、たわみ等が生じるために、使用温度の上限が1000℃程度とされている。更に、火炎溶融法(II型)の場合では、I型の場合と同様に金属不純物の混入という欠点をも有している。
【0006】
また、スート法の場合、高純度の原料を使用することにより容易に高純度のシリカガラスが得られるが、OH基が100〜200ppm程度含まれているために、合成溶融法よりも耐熱性があるが、電気溶融法よりも低く、満足できるものではない。そこで、OH基を減らすために、シリカ多孔質体をCl2等のハロゲンガスで処理する方法が公知であるが、この場合、得られたガラス中に塩素を500〜3000ppmも含んでしまい、高純度を要求される用途には使用されることができなくなる。さらに、塩素含有量が増加するにつれて、耐熱性も低下してしまう。
【0007】
ゾル−ゲル法の場合は、比較的高純度のシリカガラスが得られるものの、液相で反応が生じるために、OH基は200〜300ppm程度含まれてしまうため耐熱性は低くなる。また、前記スート法と同様にハロゲンガスによりOH基を低減させることも可能であるが、この場合についても前記スート法と同じ欠点を有している。
【0008】
近年、含水量が20ppm以下のシリカガラスの製造方法が提案された(特開平3−109,223)。その中で、ガラス形成原料を加熱加水分解させて形成される多孔質シリカガラス体を還元性雰囲気中で加熱処理する方法が開示されている。しかしながら、この特許においては、含水量のみの評価しかしておらず、耐熱性の評価、例えば、高温での粘性値の評価等は全く実施されていない。
【0009】
このように、従来のいずれの方法においても、半導体工業用や液晶パネル基板用に有用な高純度で、かつ高耐熱性シリカガラス、例えば金属不純物に対して各々50ppb以下の高純度で、OH基濃度が10ppm以下であり、かつ1200℃での粘度が1013.0ポイズ以上の耐熱性を有するシリカガラスが得られておらず、新規な製造法が望まれていた。
【0010】
【発明が解決しようとする課題】
本発明は、以上のような課題に鑑みてなされたもので、その目的は、半導体工業用や液晶パネル基板用に悪影響を及ぼす全ての金属不純物が各々50ppb以下である高純度で、OH基濃度が10ppm以下であり、かつ1200℃での粘度が1013.0ポイズ以上耐熱性を向上させたシリカガラスを提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、半導体工業用や液晶パネル基板用に有用な高純度でかつ高耐熱性のシリカガラスを製造する方法について鋭意検討した結果、精製された四塩化珪素やアルキルシリケートなどの珪素化合物を原料として、気化した該原料を酸水素火炎中で加水分解させ、得られたシリカ粉をターゲットに堆積、軸方向に成長させることにより得られる高純度のシリカ多孔質体を加熱処理することによりシリカガラスを製造する方法に於いて、該シリカ多孔質体を一酸化炭素ガス含有雰囲気中で特定の条件を満たすように加熱処理することにより得られたシリカガラスが、金属不純物に対して高純度でかつガラス中のOH基濃度を充分低減することができ、その結果、耐熱性が向上されることを見出し、本発明に至ったものである。
【0012】
即ち、本発明は、前記シリカ多孔質体を一酸化炭素ガス含有雰囲気中、1300℃以上の温度下で加熱処理することにより、該処理後のシリカ多孔質体の嵩密度を1.5g/cm3以上にすることことを特徴とする全ての金属不純物に対して各々50ppb以下の高純度で、OH基濃度が10ppm以下であり、かつ1200℃での粘度が1013.0ポイズ以上である高純度、高耐熱性シリカガラスの製造方法を提供するものである。
【0013】
また、本発明は、前記シリカ多孔質体を透明ガラス化処理する際に、一酸化炭素ガス含有ヘリウムガス雰囲気中、1300℃以上での昇温速度を60℃/時間以下で行なうことを特徴とする全ての金属不純物に対して各々50ppb以下の高純度で、OH基濃度が10ppm以下であり、かつ1200℃での粘度が1013.0ポイズ以上である高純度、高耐熱性シリカガラスの製造方法を提供するものである。
【0014】
【作用】
以下本発明を詳細に説明する。
【0015】
本発明に使用されるシリカ多孔質体は、精製された四塩化珪素やアルキルシリケートなどの珪素化合物を原料として、気化した該原料を酸水素火炎中で加水分解させ、得られたシリカ粉をターゲットに堆積、軸方向に成長させることにより得られるシリカ多孔質体(いわゆる、VAD法により合成されたシリカ多孔質体)を形成させることにより得られるが、この際、原料(シリカ源)として使用される四塩化珪素やアルキルシリケートなどの珪素化合物に含有される金属元素、例えば、Na,Li,Kなどのアルカリ金属、Ca,Mgなどのアルカリ土類金属、Fe,Al,Cu,Zn,Co,Cr,Ni,Tiなどの遷移金属が、それぞれ、50ppb以下、好ましくは20ppb以下のものを使用することが重要なことである。このような純度の四塩化珪素やアルキルシリケートなどの珪素化合物は、例えば蒸留精製することにより容易に得ることができる。このような高純度の原料を使用することにより、金属不純物が50ppb以下の高純度シリカ多孔質体を得ることができ、その結果、高純度なシリカガラスを得ることができる。例えば、前記濃度の原料を使用して前記したVAD法によりシリカ多孔質母材を作成した場合、該原料を気化させる際にさらに精製され、各金属不純物濃度が50ppb以下、さらには10ppb以下の高純度なシリカ多孔質体を得ることができる。
【0016】
本発明では、この様にして得られたシリカ多孔質体を一酸化炭素ガス含有雰囲気中で加熱処理する際、処理温度及び処理後のシリカ多孔質体の嵩密度の各条件を制御して加熱処理した後、引続き透明ガラス化処理することにより、前記シリカ多孔質体の純度を維持しつつ、シリカガラス中のOH基濃度を10ppm以下まで低減させることができ、また、前記ハロゲンガスで処理した場合と比較しても、ハロゲン元素による汚染もなく、高純度でOH基含有量の少ないシリカガラスを得ることができるものである。
【0017】
この際、処理温度が1300℃未満の場合、脱OH基の効果が充分得られず、得られたシリカガラスも充分な耐熱性を持たないため、処理温度として1300℃以上が必要である。また、一酸化炭素ガス濃度は、低過ぎると脱OH基の効果が充分得られず、また、一酸化炭素ガスは一般的に非常に高価であるため、1〜30vol%にすることが好ましい。このようなガス組成にするためには、一酸化炭素ガスをHe、N2、Arなどの不活性ガスと混合すればよい。
【0018】
さらに、本発明では該処理後のシリカ多孔質体の嵩密度を1.5g/cm3 以上にすることが特に重要である。処理後のシリカ多孔質体の嵩密度が1.5g/cm3 未満の場合、脱OH基の効果が充分得られず、得られたシリカガラスも充分な耐熱性を持たないためである。このような処理後のシリカ多孔質体の嵩密度の調整は、処理時間を制御することにより達することができる。この処理時間は、処理温度によっても異なってくるが、その生産性及び効率的に脱OH基させるためには、処理時間は30分〜30時間程度にすることが望ましい。
【0019】
一酸化炭素ガス含有雰囲気中で加熱処理する際に脱OH基をその径方向および軸方向において均一に行なうため、電気炉の均熱長(例えば、温度差が10℃以内となる温度域)が、被処理物の長さよりも長い、均熱加熱方式の電気炉で行なうことが好ましい。この際、一酸化炭素ガス含有雰囲気中高温下で処理するため、電気炉からの金属不純物、特にNa,K等のアルカリ金属や一酸化炭素ガスにより還元される恐れのあるFe、Cr等の汚染を防止するため、シリカガラス製炉芯管中で行なうことが好ましい。その後、該処理後シリカ多孔質体は、シリカガラス中への溶解度の高いヘリウムガス雰囲気中、もしくは真空雰囲気中、1450〜1600℃で加熱処理することにより、容易に透明なシリカガラスを得ることができる。
【0020】
また、本発明の別の実施形態としては、前記シリカ多孔質体を透明ガラス化処理する際に、一酸化炭素ガス含有ヘリウムガス雰囲気中、1300℃以上での昇温速度を60℃/時間以下で行なう方法が挙げられる。
【0021】
この場合に使用されるシリカ多孔質体は、前記のVAD法により得られた高純度シリカ多孔質体、もしくは該シリカ多孔質体を窒素ガス、ヘリウムガス等の不活性ガス雰囲気中、1000〜1350℃の温度で予め仮焼処理を施すことにより、ある程度焼結させたシリカ多孔質体をも指す。このような仮焼処理を施すことにより、シリカ多孔質体中の嵩密度分布を調整することができ、得られたガラス中の残存気泡も極めて少なくなる。また、この嵩密度分布はシリカ多孔質体が大型化するにつれ顕著となる。この仮焼処理の際、処理後のシリカ多孔質体中には、この後一酸化炭素ガスによる脱OH処理させるために、ガス置換が可能な細孔を有する必要があり、例えば処理後のシリカ多孔質体の嵩密度は1.5g/cm3 以下に調整することが望ましい。
【0022】
このシリカ多孔質体は、引続き1450〜1600℃に加熱処理することにより、透明なシリカガラスとなるが、この際、一酸化炭素ガス含有ヘリウムガス雰囲気中で行なうことによっても、目的のシリカガラスを得ることができる。この際、一酸化炭素ガス濃度は低過ぎた場合では脱OH基の効果が充分得られず、また、高過ぎた場合にはシリカガラス中に一酸化炭素ガスが取り込まれてしまい、透明なガラスが得られなくなる。このため、1〜30vol%に調整することが好ましい。
【0023】
本発明においては、この一酸化炭素ガス含有ヘリウムガス雰囲気中で透明ガラス化処理する際、1300℃以上での昇温速度を60℃/時間以下にすることが重要である。この昇温速度は、例えば前記均熱方式の電気炉を使用し、透明ガラス化させた場合では、1300℃から透明ガラス化温度までの昇温速度に一致する。しかし、透明ガラス化処理の場合、気泡の少ないガラスが得られることから、一般的には電気炉の均熱長(例えば、温度差が10℃以内となる温度域)が被処理物の長さよりも短い、ゾーン加熱方式の電気炉が使用されている。この場合、処理されるシリカ多孔質体は電気炉上部(シリカ多孔質体の下端位置で1300℃以下となる位置)にセットされた後、シリカ多孔質体を徐々に引下げることにより下端から高温域に挿入させ透明なガラスを得ることができる。このような手法の場合、昇温速度は電気炉の上部での温度分布と引下げ速度に関係する。電気炉の上部での温度分布は、予め被処理物を挿入しない状態で容易に測定することができる。例えば、電気炉上部での温度分布が1.0℃/mmで引下げ速度100mm/時間で透明ガラス化処理した場合の昇温速度は100℃/時間となる。この昇温速度が高過ぎた場合、脱OH基の効果が充分得られず、得られたシリカガラスも充分な耐熱性を持たない。
【0024】
以上詳細に説明してきたように、本発明は、前記シリカ多孔質体を一酸化炭素ガス含有雰囲気中で加熱処理する際に、処理温度及び処理後のシリカ多孔質体の嵩密度の各条件を制御し、あるいは、透明ガラス化させる際に一酸化炭素ガス含有雰囲気中、昇温速度を制御することにより、ガラス中のOH基濃度を10ppm以下まで低減させることができ、また、前記ハロゲンガスで処理した場合と比較しても、ハロゲン元素による汚染もなく、高純度でOH基含有量の少ないシリカガラスを得ることができるが、これらを組合わせて処理することにより、さらに効果的であることはいうまでもない。このような一酸化炭素ガスによりOH基が低減する機構については不明であるが、一酸化炭素ガスのもつ還元力がOH基の脱離を促進させているものと推定され、さらにシリカ多孔質体の焼結状態がOH基の脱離に大きく影響しているためと推定される。
【0025】
【実施例】
以下、実施例により本発明を具体的に説明するが、これら実施例により、本願発明は何等限定されるものでない。
【0026】
実施例1
蒸留精製することにより得られた四塩化珪素(Fe,Ca:20ppb、その他の金属元素は<10ppb)を気化させ、酸水素火炎を形成しているバーナーの中心層に導入することにより、加水分解させ、シリカ粉をターゲット上に付着させ、軸方向に引上げ成長させることにより、350mmφ、嵩密度0.30g/cm3のシリカ多孔質体を得た。このシリカ多孔質体をフッ酸に溶解させ、ICP−質量分析装置にて金属不純物の濃度を測定したところ、全ての金属について10ppb以下であった。
【0027】
同様の方法により作成された別のシリカ多孔質体を50mm×50mm×100mmの寸法に切り出し、サンプルを作成した。引き続きこのサンプルをシリカガラス製炉芯管を装着した横型管状炉内にセットし、5vol%一酸化炭素ガス−95vol%ヘリウムガスを流通させた。
【0028】
次に、管状炉を1150℃まで昇温させた後、60℃/時間の昇温速度で1450℃まで昇温させ、その温度で2時間保持し、冷却した。
【0029】
得られたシリカガラスを切断し、赤外吸収スペクトルにより、OH基濃度を測定したところ、<1ppmであった。
【0030】
また、切り出されたシリカガラス片を用いて、ビームベンディング法により、1200℃に於ける粘度を測定したところ、logη(ポイズ)=13.3であった。
【0031】
実施例2
前記した方法により作成された別のシリカ多孔質体を、シリカガラス製炉芯管を装着した均熱加熱方式の縦型管状炉内に挿入し、下部ノズルより、20vol%一酸化炭素ガス−80vol%窒素ガスの混合ガスを流通させ、この電気炉を1300℃まで昇温、20時間加熱処理した後、冷却した。
【0032】
このシリカ多孔質体を取り出し、嵩密度を測定したところ1.6g/cm3であった。次に、ゾーン加熱方式の縦型管状炉内の上部に挿入した。100vol%Heガスを流通し、温度を1550℃まで昇温させ、上部より高温域に引下げることにより透明ガラス化し、160mmφの透明なシリカガラスインゴットを得た。このシリカガラスインゴット中の一部を切断し、中心部でのサンプルについて、赤外吸収スペクトルによりOH基濃度を測定したところ、10ppmであった。また、シリカガラスサンプルをHF水溶液中に溶解させ、ICP−質量分析装置にて、含有金属元素を分析したところ、前記した全ての金属元素について10ppb以下であった。更に、切出されたシリカガラス片を用いてビームベンディング法により、1200℃に於けるシリカガラスの粘度を測定したところ、logη(ポイズ)=13.1であった。
【0033】
実施例3、比較例1〜3
実施例1と同様にして、シリカ多孔質体を作成し、このシリカ多孔質体を、シリカガラス製炉芯管を装着した均熱加熱方式の縦型管状炉内に挿入した後、表1に示すように処理条件(処理温度、処理時間、処理雰囲気)を変えて、テストを行なった。加熱処理後、このシリカ多孔質体を取り出し、嵩密度を測定し、実施例1と同様にして透明ガラス化処理を行なった。得られたシリカガラスインゴットは、実施例1と同様な手法でOH基濃度、耐熱性(1200℃に於けるシリカガラスの粘度)を測定した。得られた結果を、表1に示した。尚、得られたシリカガラスインゴットについてICP−質量分析装置にて、含有金属元素を分析したところ、全てのシリカガラスインゴットで前記した全ての金属元素について10ppb以下であった。
【0034】
実施例2〜3及び比較例1〜3の測定結果を表1に示す。
【0035】
【表1】

Figure 0003931351
【0036】
実施例4
実施例2と同様にして、シリカ多孔質体を作成し、このシリカ多孔質体を、シリカガラス製炉芯管を装着した均熱加熱方式の縦型管状炉内に挿入した後、下部ノズルより100vol%窒素ガスをを流通させ、この電気炉を1300℃まで昇温、12時間仮焼処理した後、冷却した。
【0037】
このシリカ多孔質体を取り出し、嵩密度を測定したところ1.2g/cm3であった。次に、ゾーン加熱方式の縦型管状炉内の上部に挿入した。この際、予め1550℃で測定した温度分布(被処理物を挿入しない状態)に従って、1100℃の位置にシリカ多孔質体の下端がくるようにセットした。引続き、10vol%一酸化炭素ガス−90vol%Heガスを下部ノズルより流通し、温度を1550℃まで昇温させ、予め測定した温度分布に従って引下げ速度を調整することにより昇温速度を60℃/時間になるように電気炉上部より高温域に引下げることにより透明ガラス化した。その結果、160mmφの透明なシリカガラスインゴットを得た。このシリカガラスインゴット中の一部を切断し、中心部でのサンプルについて、赤外吸収スペクトルによりOH基濃度を測定したところ、10ppmであった。また、シリカガラスサンプルをHF水溶液中に溶解させ、ICP−質量分析装置にて、含有金属元素を分析したところ、前記した全ての金属元素について10ppb以下であった。更に、切出されたシリカガラス片を用いてビームベンディング法により、1200℃に於けるシリカガラスの粘度を測定したところ、logη(ポイズ)=13.1であった。
【0038】
実施例5〜7、比較例4〜6
実施例4と同様に仮焼処理し、冷却したシリカ多孔質体を、ゾーン加熱方式の縦型管状炉内の上部に挿入した、表2に示すように処理条件(処理雰囲気、昇温速度)を変えて、テストを行なった。得られたシリカガラスインゴットは、実施例1と同様な手法でOH基濃度、耐熱性(1200℃に於けるシリカガラスの粘度)を測定した。得られた結果を、表2に示した。尚、得られたシリカガラスインゴットについてICP−質量分析装置にて、含有金属元素を分析したところ、全てのシリカガラスインゴットで前記した全ての金属元素について10ppb以下であった。
【0039】
実施例4〜7及び比較例4〜6の測定結果を表2に示す。
【0040】
【表2】
Figure 0003931351
Figure 0003931351
【0041】
比較例7
天然水晶を電気炉中で溶融して得られたシリカガラスインゴット(I型)についても同様に測定したところ、OH基濃度は8ppmであったが、金属元素については、Na 0.5ppm、K、Li 0.5ppm、Fe、Ca 0.6ppm、Al 17ppm、Mg 0.2ppm、Cu 0.05ppmであった。1200℃に於けるシリカガラスの粘度を測定したところ、logη(ポイズ)=13.3であった。
【0042】
比較例8
精製した四塩化珪素を酸水素火炎を形成しているバーナー中に導入して、加水分解後、溶融してシリカガラスインゴット(III 型)を得た。このシリカガラスインゴットについても測定したところ、OH基濃度は850ppmであり、Na、K、Li;0.5ppm、Fe、Ca;0.6ppm、Al;17ppm、Mg;0.2ppm、Cu;0.05ppmであった。1200℃に於けるシリカガラスの粘度を測定したところ、logη(ポイズ)=11.6であった。
【0043】
比較例9
実施例1と同様にして、シリカ多孔質体を作成し、このシリカ多孔質体を、炉芯管を装着した均熱加熱方式の縦型管状炉内に挿入した。下部ノズルより1vol%Cl2含有N2ガスを流通させ、この電気炉を1300℃まで昇温、8時間加熱処理し、冷却した。以下実施例1と同様にしてガラス化し、透明なシリカガラスインゴットを得た。
【0044】
このシリカガラスインゴットのOH基濃度を測定したところ1ppm以下であり、蛍光X線分析装置にて塩素濃度を測定したところ1300ppmであった。また、含有金属元素を分析したところ、全ての金属元素について10ppb以下であった。1200℃に於けるシリカガラスの粘度を測定したところ、logη(ポイズ)=12.2であった。
【0045】
【発明の効果】
以上詳細に説明したように、本発明の方法によれば、金属元素について各々50ppb以下と極めて高純度で、また、スート法、ゾル−ゲル法では得られなかった高耐熱性のシリカガラスを得ることができる。さらに、条件の最適化によりI型の天然シリカガラスと同等もしくはそれ以上の高耐熱性を有するシリカガラスが比較的容易な方法で製造することができる。このような高純度かつ高耐熱性のシリカガラスは、従来のいずれの方法でも得られなかったものである。このため、このシリカガラスは、半導体工業用や液晶パネル基板用に適したシリカガラスである。[0001]
[Industrial application fields]
The present invention relates to a method for producing high-purity and high-heat-resistant silica glass, and is particularly useful for jigs such as silica glass furnace core tubes and crucibles used in the semiconductor industry, liquid crystal panel substrates, and the like. The present invention relates to a method for producing high-purity and heat-resistant silica glass.
[0002]
[Prior art]
Generally, the heat resistance of silica glass, that is, the viscosity at high temperature, is greatly influenced by the concentration of OH groups contained in silica glass. When the concentration of OH groups is high, the heat resistance decreases, and conversely OH It is widely known that the heat resistance increases when the group concentration is low.
[0003]
Conventionally, a method for producing silica glass used in such applications includes an electric melting method in which natural quartz called type I is melted in an electric furnace to obtain silica glass, and natural quartz called type II is oxyhydrogen. Examples include a flame melting method in which silica glass is obtained by melting in a flame, and a synthetic melting method in which a silicon compound such as silicon tetrachloride called type III is hydrolyzed in an oxyhydrogen flame and then melted to obtain silica glass.
[0004]
Recently, a soot method in which a silicon compound such as silicon tetrachloride is hydrolyzed in an oxyhydrogen flame to form a porous silica called soot, which is heated and melted to obtain silica glass, and further, an alkyl silicate. A sol-gel method has also been attempted in which silica powder obtained by hydrolysis of is obtained and then sintered to obtain silica glass.
[0005]
However, in the case of the electric melting method (type I), although it has heat resistance as compared with other manufacturing methods, it has a drawback that it is inevitable to mix metal impurities because it uses natural quartz as a raw material. ing. In addition, in the case of the synthetic melting method (type III), a high-purity one is obtained, but since it is melted by an oxyhydrogen flame, the obtained glass contains about 500 to 1000 ppm of OH groups, Since the heat resistance below is low and deformation, deflection, and the like occur, the upper limit of the use temperature is set to about 1000 ° C. Further, in the case of the flame melting method (type II), as in the case of type I, there is a disadvantage that metal impurities are mixed.
[0006]
In the case of the soot method, high-purity silica glass can be easily obtained by using a high-purity raw material. However, since the OH group is contained in an amount of about 100 to 200 ppm, the heat resistance is higher than that of the synthetic melting method. Although it is lower than the electric melting method, it is not satisfactory. Therefore, in order to reduce the OH groups, a method of treating the porous silica with a halogen gas such as Cl 2 is known, but in this case, the obtained glass contains 500 to 3000 ppm of chlorine, and high It cannot be used for applications that require purity. Furthermore, as the chlorine content increases, the heat resistance also decreases.
[0007]
In the case of the sol-gel method, relatively high purity silica glass is obtained, but since the reaction occurs in the liquid phase, about 200 to 300 ppm of OH groups are contained, resulting in low heat resistance. Further, as in the soot method, it is possible to reduce OH groups with a halogen gas, but this case also has the same drawbacks as the soot method.
[0008]
Recently, a method for producing silica glass having a water content of 20 ppm or less has been proposed (Japanese Patent Laid-Open No. 3-109,223). Among them, a method is disclosed in which a porous silica glass body formed by heating and hydrolyzing a glass forming raw material is heated in a reducing atmosphere. However, in this patent, only the water content is evaluated, and the evaluation of heat resistance, for example, the evaluation of the viscosity value at a high temperature is not performed at all.
[0009]
Thus, in any of the conventional methods, the OH group has a high purity useful for the semiconductor industry and a liquid crystal panel substrate, and a high heat-resistant silica glass, for example, a high purity of 50 ppb or less for each metal impurity. A silica glass having a concentration of 10 ppm or less and a heat resistance of 1200 13.0 poise or more at 1200 ° C. has not been obtained, and a new production method has been desired.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the problems as described above, and the object thereof is high purity in which all metal impurities adversely affecting the semiconductor industry and the liquid crystal panel substrate are 50 ppb or less, and the OH group concentration. Is to provide silica glass having a viscosity at 1200 ° C. of 10 13.0 poise or more and improved heat resistance.
[0011]
[Means for Solving the Problems]
As a result of intensive studies on a method for producing a high-purity and high-heat-resistant silica glass useful for the semiconductor industry and liquid crystal panel substrates, the present inventors have found that silicon compounds such as purified silicon tetrachloride and alkyl silicate are used. As a raw material, the vaporized raw material is hydrolyzed in an oxyhydrogen flame, and the resulting silica powder is deposited on a target and grown in the axial direction by heat treatment. In the method for producing silica glass, the silica glass obtained by heat-treating the porous silica so as to satisfy specific conditions in an atmosphere containing carbon monoxide gas has a high purity with respect to metal impurities. In addition, the inventors have found that the OH group concentration in the glass can be sufficiently reduced, and as a result, the heat resistance is improved, and the present invention has been achieved.
[0012]
That is, in the present invention, the silica porous body is heat-treated in a carbon monoxide gas-containing atmosphere at a temperature of 1300 ° C. or higher, whereby the bulk density of the silica porous body after the treatment is 1.5 g / cm 3. each 50ppb under the following high-purity relative to all the metal impurities, characterized by that the three or more, high purity OH group concentration is at 10ppm or less, and a viscosity at 1200 ° C. is 10 13.0 poise or more, A method for producing a high heat-resistant silica glass is provided.
[0013]
Further, the present invention is characterized in that when the silica porous body is subjected to a transparent vitrification treatment, a temperature rising rate at 1300 ° C. or higher is performed at 60 ° C./hour or lower in a helium gas atmosphere containing carbon monoxide gas. A method for producing a high-purity, high-heat-resistant silica glass having a high purity of 50 ppb or less for all metal impurities, an OH group concentration of 10 ppm or less, and a viscosity at 1200 ° C. of 10 13.0 poise or more. It is to provide.
[0014]
[Action]
The present invention will be described in detail below.
[0015]
The porous silica used in the present invention is obtained by hydrolyzing a vaporized raw material in an oxyhydrogen flame using a purified silicon compound such as silicon tetrachloride or alkylsilicate as a raw material, and targeting the obtained silica powder. It is obtained by forming a silica porous body obtained by depositing and growing in the axial direction (so-called silica porous body synthesized by the VAD method). At this time, it is used as a raw material (silica source). Metal elements contained in silicon compounds such as silicon tetrachloride and alkyl silicate, for example, alkali metals such as Na, Li and K, alkaline earth metals such as Ca and Mg, Fe, Al, Cu, Zn, Co, It is important to use transition metals such as Cr, Ni, and Ti, each having a value of 50 ppb or less, preferably 20 ppb or less. Silicon compounds such as silicon tetrachloride and alkyl silicate having such purity can be easily obtained by, for example, distillation purification. By using such a high-purity raw material, a high-purity silica porous body having a metal impurity of 50 ppb or less can be obtained, and as a result, a high-purity silica glass can be obtained. For example, when a silica porous base material is prepared by the above-described VAD method using a raw material of the above concentration, it is further purified when the raw material is vaporized, and each metal impurity concentration is as high as 50 ppb or less, further 10 ppb or less. A pure silica porous body can be obtained.
[0016]
In the present invention, when the silica porous body thus obtained is heat-treated in an atmosphere containing carbon monoxide gas, the heating is performed by controlling each condition of the treatment temperature and the bulk density of the silica porous body after the treatment. After the treatment, by continuing the transparent vitrification treatment, it is possible to reduce the OH group concentration in the silica glass to 10 ppm or less while maintaining the purity of the porous silica, and the treatment with the halogen gas. Compared to the case, it is possible to obtain a silica glass having high purity and low OH group content without contamination by halogen elements.
[0017]
At this time, when the treatment temperature is less than 1300 ° C., the effect of deOH group is not sufficiently obtained, and the obtained silica glass does not have sufficient heat resistance, so that the treatment temperature is 1300 ° C. or more. Further, if the carbon monoxide gas concentration is too low, the effect of the deOH group is not sufficiently obtained, and since carbon monoxide gas is generally very expensive, it is preferably 1 to 30 vol%. In order to obtain such a gas composition, carbon monoxide gas may be mixed with an inert gas such as He, N 2 or Ar.
[0018]
Furthermore, in the present invention, it is particularly important that the bulk density of the treated porous silica is 1.5 g / cm 3 or more. This is because when the bulk density of the treated silica porous body is less than 1.5 g / cm 3 , the effect of deOH group is not sufficiently obtained, and the obtained silica glass does not have sufficient heat resistance. Adjustment of the bulk density of the silica porous body after such treatment can be achieved by controlling the treatment time. Although this treatment time varies depending on the treatment temperature, it is desirable that the treatment time is about 30 minutes to 30 hours in order to achieve productivity and efficient deOH grouping.
[0019]
When performing heat treatment in a carbon monoxide gas-containing atmosphere, the deOH group is uniformly performed in the radial direction and the axial direction, so that the soaking length of the electric furnace (for example, the temperature range where the temperature difference is within 10 ° C.) is It is preferable to carry out with a soaking-heating type electric furnace longer than the length of the object to be processed. At this time, since it is treated at a high temperature in an atmosphere containing carbon monoxide gas, contamination of metal impurities from the electric furnace, especially alkali metals such as Na and K, and Fe, Cr, etc. that may be reduced by carbon monoxide gas. In order to prevent this, it is preferable to carry out in a silica glass furnace core tube. Thereafter, the treated porous silica can be easily obtained by heating at 1450 to 1600 ° C. in a helium gas atmosphere having high solubility in silica glass or in a vacuum atmosphere. it can.
[0020]
Further, as another embodiment of the present invention, when the silica porous body is subjected to a transparent vitrification treatment, the heating rate at 1300 ° C. or more is 60 ° C./hour or less in a carbon monoxide gas-containing helium gas atmosphere. The method performed in is mentioned.
[0021]
The silica porous body used in this case is a high-purity silica porous body obtained by the VAD method, or the silica porous body in an inert gas atmosphere such as nitrogen gas or helium gas, 1000 to 1350. It also refers to a porous silica body sintered to some extent by pre-calcining at a temperature of ° C. By performing such a calcination treatment, the bulk density distribution in the silica porous body can be adjusted, and the remaining bubbles in the obtained glass are extremely reduced. Further, this bulk density distribution becomes more prominent as the silica porous body becomes larger. At the time of this calcination treatment, the treated silica porous body needs to have pores that can be replaced with gas in order to carry out deOH treatment with carbon monoxide gas thereafter. It is desirable to adjust the bulk density of the porous body to 1.5 g / cm 3 or less.
[0022]
This silica porous body is subsequently subjected to heat treatment at 1450 to 1600 ° C. to become transparent silica glass. At this time, the target silica glass can also be obtained by performing in a carbon monoxide gas-containing helium gas atmosphere. Obtainable. At this time, if the carbon monoxide gas concentration is too low, the effect of de-OH group is not sufficiently obtained. If the carbon monoxide gas concentration is too high, the carbon monoxide gas is taken into the silica glass, and the transparent glass Cannot be obtained. For this reason, it is preferable to adjust to 1-30 vol%.
[0023]
In the present invention, when the transparent vitrification treatment is performed in the carbon monoxide gas-containing helium gas atmosphere, it is important to set the rate of temperature increase at 1300 ° C. or higher to 60 ° C./hour or lower. For example, in the case where the soaking method is used for the transparent vitrification, the rate of temperature rise coincides with the rate of temperature rise from 1300 ° C. to the transparent vitrification temperature. However, in the case of transparent vitrification treatment, since glass with fewer bubbles is obtained, generally the soaking length of the electric furnace (for example, the temperature range where the temperature difference is within 10 ° C.) is greater than the length of the workpiece. A short zone heating type electric furnace is used. In this case, the silica porous body to be treated is set at the upper part of the electric furnace (position where the temperature is 1300 ° C. or lower at the lower end position of the silica porous body), and then the silica porous body is gradually lowered to increase the temperature from the lower end. Transparent glass can be obtained by inserting into the area. In the case of such a method, the heating rate is related to the temperature distribution at the top of the electric furnace and the pulling rate. The temperature distribution in the upper part of the electric furnace can be easily measured without inserting a workpiece in advance. For example, when the temperature distribution at the upper part of the electric furnace is 1.0 ° C./mm and the transparent vitrification treatment is performed at a pulling rate of 100 mm / hour, the rate of temperature rise is 100 ° C./hour. When this temperature increase rate is too high, the effect of deOH group is not sufficiently obtained, and the obtained silica glass does not have sufficient heat resistance.
[0024]
As described above in detail, when the silica porous body is heat-treated in a carbon monoxide gas-containing atmosphere, the present invention determines each condition of the treatment temperature and the bulk density of the treated silica porous body. By controlling the temperature rising rate in the atmosphere containing carbon monoxide gas when controlling or transparent vitrification, the OH group concentration in the glass can be reduced to 10 ppm or less. Compared to the case of treatment, silica glass with high purity and low OH group content can be obtained without contamination with halogen elements, but it is more effective when treated in combination. Needless to say. The mechanism by which OH groups are reduced by such carbon monoxide gas is unclear, but it is presumed that the reducing power of carbon monoxide gas promotes the elimination of OH groups. This is presumed to be because the sintering state of this greatly affects the elimination of OH groups.
[0025]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.
[0026]
Example 1
By hydrolyzing silicon tetrachloride (Fe, Ca: 20 ppb, other metal elements <10 ppb) obtained by distillation purification and introducing it into the central layer of the burner forming the oxyhydrogen flame Then, silica powder was deposited on the target and pulled up and grown in the axial direction to obtain a porous silica body having a diameter of 350 mmφ and a bulk density of 0.30 g / cm 3 . When this porous silica was dissolved in hydrofluoric acid and the concentration of metal impurities was measured with an ICP-mass spectrometer, it was 10 ppb or less for all metals.
[0027]
Another silica porous material prepared by the same method was cut into a size of 50 mm × 50 mm × 100 mm to prepare a sample. Subsequently, this sample was set in a horizontal tubular furnace equipped with a silica glass furnace core tube, and 5 vol% carbon monoxide gas-95 vol% helium gas was circulated.
[0028]
Next, after raising the temperature of the tubular furnace to 1150 ° C., the temperature was raised to 1450 ° C. at a temperature increase rate of 60 ° C./hour, kept at that temperature for 2 hours, and cooled.
[0029]
When the obtained silica glass was cut and the OH group concentration was measured by infrared absorption spectrum, it was <1 ppm.
[0030]
Further, when the viscosity at 1200 ° C. was measured by a beam bending method using the cut silica glass piece, log η (poise) = 13.3.
[0031]
Example 2
Another silica porous body produced by the above-described method is inserted into a soaking-heating type vertical tubular furnace equipped with a silica glass furnace core tube, and 20 vol% carbon monoxide gas-80 vol from the lower nozzle. The electric furnace was heated to 1300 ° C., heated for 20 hours, and then cooled.
[0032]
This silica porous body was taken out and its bulk density was measured and found to be 1.6 g / cm 3. Next, it was inserted into the upper part of a zone heating type vertical tubular furnace. 100 vol% He gas was circulated, the temperature was raised to 1550 ° C., and the glass was turned into a transparent glass by lowering the temperature from the upper part to a high temperature region, thereby obtaining a transparent silica glass ingot of 160 mmφ. A part of the silica glass ingot was cut, and the OH group concentration of the sample at the center was measured by infrared absorption spectrum. Moreover, when the silica glass sample was dissolved in HF aqueous solution and the contained metal element was analyzed with an ICP-mass spectrometer, it was 10 ppb or less for all the metal elements described above. Further, when the viscosity of the silica glass at 1200 ° C. was measured by a beam bending method using the cut silica glass piece, log η (poise) = 13.1.
[0033]
Example 3, Comparative Examples 1-3
In the same manner as in Example 1, a silica porous body was prepared, and this silica porous body was inserted into a soaking heating type vertical tubular furnace equipped with a silica glass furnace core tube. As shown, the test was performed under different processing conditions (processing temperature, processing time, processing atmosphere). After the heat treatment, this porous silica material was taken out, the bulk density was measured, and a transparent vitrification treatment was performed in the same manner as in Example 1. The obtained silica glass ingot was measured for OH group concentration and heat resistance (viscosity of silica glass at 1200 ° C.) in the same manner as in Example 1. The obtained results are shown in Table 1. In addition, when the contained metal element was analyzed with the ICP-mass spectrometer about the obtained silica glass ingot, it was 10 ppb or less about all the metal elements mentioned above with all the silica glass ingots.
[0034]
Table 1 shows the measurement results of Examples 2-3 and Comparative Examples 1-3.
[0035]
[Table 1]
Figure 0003931351
[0036]
Example 4
In the same manner as in Example 2, a silica porous body was prepared, and this silica porous body was inserted into a soaking heating type vertical tubular furnace equipped with a silica glass furnace core tube, and then from a lower nozzle. 100 vol% nitrogen gas was circulated, the electric furnace was heated to 1300 ° C., calcined for 12 hours, and then cooled.
[0037]
This silica porous body was taken out and its bulk density was measured and found to be 1.2 g / cm 3. Next, it was inserted into the upper part of a zone heating type vertical tubular furnace. At this time, the porous porous body was set so that the lower end of the silica porous body was at a position of 1100 ° C. according to a temperature distribution measured in advance at 1550 ° C. (a state in which an object to be processed was not inserted). Subsequently, 10 vol% carbon monoxide gas-90 vol% He gas was circulated from the lower nozzle, the temperature was increased to 1550 ° C., and the rate of temperature increase was adjusted to 60 ° C./hour by adjusting the reduction rate according to the temperature distribution measured in advance. The glass was turned into a transparent glass by lowering it from the upper part of the electric furnace to a high temperature range. As a result, a 160 mmφ transparent silica glass ingot was obtained. A part of the silica glass ingot was cut, and the OH group concentration of the sample at the center was measured by infrared absorption spectrum. Moreover, when the silica glass sample was dissolved in HF aqueous solution and the contained metal element was analyzed with an ICP-mass spectrometer, it was 10 ppb or less for all the metal elements described above. Further, when the viscosity of the silica glass at 1200 ° C. was measured by a beam bending method using the cut silica glass piece, log η (poise) = 13.1.
[0038]
Examples 5-7, Comparative Examples 4-6
The preliminarily calcined and cooled silica porous material was inserted into the upper part of the zone heating type vertical tubular furnace in the same manner as in Example 4, and the treatment conditions (treatment atmosphere, temperature increase rate) were as shown in Table 2. I changed the test. The obtained silica glass ingot was measured for OH group concentration and heat resistance (viscosity of silica glass at 1200 ° C.) in the same manner as in Example 1. The results obtained are shown in Table 2. In addition, when the contained metal element was analyzed with the ICP-mass spectrometer about the obtained silica glass ingot, it was 10 ppb or less about all the metal elements mentioned above with all the silica glass ingots.
[0039]
Table 2 shows the measurement results of Examples 4 to 7 and Comparative Examples 4 to 6.
[0040]
[Table 2]
Figure 0003931351
Figure 0003931351
[0041]
Comparative Example 7
A silica glass ingot (type I) obtained by melting natural quartz in an electric furnace was measured in the same manner. As a result, the OH group concentration was 8 ppm, but for metal elements, Na 0.5 ppm, K, Li was 0.5 ppm, Fe, Ca 0.6 ppm, Al 17 ppm, Mg 0.2 ppm, and Cu 0.05 ppm. When the viscosity of the silica glass at 1200 ° C. was measured, it was log η (poise) = 13.3.
[0042]
Comparative Example 8
Purified silicon tetrachloride was introduced into a burner forming an oxyhydrogen flame, hydrolyzed, and melted to obtain a silica glass ingot (type III). When this silica glass ingot was also measured, the OH group concentration was 850 ppm, Na, K, Li; 0.5 ppm, Fe, Ca; 0.6 ppm, Al; 17 ppm, Mg; 0.2 ppm, Cu; It was 05 ppm. When the viscosity of the silica glass at 1200 ° C. was measured, log η (poise) = 11.6.
[0043]
Comparative Example 9
In the same manner as in Example 1, a porous silica material was prepared, and this porous silica material was inserted into a soaking-heating type vertical tubular furnace equipped with a furnace core tube. 1 vol% Cl2 containing N2 gas was circulated from the lower nozzle, and this electric furnace was heated to 1300 ° C., heated for 8 hours, and cooled. Thereafter, it was vitrified in the same manner as in Example 1 to obtain a transparent silica glass ingot.
[0044]
When the OH group concentration of this silica glass ingot was measured, it was 1 ppm or less, and when the chlorine concentration was measured with a fluorescent X-ray analyzer, it was 1300 ppm. Moreover, when the contained metal element was analyzed, it was 10 ppb or less for all the metal elements. When the viscosity of the silica glass at 1200 ° C. was measured, log η (poise) = 12.2.
[0045]
【The invention's effect】
As described in detail above, according to the method of the present invention, a highly heat-resistant silica glass having a very high purity of 50 ppb or less for each metal element and not obtained by the soot method or the sol-gel method is obtained. be able to. Furthermore, by optimizing the conditions, silica glass having high heat resistance equal to or higher than that of type I natural silica glass can be produced by a relatively easy method. Such high-purity and heat-resistant silica glass has not been obtained by any conventional method. For this reason, this silica glass is a silica glass suitable for the semiconductor industry and the liquid crystal panel substrate.

Claims (2)

精製された珪素化合物を原料として、気化した該原料を酸水素火炎中で加水分解させ、得られたシリカ粉をターゲットに堆積、軸方向に成長させることにより得られる高純度のシリカ多孔質体を加熱処理することにより透明なシリカガラスを製造する方法に於いて、該シリカ多孔質体を一酸化炭素ガス含有雰囲気中、かつ1300℃以上の温度下で加熱処理することにより、該処理後のシリカ多孔質体の嵩密度を1.5g/cm以上とした後、ヘリウムガス雰囲気中または真空雰囲気中、1450〜1600℃で加熱処理を行うことによって透明化することを特徴とする全ての金属不純物に対して各々50ppb以下の高純度で、OH基濃度が10ppm以下であり、かつ1200℃での粘度が1013.0ポイズ以上である高純度、高耐熱性シリカガラスの製造方法。Using a purified silicon compound as a raw material, a high-purity silica porous body obtained by hydrolyzing the vaporized raw material in an oxyhydrogen flame, depositing the obtained silica powder on a target, and growing it in the axial direction In the method for producing a transparent silica glass by heat treatment, the silica porous body is heat-treated in a carbon monoxide gas-containing atmosphere and at a temperature of 1300 ° C. or higher to obtain a silica after the treatment. All metal impurities characterized by being made transparent by heat treatment at 1450 to 1600 ° C. in a helium gas atmosphere or a vacuum atmosphere after the bulk density of the porous body is 1.5 g / cm 3 or more each 50ppb under the following high-purity, OH group concentration is at 10ppm or less, and high purity, high heat resistance, which is a 1200 viscosity at ℃ 10 13.0 poise or more to the Method of manufacturing a Rikagarasu. 精製された珪素化合物を原料として、気化した該原料を酸水素火炎中で加水分解させ、得られたシリカ粉をターゲットに堆積、軸方向に成長させることにより得られる高純度のシリカ多孔質体を加熱処理することにより透明なシリカガラスを製造する方法に於いて、該シリカ多孔質体を透明ガラス化処理する際に、一酸化炭素ガス含有ヘリウムガス雰囲気中、1300℃以上の昇温速度が60℃/時間以下で行なうことを特徴とする全ての金属不純物に対して各々50ppb以下の高純度で、OH基濃度が10ppm以下であり、かつ1200℃での粘度が1013.0ポイズ以上であ高純度、高耐熱性シリカガラスの製造方法。 Using a purified silicon compound as a raw material, a high-purity silica porous body obtained by hydrolyzing the vaporized raw material in an oxyhydrogen flame, depositing the obtained silica powder on a target, and growing it in the axial direction in the method for producing a transparent silica glass by heat treatment in processing vitrifying the porous silica, carbon monoxide gas containing helium gas atmosphere, the heating rate above 1300 ° C. 60 The purity is 50 ppb or less for all metal impurities, the OH group concentration is 10 ppm or less, and the viscosity at 1200 ° C. is 10 13.0 poise or more. A method for producing high-purity, high-heat-resistant silica glass.
JP32501694A 1994-12-27 1994-12-27 Method for producing high-purity, high-heat-resistant silica glass Expired - Lifetime JP3931351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32501694A JP3931351B2 (en) 1994-12-27 1994-12-27 Method for producing high-purity, high-heat-resistant silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32501694A JP3931351B2 (en) 1994-12-27 1994-12-27 Method for producing high-purity, high-heat-resistant silica glass

Publications (2)

Publication Number Publication Date
JPH08183621A JPH08183621A (en) 1996-07-16
JP3931351B2 true JP3931351B2 (en) 2007-06-13

Family

ID=18172204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32501694A Expired - Lifetime JP3931351B2 (en) 1994-12-27 1994-12-27 Method for producing high-purity, high-heat-resistant silica glass

Country Status (1)

Country Link
JP (1) JP3931351B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3794664B2 (en) * 1998-07-29 2006-07-05 信越化学工業株式会社 Synthetic quartz glass member, manufacturing method thereof, and optical component for excimer laser
EP1101741B1 (en) * 1999-11-15 2005-07-13 Heraeus Quarzglas GmbH & Co. KG Quartz glass product for an optical element and process of its manufacture
WO2003008332A1 (en) * 2001-07-19 2003-01-30 Mitsubishi Chemical Corporation High purity quartz powder and method for production thereof, and formed glass article from the powder
JP3498182B2 (en) 2001-12-05 2004-02-16 東芝セラミックス株式会社 Silica glass member for semiconductor and manufacturing method thereof
JP4204374B2 (en) * 2003-04-21 2009-01-07 信越石英株式会社 Manufacturing method of quartz glass jig
JP4130182B2 (en) * 2004-07-12 2008-08-06 株式会社ヒューモラボラトリー Crystal thin film
JP4640292B2 (en) * 2006-08-24 2011-03-02 住友電気工業株式会社 Quartz glass body manufacturing method
US8062986B2 (en) * 2007-07-27 2011-11-22 Corning Incorporated Fused silica having low OH, OD levels and method of making
JP4859868B2 (en) * 2008-04-08 2012-01-25 株式会社ヒューモラボラトリー Crystal thin film
WO2013140706A1 (en) * 2012-03-23 2013-09-26 信越石英株式会社 A silica container for pulling up monocrystalline silicon and method for manufacturing same

Also Published As

Publication number Publication date
JPH08183621A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
TWI393689B (en) Component of quartz glass for use in semiconductor manufacture and method for producing the same
KR101378748B1 (en) Fused quartz glass and process for producing the same
JP4181226B2 (en) Manufacturing method of high purity, high heat resistant quartz glass
JP3931351B2 (en) Method for producing high-purity, high-heat-resistant silica glass
DE102005057219A1 (en) Process for treating synthetic silica powder and appropriately treated synthetic silica powder
JP2022526062A (en) Low hydroxy group high purity quartz glass and its preparation method
EP0241614B1 (en) Process for enhancing ti:al2o3 tunable laser crystal fluorescence by controlling crystal growth atmosphere
JP2003081654A (en) Synthetic quartz glass, and production method therefor
US20030101748A1 (en) Silica glass member for semiconductor and production method thereof
CN115626771B (en) High-hardness Ge-As-Se chalcogenide glass and preparation method and application thereof
JPH11310423A (en) Synthetic quartz glass and its production
JP3672592B2 (en) Method for producing synthetic quartz glass member
JP2522830B2 (en) Quartz glass material for semiconductor heat treatment and manufacturing method thereof
JP3574577B2 (en) High viscosity synthetic quartz glass and method for producing the same
KR102243264B1 (en) Vitreous silica crucible and manufacturing method thereof
JP2785430B2 (en) Quartz glass for optical transmission
JPH0517172B2 (en)
JP3188517B2 (en) Manufacturing method of quartz glass
JP2000026125A (en) Transparent quartz glass and its production
JPH06263468A (en) Production of glass base material
JP2822854B2 (en) Synthetic quartz glass optical member and method of manufacturing the same
JP3114936B2 (en) High heat resistant synthetic quartz glass
CN117107357B (en) Germanium rod for vapor deposition, preparation method thereof and germanium tetrachloride reduction device
JP2878916B2 (en) Silica glass member for semiconductor heat treatment and method for producing the same
JPS62113729A (en) Production of quartz glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6