JP3188517B2 - Manufacturing method of quartz glass - Google Patents

Manufacturing method of quartz glass

Info

Publication number
JP3188517B2
JP3188517B2 JP12443692A JP12443692A JP3188517B2 JP 3188517 B2 JP3188517 B2 JP 3188517B2 JP 12443692 A JP12443692 A JP 12443692A JP 12443692 A JP12443692 A JP 12443692A JP 3188517 B2 JP3188517 B2 JP 3188517B2
Authority
JP
Japan
Prior art keywords
treatment
quartz glass
temperature
glass
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12443692A
Other languages
Japanese (ja)
Other versions
JPH05319848A (en
Inventor
裕之 須田
伸生 衛藤
英司 塩田
富義 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Tosoh Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Tosoh Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12443692A priority Critical patent/JP3188517B2/en
Publication of JPH05319848A publication Critical patent/JPH05319848A/en
Application granted granted Critical
Publication of JP3188517B2 publication Critical patent/JP3188517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光学材料や耐熱材料に
使用される高純度の石英ガラスを製造する方法に関する
ものであり、特に、気相軸付け法により合成されたシリ
カ多孔質母材を、所定の脱OH基処理、透明ガラス化処
理を施すことにより高純度の石英ガラスを製造する方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity silica glass used for optical materials and heat-resistant materials, and more particularly, to a porous silica preform synthesized by a vapor phase axial method. Is subjected to a predetermined de-OH group treatment and a transparent vitrification treatment to produce high-purity quartz glass.

【0002】[0002]

【従来の技術】近年、光学材料や耐熱材料に使用される
高純度の石英ガラスを製造する方法として、気相軸付け
法により合成されたシリカ多孔質母材を透明ガラス化処
理する方法が注目されている。
2. Description of the Related Art In recent years, as a method for producing high-purity quartz glass used as an optical material or a heat-resistant material, a method of vitrifying a silica porous base material synthesized by a vapor phase shafting method has attracted attention. Have been.

【0003】気相軸付け法は、まず、バーナーにより酸
水素炎を形成させ、この酸水素炎中にガラス原料である
ハロゲン化ケイ素等のケイ素化合物を流通し、加水分解
反応によりシリカ微粒子を生成させ、このシリカ微粒子
を出発部材に付着堆積させ、これを軸方向に引き上げる
ことにより、成長させシリカ多孔質母材を合成させる方
法であり、続いて、シリカ多孔質母材をHe雰囲気中で
加熱処理することによりシリカ多孔質母材の空隙が緻密
化され透明なガラスを得るものである。この際に、脱O
H基作用を有するガス、例えば、Cl2 等のハロゲン、
SOCl2 等のハロゲン化合物等のガスを流通させるこ
とにより、容易に石英ガラス中のOH基濃度を制御、例
えば、OH基濃度を1ppm以下にすることができる。
この脱OH基、即ち、OH基の除去は、前記脱OH基作
用ガスがシリカ多孔質母材中に吸着し、OH基と置換す
ることにより生じる。屈折率、吸収スペクトル、耐熱性
等のガラス物性は、ガラス中に残存するOH基の濃度に
大きく影響するため、特に、光学材料や耐熱材料に使用
する場合に、ガラス中のOH基濃度の制御が重要な因子
となる。
In the gas phase axial alignment method, first, an oxyhydrogen flame is formed by a burner, and a silicon compound such as silicon halide, which is a glass raw material, is circulated through the oxyhydrogen flame to generate silica fine particles by a hydrolysis reaction. In this method, the silica fine particles are adhered and deposited on a starting member, and the silica fine particles are grown in the axial direction to grow and synthesize a porous silica base material. Subsequently, the porous silica base material is heated in a He atmosphere. The treatment densifies the pores of the porous silica matrix to obtain a transparent glass. At this time,
A gas having an H group action, for example, a halogen such as Cl 2 ,
By flowing a gas such as a halogen compound such as SOCl 2 , the OH group concentration in the quartz glass can be easily controlled, for example, the OH group concentration can be reduced to 1 ppm or less.
The removal of the OH group, that is, the removal of the OH group, is caused by the removal of the OH group by adsorption of the OH group working gas into the porous silica base material. Glass properties such as refractive index, absorption spectrum, heat resistance, etc. greatly affect the concentration of OH groups remaining in the glass, and especially when used for optical materials and heat-resistant materials, control of the OH group concentration in the glass. Is an important factor.

【0004】従来、脱OH基処理をするためのガスを流
通させるために炉芯管としては、石英ガラスが用いられ
ており、石英ガラス製炉芯管の場合には、アルミナ等の
その他の炉芯管を使用した場合と比較して、高純度の石
英ガラスが得られる特徴を持つ。
Conventionally, quartz glass has been used as a furnace core tube for flowing a gas for deOH-removing treatment. In the case of a quartz glass furnace core tube, another furnace such as alumina is used. Compared to the case where a core tube is used, it has a feature that high-purity quartz glass can be obtained.

【0005】しかしながら、シリカ多孔質母材が透明ガ
ラス化するような温度で石英ガラス製炉芯管を使用した
場合には、1500℃以上の高温であるため、石英ガラ
ス製炉芯管が軟化により変形が生じてしまい、石英ガラ
ス製炉芯管を再使用することが不可能であった。さら
に、石英ガラス表面に失透(結晶化)が生じ、失透によ
り生じた結晶化部とガラス部では、熱膨張係数が異なる
ために電気炉の再昇温時に破損してしまうという問題点
も生じた。
However, when a quartz glass furnace core tube is used at a temperature at which the porous silica matrix becomes transparent vitrified, the quartz glass furnace core tube is softened due to the high temperature of 1500 ° C. or more. Deformation occurred, and it was impossible to reuse a quartz glass core tube. Another problem is that devitrification (crystallization) occurs on the surface of the quartz glass, and the crystallized portion and the glass portion caused by the devitrification have different thermal expansion coefficients, so that they are damaged when the temperature of the electric furnace is raised again. occured.

【0006】そのため、脱OH基処理と透明ガラス化処
理を別の炉芯管で行う方法が提案された(特開昭60−
186427号)。この方法は、1100〜1300℃
の範囲の温度で石英ガラス製炉芯管を装着した脱OH基
処理用電気炉中で脱OH基処理を行い、1350℃以上
の温度でカーボン製炉芯管を装着した透明ガラス化処理
用電気炉中で透明ガラス化処理を行う方法である。この
方法により、石英ガラス製炉芯管を用いる脱OH基処理
では比較的低温で処理されるために、石英ガラス製炉芯
管の寿命は著しく向上し、得られた石英ガラスの失透も
防止することができ破損を防ぐことができた。
For this reason, a method has been proposed in which the de-OH group treatment and the transparent vitrification treatment are performed in separate furnace core tubes (Japanese Patent Laid-Open No. 60-1985).
186427). This method is performed at 1100-1300 ° C
The de-OH treatment is performed in an electric furnace for de-OH treatment equipped with a quartz glass furnace core at a temperature within the range described above, and the transparent vitrification electricity equipped with a carbon furnace core at a temperature of 1350 ° C or higher. This is a method of performing vitrification treatment in a furnace. According to this method, the life of the quartz glass furnace core tube is remarkably improved and the obtained quartz glass is prevented from being devitrified because the deoxidation treatment using the quartz glass furnace core tube is performed at a relatively low temperature. Can prevent damage.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、脱OH
基処理と透明ガラス化処理とを異なる炉芯管を装着した
電気炉を用いて処理する方法の場合、しばしばOH基濃
度に分布、特に径方向での分布を有するガラスが得られ
た。すなわち、ガラスインゴット中の径方向中心部での
OH基濃度が1ppm以下であるのに対し、外側表面部
で数〜数十ppmのOH基が残存したものである。この
ようなOH基濃度分布をもつ不均質なガラスを光学材料
として使用することはできず、さらに、加工時での歩留
りも著しく低下することになり大きな問題となった。
SUMMARY OF THE INVENTION
In the case of a method in which the base treatment and the transparent vitrification treatment are performed using an electric furnace equipped with a different furnace core tube, glass having a distribution in the OH group concentration, particularly a distribution in the radial direction, is often obtained. That is, while the OH group concentration at the radial center in the glass ingot is 1 ppm or less, several to several tens ppm of OH groups remain on the outer surface. Non-homogeneous glass having such an OH group concentration distribution cannot be used as an optical material, and furthermore, the yield at the time of processing is significantly reduced, which is a serious problem.

【0008】本発明の目的は、以上のような問題点に鑑
みてなされたものであり、その目的は、残存するOH基
の濃度が1ppm以下の高純度で均質な石英ガラスを再
現性よく製造する方法を提供することにある。
An object of the present invention has been made in view of the above problems, and an object of the present invention is to produce a highly pure and homogeneous quartz glass having a residual OH group concentration of 1 ppm or less with good reproducibility. It is to provide a way to do it.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討した結果、脱OH基処理と透明
ガラス化処理を異なる材質の炉芯管を装着した電気炉を
用いて処理した場合に、脱OH基処理終了後、降温させ
る際に、炉内の温度が500℃以下になるまで脱OH基
作用を有するガスを含む雰囲気に維持し続けることによ
り解決することが可能であることを見出し本発明に至っ
た。すなわち、本発明は、脱OH基処理と透明ガラス化
処理とを異なる炉芯管を用いて処理する石英ガラスの製
造方法において、該脱OH基処理終了後、降温させる際
に、温度が500℃以下になるまで該脱OH基作用を有
するガスを含む雰囲気にシリカ多孔質母材を維持し続
け、その後、透明ガラス化処理を行なう石英ガラスの製
造方法である。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have conducted a dehydration-based treatment and a transparent vitrification treatment using an electric furnace equipped with a furnace core tube of different materials. It is possible to solve the problem by maintaining the atmosphere containing the gas having an OH-removing function until the temperature in the furnace becomes 500 ° C. or less when the temperature is lowered after the OH-removing treatment is completed. The present inventors have found that the present invention has been made. That is, the present invention relates to a method for producing quartz glass in which the deOH-based treatment and the transparent vitrification treatment are performed using different furnace core tubes. This is a method for producing quartz glass in which the silica porous base material is maintained in an atmosphere containing the gas having an OH-removing function until the temperature becomes below, and then a vitrification treatment is performed.

【0010】以下、本発明をさらに詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0011】脱OH基処理と透明ガラス化処理を異なっ
た炉芯管を用いて処理する場合においては、脱OH基処
理後にシリカ多孔質母材を脱OH基処理用電気炉より取
り出し、透明ガラス化処理用電気炉に移さなければなら
ないために、脱OH基処理終了毎にハンドリングが可能
な温度まで降温する必要がある。
In the case where the deOH-based treatment and the transparent vitrification treatment are performed using different furnace core tubes, the silica porous base material is taken out of the electric furnace for the deOH-based treatment after the deOH-treated, and the transparent glass is removed. It is necessary to lower the temperature to a temperature at which it can be handled each time the deOH-based treatment is completed, because the furnace must be transferred to an electric furnace for chemical treatment.

【0012】本発明においては、この脱OH基処理終了
後の降温の際に、脱OH基処理用電気炉内の温度が50
0℃以下になるまで脱OH基作用を有するガスを含む雰
囲気に維持し続けることを特徴とするものである。
In the present invention, when the temperature is lowered after the completion of the de-OH-based treatment, the temperature in the electric furnace for de-OH-based treatment is reduced to 50%.
It is characterized in that it is maintained in an atmosphere containing a gas having a deOH group action until the temperature becomes 0 ° C. or lower.

【0013】脱OH基処理用電気炉内の温度を500℃
以下にする方法は特に限定するものではない。
[0013] The temperature in the electric furnace for deOH group treatment is 500 ° C.
The following method is not particularly limited.

【0014】また、脱OH基作用を有するガスを含む雰
囲気に維持させる温度は、低いほど有効であるが、電気
炉内の温度が500℃を超える場合、OH基濃度分布を
有する石英ガラスが得られるので、温度が500℃以下
になるまで脱OH基作用を有するガスを含む雰囲気に維
持する必要がある。
The lower the temperature at which the atmosphere containing a gas having an OH-removing function is maintained, the more effective it is. However, when the temperature in the electric furnace exceeds 500 ° C., quartz glass having an OH-group concentration distribution is obtained. Therefore, it is necessary to maintain an atmosphere containing a gas having a deOH group action until the temperature becomes 500 ° C. or less.

【0015】この雰囲気を維持するために、脱OH基作
用を有するガスを流通させ、さらに、炉芯管内圧を加圧
状態にするように、この脱OH基作用を有するガスの流
通量を制御することが好ましい。
In order to maintain this atmosphere, a gas having an OH-removing action is circulated, and the flow rate of the gas having an OH-removing action is controlled so that the pressure in the furnace core tube is increased. Is preferred.

【0016】本発明において使用される脱OH基作用を
有するガスとしては、脱OH基の作用を有するガスであ
れば特に限定するものではないが、例えば、Cl2 ,F
2 等のハロゲン、SOCl2 ,SiCl4 ,CF4 等の
ハロゲン化物、アンモニア、CO等のガスをあげること
ができる。これらのガスは単独で使用してもよいが、こ
れらのガスの多くは有害、特殊で高価なものであるため
不活性ガスと混合して使用することが好ましい。このと
きに使用される不活性ガスとしては、例えば、N2 ,H
e,Ar等があげられる。また、混合ガスとした場合の
脱OH基作用を有するガスの濃度は高いほど効果がある
が、効率的な脱OH基を行うためには、0.1体積%以
上であればよく、さらに、排ガス処理の容易性のため、
0.5〜5体積%が好ましい。また、これらのガスの純
度は、高純度なガラスを得るためには高純度なほどよ
く、99%以上の純度が好ましい。
The gas having an action of removing an OH group used in the present invention is not particularly limited as long as it is a gas having an action of removing an OH group. For example, Cl 2 , F
And halogens such as SOCl 2 , SiCl 4 and CF 4 , and gases such as ammonia and CO. These gases may be used alone, but many of these gases are harmful, special and expensive, and are preferably used in a mixture with an inert gas. As the inert gas used at this time, for example, N 2 , H
e, Ar and the like. In addition, the higher the concentration of the gas having an action of removing OH groups in the case of a mixed gas, the higher the effect is. For ease of exhaust gas treatment,
0.5 to 5% by volume is preferred. The purity of these gases is preferably as high as possible to obtain high-purity glass, and a purity of 99% or more is preferable.

【0017】脱OH基作用を有するガスは有害で腐食性
のものが多いため、脱OH基処理時に使用される炉芯管
は、石英ガラス製炉芯管が適している。さらに、高純度
の石英ガラス製炉芯管を用いることにより、より石英ガ
ラス製炉芯管からの不純物を防ぐことができ、高純度の
石英ガラスを得ることができる。
Since many gases having an OH-removing function are harmful and corrosive, a furnace core tube made of quartz glass is suitable for the furnace core tube used at the time of the OH-removing treatment. Further, by using a high purity quartz glass furnace core tube, impurities from the quartz glass furnace core tube can be further prevented, and high purity quartz glass can be obtained.

【0018】脱OH基処理の温度は、通常用いられてい
る温度であれば特に限定するものではないが、石英ガラ
ス製炉芯管の変形や破損を防ぎ、効率的な脱OH基を行
なうためには、850〜1350℃が好ましく、さら
に、1100〜1300℃が好ましい。
The temperature of the deOH group treatment is not particularly limited as long as it is a commonly used temperature. However, in order to prevent the quartz core tube from being deformed or damaged and to perform the deOH group efficiently. Is preferably 850 to 1350 ° C, more preferably 1100 to 1300 ° C.

【0019】使用される電気炉は特に限定するものでは
ないが、効率的に処理できるためにシリカ多孔質母材の
全長より長い均熱長(例えば、設定温度±10℃以内の
温度領域)を有する電気炉が好ましい。さらに、このよ
うな電気炉で処理することにより、より均質なガラス、
特に、軸方向に対して均質なガラスを得ることができ
る。
The electric furnace to be used is not particularly limited. However, in order to perform the treatment efficiently, a soaking length longer than the entire length of the porous silica base material (for example, a temperature range within a set temperature ± 10 ° C.) is used. Is preferred. Furthermore, by processing in such an electric furnace, a more homogeneous glass,
In particular, a homogeneous glass can be obtained in the axial direction.

【0020】脱OH基処理終了後、シリカ多孔質母材を
取り出すために冷却する。本発明においては、この冷却
の間に、炉芯管中の雰囲気を脱OH基作用を有するガス
を含む雰囲気に維持し続けることが特徴である。
After the OH removal treatment, the porous silica base material is cooled to be taken out. The present invention is characterized in that during this cooling, the atmosphere in the furnace core tube is maintained at an atmosphere containing a gas having a deOH-removing action.

【0021】このようにして脱OH基処理されたシリカ
多孔質母材は、ハンドリングが可能な温度まで冷却さ
れ、脱OH基処理用の電気炉から取り出し、透明ガラス
化処理用の電気炉に移され、より高温下で透明ガラス化
処理される。この透明ガラス化処理は、通常用いられて
いる方法で行えばよく、例えば、Heガスを少なくとも
70%以上好ましくは90%以上を含む雰囲気で、14
00〜1600℃の温度域で加熱させることによりなさ
れる。透明ガラス化処理の際には、脱OH基処理後のシ
リカ多孔質母材の全長より短い均熱長を有する電気炉中
で脱OH基処理後のシリカ多孔質母材の下端から順に透
明ガラス化処理することが好ましい。このように処理す
ることにより、ガラス中のガスが熱収縮する間に上部の
多孔質状態部の空隙から逃げ、容易に透明なガラスを得
ることができる。また、透明ガラス化処理時に使用され
る炉芯管の材質としては、例えば、カーボン製、SiC
等の各種セラミックス製が使用されることができるが、
加工が容易なこと、大口径化が可能なこと、高純度化が
可能なこと、高温でも安定であることより、カーボン製
が好ましい。
The porous silica pre-processed in this manner is cooled to a temperature at which it can be handled, taken out of the electric furnace for de-OH-based treatment, and transferred to an electric furnace for transparent vitrification. And a vitrification treatment is performed at a higher temperature. This transparent vitrification treatment may be performed by a commonly used method, for example, in an atmosphere containing He gas at least 70% or more, preferably 90% or more.
Heating is performed in a temperature range of 00 to 1600 ° C. At the time of the transparent vitrification treatment, in the electric furnace having a soaking length shorter than the entire length of the silica porous preform after the deOH-based treatment, the transparent glass is sequentially placed from the lower end of the silica porous preform after the deOH-based treatment in an electric furnace. Treatment. By performing the treatment in this manner, the gas in the glass escapes from the gap in the upper porous state portion during the heat shrinkage, and a transparent glass can be easily obtained. The material of the furnace core tube used in the transparent vitrification process is, for example, carbon, SiC
Various ceramics such as can be used,
Carbon is preferred because it is easy to process, can have a large diameter, can be highly purified, and is stable at high temperatures.

【0022】[0022]

【実施例】以下、実施例を用いて本発明をさらに詳細に
説明するが、本発明はこれらの実施例に限定されるもの
ではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0023】実施例1 図1に示す均熱長Z1(設定温度±10℃以内の温度領
域)が1200mmを有する脱OH基処理用電気炉11
に280mmφの石英ガラス製炉芯管12を挿入し、こ
の石英ガラス製炉芯管中に、気相軸付け法により合成さ
れたシリカ多孔質母材13(外径250mmφ、長さ1
000mm)を支持棒14により昇降装置15より吊り
下げ、回転させた。次に、炉芯管下端16より、N2
スを20リットル/min、Cl2 ガスを0.2リット
ル/min(Cl2 濃度は、1.0体積%)流通し、電
気炉の温度を1300℃に昇温後、8時間処理した後、
電気炉ヒーター出力をOFFにし、電気炉を冷却させ
た。その間、電気炉内の温度をモニターし、この温度が
300℃になるまでN2 ガスを20リットル/min、
Cl2 ガスを0.2リットル/min流通し続け、電気
炉内の温度が300℃以下になって、Cl2 ガスのみ流
通を止めた。その後、充分冷却した後、この処理後のシ
リカ多孔質母材を炉芯管内より取り出し、ジョイント部
17より切り放した。
Example 1 An electric furnace 11 for deOH-based treatment having a soaking length Z1 (temperature range within a set temperature ± 10 ° C.) of 1200 mm shown in FIG.
A quartz glass furnace core tube 12 having a diameter of 280 mm is inserted into the furnace core material, and a silica porous base material 13 (outer diameter 250 mmφ, length 1
000 mm) was suspended from a lifting device 15 by a support rod 14 and rotated. Next, N 2 gas flows through the furnace core lower end 16 at a flow rate of 20 L / min and Cl 2 gas flows at a flow rate of 0.2 L / min (Cl 2 concentration: 1.0% by volume). After heating to 8 ° C and treating for 8 hours,
The electric furnace heater output was turned off, and the electric furnace was cooled. During that time, the temperature in the electric furnace was monitored, and N 2 gas was supplied at 20 l / min until the temperature reached 300 ° C.
The flow of Cl 2 gas was continued at 0.2 liter / min, the temperature in the electric furnace became 300 ° C. or less, and the flow of only Cl 2 gas was stopped. Thereafter, after sufficiently cooling, the silica porous preform after this treatment was taken out of the furnace core tube and cut off from the joint portion 17.

【0024】次に、図2に示す均熱長Z2(設定温度±
10℃以内の温度領域)250mmを有する透明ガラス
化処理用電気炉21に280mmφのカーボン製炉芯管
22を挿入し、この上部に脱OH基処理を施したシリカ
多孔質母材23を支持棒24により昇降装置25から吊
り下げ、回転させた。次に、炉芯管下端26より、He
ガスを20リットル/minで導入し、電気炉の温度を
1550℃に昇温させた。昇温後、2.0mm/分で引
下げ、その下端より順に均熱長部に移動させ透明ガラス
を得た。得られたガラスの寸法は、外径125mmφ、
長さ550mmであった。
Next, the soaking length Z2 shown in FIG.
A 280 mmφ carbon furnace core tube 22 is inserted into a transparent vitrification electric furnace 21 having a temperature range of 10 ° C. and 250 mm, and a silica porous base material 23 subjected to a deOH-base treatment is supported thereon by a support rod. The suspension was suspended from an elevating device 25 by 24 and rotated. Next, from the furnace core tube lower end 26, He
Gas was introduced at a rate of 20 l / min, and the temperature of the electric furnace was raised to 1550 ° C. After the temperature was raised, the temperature was lowered at 2.0 mm / min, and the glass was moved from the lower end to the soaking section to obtain a transparent glass. The dimensions of the obtained glass were 125 mm in outer diameter,
The length was 550 mm.

【0025】この得られたガラスのOH基濃度を測定す
るために、ガラスの下端より、50mm、280mm、
500mmの位置から、厚さ10mmの板を切出し、さ
らに、径方向に10mmずつ切出した。これらの内、中
心部から外周部に向け順にサンプル1からサンプル7と
した。これらの切出したサンプルを研磨し、波長2.7
3μmでの赤外吸収スペクトルを測定し、この透過率よ
り、OH基濃度を測定した。その結果を表1に示す。測
定した全てのサンプルで1ppm以下であった。
To measure the OH group concentration of the obtained glass, 50 mm, 280 mm,
A plate having a thickness of 10 mm was cut out from the position of 500 mm, and further, 10 mm was cut out in the radial direction. Of these, samples 1 to 7 were taken in order from the center to the outer periphery. These cut samples were polished to a wavelength of 2.7.
The infrared absorption spectrum at 3 μm was measured, and the OH group concentration was measured from the transmittance. Table 1 shows the results. It was 1 ppm or less in all the measured samples.

【0026】また、同一の条件で処理して、ガラスを1
0本作製し同様の評価を行ったが、いずれもOH基濃度
が1ppm以下であった。
Further, the glass was treated under the same conditions to
Although the same evaluation was carried out by producing 0 pieces, the OH group concentration was 1 ppm or less in all cases.

【0027】[0027]

【表1】 [Table 1]

【0028】実施例2 脱OH基処理終了後、冷却時にN2 ;20リットル/
分、Cl2 ;0.1リットル/分(Cl2 濃度0.5体
積%)流通させ、Cl2 を止めた温度を500℃にした
こと以外は、実施例1と同一な条件で実施した。得られ
たガラスを実施例1と同一の評価を行ったところ、全て
のサンプルについて1ppm以下のガラスを得ることが
できた。
Example 2 After completion of the deOH group treatment, at the time of cooling, N 2 ;
Min, Cl 2 ; 0.1 liter / min (Cl 2 concentration 0.5 vol%), and the same conditions as in Example 1 were carried out except that the temperature at which Cl 2 was stopped was changed to 500 ° C. When the obtained glass was evaluated in the same manner as in Example 1, it was possible to obtain a glass of 1 ppm or less for all the samples.

【0029】比較例1 脱OH基処理終了後、直ちにCl2 を止めたこと以外は
実施例1と同様の操作を行った。得られたガラスについ
て実施例1と同一の評価を行った。得られた結果を表1
にあわせて示す。
Comparative Example 1 The same operation as in Example 1 was performed except that Cl 2 was stopped immediately after the deOH group treatment. The same evaluation as in Example 1 was performed on the obtained glass. Table 1 shows the obtained results.
Shown along with.

【0030】比較例2 脱OH基処理終了後、冷却時にN2 ;20リットル/
分、Cl2 ;0.2リットル/分(Cl2 濃度1.O体
積%)を流通させ、Cl2 を止めた温度を800℃にし
たこと以外は、実施例1と同一な条件で実施した。得ら
れたガラスを実施例1と同一の評価を行った。得られた
結果を表1にあわせて示す。
COMPARATIVE EXAMPLE 2 After completion of the deOH group treatment, N 2 ;
Min, Cl 2 ; 0.2 liter / min (Cl 2 concentration 1.0 vol%) was passed, and the temperature at which Cl 2 was stopped was set to 800 ° C., and the same conditions as in Example 1 were used. . The same evaluation as in Example 1 was performed on the obtained glass. The results obtained are shown in Table 1.

【0031】[0031]

【発明の効果】以上の説明から明らかなように、本発明
の方法を用いると、残存するOH基の濃度が1ppm以
下の高純度で均質な石英ガラスを再現性よく製造するこ
とができる効果を有するものである。
As is clear from the above description, the use of the method of the present invention has the effect of producing a highly pure and homogeneous quartz glass having a residual OH group concentration of 1 ppm or less with good reproducibility. Have

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における脱OH基処理用電気炉を示す図
である。
FIG. 1 is a view showing an electric furnace for deOH group treatment in the present invention.

【図2】本発明における透明ガラス化処理用電気炉を示
す図である。
FIG. 2 is a view showing an electric furnace for transparent vitrification treatment in the present invention.

【符号の説明】[Explanation of symbols]

11:脱OH基処理用電気炉 12:石英ガラス製炉芯管 13:シリカ多孔質母材 14:支持棒 15:昇降装置 16:炉芯管下端 17:ジョイント部 21:透明ガラス化処理用電気炉 22:カーボン製炉芯管 23:シリカ多孔質母材 24:支持棒 25:昇降装置 26:炉芯管下端 Zl:均熱長 Z2:均熱長 11: Electric furnace for OH removal treatment 12: Furnace core tube made of quartz glass 13: Porous silica base material 14: Support rod 15: Elevating device 16: Lower end of furnace core tube 17: Joint part 21: Electricity for transparent vitrification treatment Furnace 22: Furnace core tube made of carbon 23: Porous silica base material 24: Support rod 25: Elevating device 26: Lower end of furnace core tube Zl: Soaking length Z2: Soaking length

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 富義 山口県下松市大字末武中33番地の80 (56)参考文献 特開 昭60−186427(JP,A) 特開 平4−325433(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 8/04 C03B 20/00 C03B 37/00 - 37/16 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tomiyoshi Kubo 33-80 Suetakenaka, Kudamatsu City, Yamaguchi Prefecture (56) References JP-A-60-186427 (JP, A) JP-A-4-325433 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C03B 8/04 C03B 20/00 C03B 37/00-37/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 合成されたシリカ多孔質母材を脱OH基
作用を有するガスを流通させて加熱処理する脱OH基処
理工程では石英ガラス製炉芯管を装着した電気炉を用い
て処理し、次いで、処理後のシリカ多孔質母材をさらに
高温下で加熱処理する透明ガラス化工程では石英ガラス
製とは異なる材質の炉芯管を装着した電気炉を用いて処
理する石英ガラスの製造方法において、該脱OH基処理
の終了後、降温させる際に、温度が500℃以下になる
まで該脱OH基作用を有するガスを含む雰囲気にシリカ
多孔質母材を維持し続け、その後、透明ガラス化処理を
行なうことを特徴とする石英ガラスの製造方法。
In the de-OH-based treatment step of heating the synthesized silica porous base material by passing a gas having a de-OH-based action, the silica porous base material is treated using an electric furnace equipped with a quartz glass core tube. Then, in a transparent vitrification step in which the treated silica porous preform is further heat-treated at a high temperature, a method for producing quartz glass is performed using an electric furnace equipped with a furnace core tube made of a material different from quartz glass. When the temperature is lowered after completion of the deOH group treatment, the silica porous base material is continuously maintained in an atmosphere containing a gas having the deOH group action until the temperature becomes 500 ° C. or lower, and then the transparent glass A method for producing quartz glass, characterized by performing a chemical conversion treatment.
JP12443692A 1992-05-18 1992-05-18 Manufacturing method of quartz glass Expired - Fee Related JP3188517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12443692A JP3188517B2 (en) 1992-05-18 1992-05-18 Manufacturing method of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12443692A JP3188517B2 (en) 1992-05-18 1992-05-18 Manufacturing method of quartz glass

Publications (2)

Publication Number Publication Date
JPH05319848A JPH05319848A (en) 1993-12-03
JP3188517B2 true JP3188517B2 (en) 2001-07-16

Family

ID=14885450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12443692A Expired - Fee Related JP3188517B2 (en) 1992-05-18 1992-05-18 Manufacturing method of quartz glass

Country Status (1)

Country Link
JP (1) JP3188517B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3368932B2 (en) * 1992-02-07 2003-01-20 旭硝子株式会社 Transparent quartz glass and its manufacturing method
JP2004345869A (en) * 2003-05-19 2004-12-09 Shin Etsu Chem Co Ltd Method for manufacturing glass preform for optical fiber
JP4409504B2 (en) * 2005-11-17 2010-02-03 株式会社フジクラ Optical fiber manufacturing method
CN103771692B (en) * 2014-02-25 2016-01-13 连云港市东海县宏伟石英制品有限公司 A kind of heavy caliber hydroxyl removal of quartz tube method and deshydroxy device

Also Published As

Publication number Publication date
JPH05319848A (en) 1993-12-03

Similar Documents

Publication Publication Date Title
KR100261872B1 (en) Heat treatment facility for synthetic vitreous silica bodies
US20060137400A1 (en) Process for treating synthetic silica powder and synthetic silica powder treated thereof
JP2004203736A (en) Method of manufacturing high purity fused silica
CN101426740A (en) Manufacture of large articles in synthetic vitreous silica
JP4181226B2 (en) Manufacturing method of high purity, high heat resistant quartz glass
JP4493060B2 (en) Manufacturing method of optical quartz glass for excimer laser
JP3188517B2 (en) Manufacturing method of quartz glass
JP2004123420A (en) Synthetic silica glass member for optical use and its manufacturing process
JP2808857B2 (en) Heating furnace and manufacturing method of glass preform for optical fiber
JP4011217B2 (en) Manufacturing method of optical quartz glass for excimer laser
JPH0524856A (en) Quartz glass for optical use and its production
JPH03109223A (en) Quartz glass and production thereof
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP2000143258A (en) PRODUCTION OF SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER LITHOGRAPHY
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP2722573B2 (en) Manufacturing method of high purity quartz glass
JPH06263468A (en) Production of glass base material
JPS6272537A (en) Production of high-purity quartz glass
JP5050969B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
AU650761B2 (en) Process for production of glass article
US20030082089A1 (en) Method and furnace for pure, fused oxide
JPH0478567B2 (en)
JPH0226848A (en) Production of high-purity quartz glass
JPH0729790B2 (en) Method for producing anhydrous synthetic quartz glass
JP2003192357A (en) Method and apparatus for heat treatment for base material of porous glass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees