JP3114936B2 - High heat resistant synthetic quartz glass - Google Patents

High heat resistant synthetic quartz glass

Info

Publication number
JP3114936B2
JP3114936B2 JP15160190A JP15160190A JP3114936B2 JP 3114936 B2 JP3114936 B2 JP 3114936B2 JP 15160190 A JP15160190 A JP 15160190A JP 15160190 A JP15160190 A JP 15160190A JP 3114936 B2 JP3114936 B2 JP 3114936B2
Authority
JP
Japan
Prior art keywords
quartz glass
aluminum
synthetic quartz
high heat
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15160190A
Other languages
Japanese (ja)
Other versions
JPH0446020A (en
Inventor
進 八馬
幸則 大田
一男 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15522097&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3114936(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP15160190A priority Critical patent/JP3114936B2/en
Publication of JPH0446020A publication Critical patent/JPH0446020A/en
Application granted granted Critical
Publication of JP3114936B2 publication Critical patent/JP3114936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/01433Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1438Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. solution doping of the article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/87Controlling the temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高耐熱性合成石英ガラスに関するものであ
る。
The present invention relates to a synthetic quartz glass having high heat resistance.

〔従来の技術〕 近年、半導体の高集積化は急速に進行している。これ
に伴い集積度の高い半導体製造工程中の高温度の工程、
例えば酸化,アニール,活性化等の工程で使用されるプ
ロセスチューブ、ボートなどの石英ガラス部材に求めら
れる特性として不純物が歩留り低下の原因になることか
ら、高純度な石英ガラスが要求されている。従来の溶融
石英ガラスはその原料および製造工程由来による不純物
が多く高集積化された半導体製造工程での使用に適さな
い。また、従来の合成石英ガラスは純度の面からは申し
分無いが、製造方法に由来する水分が多くOH基として数
百ppm含んでいる事から、従来の合成石英ガラスの徐冷
点を溶融石英ガラスの徐冷点と比較すると、約150℃低
いのが現状であり、高集積化された半導体製造の高温工
程での部材としては使用不可能であった。
[Related Art] In recent years, high integration of semiconductors has been rapidly progressing. Along with this, a high temperature process in a semiconductor manufacturing process with a high degree of integration,
For example, high-purity quartz glass is required because quartz glass members such as process tubes and boats used in processes such as oxidation, annealing, and activation cause impurities to lower the yield. Conventional fused silica glass is unsuitable for use in a highly integrated semiconductor manufacturing process, which has many impurities due to its raw material and manufacturing process. In addition, conventional synthetic quartz glass is satisfactory in terms of purity, but since the moisture derived from the manufacturing method is high and contains several hundred ppm as OH groups, the annealing point of conventional synthetic quartz glass is At present, the temperature is about 150 ° C. lower than the annealing point, and it cannot be used as a member in a high-temperature process of manufacturing a highly integrated semiconductor.

〔発明の解決しようとする課題〕 本発明の目的は、従来の合成石英ガラスの有していた
前述の欠点を解決しようとするものである。
[Problems to be Solved by the Invention] An object of the present invention is to solve the above-mentioned disadvantages of the conventional synthetic quartz glass.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、前述の問題点を解決すべくなされたもので
あり、ガラス形成原料としてハロゲンを含む珪素化合物
を用いこれを加熱・加水分解し得られるシリカ微粒子を
経由して合成される石英ガラスであって、アルミニウム
の含有量が5〜40ppm、水分の含有量がOH基として30ppm
以下、徐冷点が1220℃以上であることを特徴とする高耐
熱性合成石英ガラスである。
The present invention has been made in order to solve the above-mentioned problems, and uses a silicon compound containing halogen as a glass forming raw material, and is made of silica glass synthesized through silica fine particles obtained by heating and hydrolyzing the same. The aluminum content is 5 to 40 ppm, and the water content is 30 ppm as OH group.
Hereinafter, a highly heat-resistant synthetic quartz glass characterized in that the annealing point is 1220 ° C. or higher.

以下、本発明の詳細について説明する。本発明におい
てアルミニウムのドープ量は5〜40ppmとされる。5ppm
未満では耐熱性を向上させる効果が小さく、また、40pp
mを超えるとガラス内部に泡、ブツ等の欠点が生成しや
すくなり機械的強度等の低下や外観の不良をきたす。
Hereinafter, details of the present invention will be described. In the present invention, the doping amount of aluminum is 5 to 40 ppm. 5ppm
If less, the effect of improving heat resistance is small, and 40pp
If it exceeds m, defects such as bubbles and bumps are likely to be generated inside the glass, resulting in a decrease in mechanical strength and the like and a poor appearance.

アルミニウムをドープする方法としては、種々ある
が、その第一は、ハロゲン化珪素等を火炎中で加熱・加
水分解してシリカ微粒子を生成する工程や、火炎加水分
解してシリカ微粒子の集合体を生成する工程中におい
て、これと同時に、塩化アルミニウム等の原料を窒素ガ
スをキャリアガスとして前記火炎中に供給して導入する
方法がある。この場合ガラス中のアルミニウム濃度の制
御は塩化アルミニウム蒸気発生器の温度、キャリアガス
流量、ハロゲン化珪素化合物供給量により行われる。こ
こで塩化アルミニウムの供給配管は塩化アルミニウム蒸
発器より若干温度を高く制御する事がガラス中のアルミ
ニウム濃度を安定化する上で重要である。このようにし
て得られるシリカ微粒子は例えば所望の形状に成型加工
されたのち焼結ガラス化することにより透明な石英ガラ
ス体とする。あるいは、前記アルミニウムドープされた
シリカ微粒子が多孔質体等の集合体として得られる場合
には例えばこれを約1400℃で露点−65℃の乾燥ヘリウム
ガス雰囲気中で透明ガラス化することにより水分をOH基
として30ppm以下に低減される。第二のドープ方法とし
ては、ハロゲン化珪素等を酸水素炎中で加熱加水分解し
多孔質体とした後に透明ガラス化しない温度領域(1250
〜1350℃)で加熱処理した多孔質体に、所定濃度の塩化
アルミニウムのアルコール溶液等を含浸し比較的低温で
水蒸気を含む雰囲気中で処理したのち、1400℃程度の温
度域で乾燥ヘリウムガス雰囲気中、透明ガラス化して透
明石英ガラス体とする。このようなドープ材料は以上説
明したものに限定されるものではなく、アルミニウムの
ハロゲン化物や各種塩類、有機アルミニウム等を使用す
ることが可能である。さらに第三のドープ方法として
は、ハロゲン化珪素等を加水分解して得られるシリカ微
粒子を捕集後通常の方法で成型した多孔質体にも同様な
方法でアルミニウムがドープされる。ここで、ガラス中
のアルミニウムドープ量の制御は、塩化アルミニウムの
濃度、多孔質体の気孔率で決定される。以上の様な方法
により合成されたアルミニウムを5〜40ppm含む石英ガ
ラスは徐冷点が1220℃以上の高耐熱性合成石英ガラスで
あり、ハロゲンを含む珪素化合物を出発原料として用い
ることから、その純度を高めることにより、アルミニウ
ム以外の重金属およびアルカリ金属の含有量を1ppm以下
とすることが可能である。また、本発明の合成石英ガラ
スは水分量がOH基として30ppm以下であることから、高
集積化された半導体製造の高温工程でも使用できる。
There are various methods for doping aluminum. The first is a step of heating and hydrolyzing silicon halide or the like in a flame to generate silica fine particles, or a method of flame hydrolysis to form an aggregate of silica fine particles. At the same time, there is a method in which a raw material such as aluminum chloride is supplied and introduced into the flame using nitrogen gas as a carrier gas during the generation step. In this case, the control of the aluminum concentration in the glass is performed by the temperature of the aluminum chloride vapor generator, the flow rate of the carrier gas, and the supply amount of the silicon halide compound. Here, it is important to control the temperature of the aluminum chloride supply pipe slightly higher than that of the aluminum chloride evaporator in order to stabilize the aluminum concentration in the glass. The silica fine particles thus obtained are molded into, for example, a desired shape and then sintered to form a transparent quartz glass body. Alternatively, in the case where the aluminum-doped silica fine particles are obtained as an aggregate such as a porous body, for example, the water is converted to OH by making it transparent vitrified in a dry helium gas atmosphere at about 1400 ° C. and a dew point of −65 ° C. It is reduced to 30 ppm or less as a base. As a second doping method, a silicon halide or the like is heated and hydrolyzed in an oxyhydrogen flame to form a porous body, and then a temperature range in which the glass does not become transparent (1250)
(1350 ° C), impregnated with an alcohol solution of aluminum chloride, etc. at a predetermined concentration, treated at a relatively low temperature in an atmosphere containing water vapor, and then dried in a helium gas atmosphere at a temperature range of about 1400 ° C. Medium and transparent glass is formed to form a transparent quartz glass body. Such doping materials are not limited to those described above, and aluminum halides, various salts, organic aluminum, and the like can be used. Further, as a third doping method, aluminum is doped in a similar manner to a porous body molded by a usual method after collecting fine silica particles obtained by hydrolyzing a silicon halide or the like. Here, the control of the aluminum doping amount in the glass is determined by the concentration of aluminum chloride and the porosity of the porous body. The quartz glass containing 5 to 40 ppm of aluminum synthesized by the above method is a high heat-resistant synthetic quartz glass having a gradual cooling point of 1220 ° C. or higher and uses a silicon compound containing halogen as a starting material, so that its purity is high. , The content of heavy metals other than aluminum and alkali metals can be reduced to 1 ppm or less. Further, since the synthetic quartz glass of the present invention has a water content of 30 ppm or less as an OH group, it can be used in a high-temperature process of manufacturing a highly integrated semiconductor.

〔作用〕[Action]

本発明において、アルミニウムが耐熱性を高める作用
は必ずしも明確ではないが、アルミニウムが石英ガラス
中のシリコンと置換して融点の高い酸化アルミニウムが
生成し粘度を高めると考えられる。
In the present invention, although the action of aluminum to increase heat resistance is not always clear, it is considered that aluminum replaces silicon in quartz glass to produce aluminum oxide having a high melting point and increase the viscosity.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。試薬四塩化
珪素を酸水素火炎中で加熱・加水分解・堆積させて形成
させた多孔質体を空気中で1330度、1時間加熱処理し得
られた嵩密度0.5gr/mlの多孔質体を直径60mm長さ150mm
に切り出し、各濃度の試薬1級無水塩化アルミニウムの
試薬特級エチルアルコール溶液を通常の方法で減圧含浸
した。次に内径80mmの不透明石英ガラス製炉心管を持つ
管状炉にセットし室温の飽和蒸気圧の水分を含んだ空気
組成の窒素、酸素混合ガスを毎分6供給しながら100
℃で5時間処理後1350℃まで2時間で昇温し供給ガスを
露点−65℃以下の乾燥ヘリウムガスに切り替えさらに14
00℃に昇温しその温度で2時間保持した。冷却後取り出
したところ直径35mm長さ約100mmのアルミニウムドープ
透明石英ガラスが得られた。この石英ガラスから厚み2.
5mm幅5.1mm長さ60.2mmのテストピースを切り出し透明石
英ガラスチューブ内で空気組成混合ガス雰囲気下1300℃
で20分加熱処理後1000℃まで毎分8℃で冷却したテスト
ピースをさらに、1000番の研磨剤で厚み2.4mm幅5.0mm長
さ60.0mmに研磨仕上げした。これをビームベンディング
法により徐冷点(粘度1013poiseの温度)を測定した。
さらに測定後のテストピースをフッ酸洗浄後フッ酸分解
し原子吸光法によりアルミニウム濃度とさらに金属不純
物を測定した。第1表に、石英ガラス中のアルミニウム
濃度、徐冷点および代表的な不純物量を示す。さらに比
較例としてアルミニウムを含まないエチルアルコールを
用いて同様に処理した石英ガラスの特性を示す。又、こ
れ等の石英ガラスは、FT−IR法による水分測定の結果い
ずれもOH基が30ppm以下であった。
Hereinafter, examples of the present invention will be described. The porous body formed by heating, hydrolyzing, and depositing the reagent silicon tetrachloride in an oxyhydrogen flame is heated at 1330 ° C. for 1 hour in air to obtain a porous body having a bulk density of 0.5 gr / ml. Diameter 60mm Length 150mm
, And impregnated under reduced pressure with a reagent-grade ethyl alcohol solution of each reagent of primary grade anhydrous aluminum chloride in a usual manner. Next, the tube was set in a tubular furnace having an opaque quartz glass furnace tube with an inner diameter of 80 mm, and a nitrogen-oxygen mixed gas containing water having a saturated vapor pressure at room temperature was supplied at a rate of 100 / min.
After processing at 5 ° C for 5 hours, the temperature was raised to 1350 ° C in 2 hours, and the supply gas was switched to dry helium gas with a dew point of -65 ° C or less.
The temperature was raised to 00 ° C. and kept at that temperature for 2 hours. After cooling, the aluminum-doped transparent quartz glass having a diameter of 35 mm and a length of about 100 mm was obtained. From this quartz glass 2.
Cut out a test piece of 5mm width 5.1mm length 60.2mm 1300 ° C in an atmosphere of mixed gas of air composition in a transparent quartz glass tube
After the heat treatment for 20 minutes, the test piece cooled to 1000 ° C. at 8 ° C./min. The cooling point (temperature at a viscosity of 10 13 poise) was measured by a beam bending method.
Further, the test piece after the measurement was washed with hydrofluoric acid and hydrolyzed with hydrofluoric acid, and the aluminum concentration and further metal impurities were measured by an atomic absorption method. Table 1 shows the aluminum concentration, the annealing point, and the typical impurity amount in the quartz glass. Further, as a comparative example, the characteristics of quartz glass similarly treated with ethyl alcohol containing no aluminum are shown. In addition, these quartz glasses had an OH group of 30 ppm or less as a result of water measurement by the FT-IR method.

〔発明の効果〕 本発明によって、従来の合成石英ガラスでは達成でき
なかった低水分透明溶融石英ガラスと同等の徐冷点を持
つ高耐熱性合成石英ガラスが得られる。
[Effects of the Invention] According to the present invention, a high heat-resistant synthetic quartz glass having a slow cooling point equivalent to that of a low-moisture transparent fused quartz glass, which cannot be achieved by a conventional synthetic quartz glass, can be obtained.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス形成原料としてハロゲンを含む珪素
化合物を用いこれを加熱・加水分解し得られるシリカ微
粒子を経由して合成される石英ガラスであって、アルミ
ニウムの含有量が5〜40ppm、水分の含有量がOH基とし
て30ppm以下、徐冷点が1220℃以上であることを特徴と
する高耐熱性合成石英ガラス。
1. A quartz glass synthesized using a silicon compound containing a halogen as a glass-forming raw material and heating and hydrolyzing the silicon compound through silica fine particles, which has an aluminum content of 5 to 40 ppm and a water content of A high heat-resistant synthetic quartz glass characterized by having a content of OH groups of 30 ppm or less and an annealing point of 1220 ° C. or more.
【請求項2】アルミニウム以外の重金属およびアルカリ
金属類の含有量の総計が1ppm以下である請求項1記載の
高耐熱性合成石英ガラス。
2. The high heat-resistant synthetic quartz glass according to claim 1, wherein the total content of heavy metals and alkali metals other than aluminum is 1 ppm or less.
JP15160190A 1990-06-12 1990-06-12 High heat resistant synthetic quartz glass Expired - Fee Related JP3114936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15160190A JP3114936B2 (en) 1990-06-12 1990-06-12 High heat resistant synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15160190A JP3114936B2 (en) 1990-06-12 1990-06-12 High heat resistant synthetic quartz glass

Publications (2)

Publication Number Publication Date
JPH0446020A JPH0446020A (en) 1992-02-17
JP3114936B2 true JP3114936B2 (en) 2000-12-04

Family

ID=15522097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15160190A Expired - Fee Related JP3114936B2 (en) 1990-06-12 1990-06-12 High heat resistant synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP3114936B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2123019A1 (en) * 1993-06-01 1994-12-02 Stanley M. Antczak Viscosity tailoring of fused silica
JP3498182B2 (en) 2001-12-05 2004-02-16 東芝セラミックス株式会社 Silica glass member for semiconductor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0446020A (en) 1992-02-17

Similar Documents

Publication Publication Date Title
RU2103232C1 (en) Induction furnace, apparatus for using said furnace, method for heat treatment of synthetic silicon dioxide masses and methods for producing silicon dioxide glass
US7524780B2 (en) Low loss optical fiber and method for making same
JP5394734B2 (en) Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage
JP2013530920A (en) High purity synthetic silica and products such as jigs made from the high purity synthetic silica
JP3578357B2 (en) Method for producing heat-resistant synthetic quartz glass
JPS5844619B2 (en) Manufacturing method of optical fiber base material
JP3092675B2 (en) Oxynitride glass and method for producing the same
JP3114936B2 (en) High heat resistant synthetic quartz glass
JP3931351B2 (en) Method for producing high-purity, high-heat-resistant silica glass
JPH03109223A (en) Quartz glass and production thereof
JP3187510B2 (en) Method of manufacturing member for heat treatment of semiconductor wafer
JPH0517172B2 (en)
JP3188296B2 (en) Manufacturing method of polarizing quartz glass
JPS6081038A (en) Manufacture of optical glass fiber containing tio2
JPS6143290B2 (en)
JPH06263468A (en) Production of glass base material
JP2002160930A (en) Porous quartz glass and method of producing the same
JPH03242342A (en) Production of preform for optical fiber
JPH03109224A (en) Quartz glass and production thereof
JPH07115881B2 (en) Quartz glass material for heat treatment
JP2878916B2 (en) Silica glass member for semiconductor heat treatment and method for producing the same
JP6769893B2 (en) Quartz glass material with OH group diffusion inhibitory ability and its manufacturing method
JPH0776093B2 (en) Quartz glass manufacturing method
JPH066494B2 (en) Quartz glass manufacturing method
JPS62143834A (en) Production of preform for optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070929

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080929

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080929

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees