JPH0478567B2 - - Google Patents

Info

Publication number
JPH0478567B2
JPH0478567B2 JP22279985A JP22279985A JPH0478567B2 JP H0478567 B2 JPH0478567 B2 JP H0478567B2 JP 22279985 A JP22279985 A JP 22279985A JP 22279985 A JP22279985 A JP 22279985A JP H0478567 B2 JPH0478567 B2 JP H0478567B2
Authority
JP
Japan
Prior art keywords
base material
quartz glass
temperature
transparent
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22279985A
Other languages
Japanese (ja)
Other versions
JPS6283325A (en
Inventor
Shigeyoshi Kobayashi
Masaaki Ikemura
Susumu Hachiuma
Shinya Kikukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP22279985A priority Critical patent/JPS6283325A/en
Publication of JPS6283325A publication Critical patent/JPS6283325A/en
Publication of JPH0478567B2 publication Critical patent/JPH0478567B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01466Means for changing or stabilising the diameter or form of tubes or rods

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、高純度石英ガラスの製造方法に関す
るものである。 [従来の技術] 従来より、合成石英ガラスを製造する方法の一
つとして、気相反応により多孔質石英ガラス母材
を形成し、この母材を加熱してガラス化する方法
が採用されている。たとえば光フアイバー用素材
としての合成石英ガラスの製造に関してはVAD
法といわれる方法が採用されている。 この方法は、バーナから珪素化合物、水素、酸
素などの原料ガスを鉛直に懸下した種棒に向けて
供給し、四塩化珪素等の珪素化合物を酸水素炎中
で加水分解させ生成したシリカ微粒子を石英製等
の種棒の下端部に付着・堆積させて多孔質石英ガ
ラス母材(以下、多孔質母材または母材と書くこ
とがある。)を形成させたのち、上部に設けられ
たヒータを用いて透明ガラス化する方法である。
この方法では多孔質母材の形成と透明ガラス化を
連続的に行なうことができる利点がある。この方
法により形成された多孔質母材は、ほぼ円柱状の
形状を呈する。 [発明の解決しようとする問題点] この方法により、フオトマスク基板用等の大型
の石英ガラスを製造しようとする場合、多孔質石
英ガラス母材を大型にする必要があり大型のバー
ナを用いるが、バーナから出る火炎は中心部は高
温であるがその外周部は中心部より温度が低い状
態となり、かかる温度の違いにより形成される多
孔質石英ガラス母材の外周部の密度はその中心部
より低くなる傾向にある。例えば上記方法により
径30cmの円柱状の多孔質石英ガラス母材を製造し
た場合、中心部より低い温度でシリカ微粒子が付
着する外周部の密度は0.1〜0.2g/c.c.で中心部は
0.35〜0.45g/c.c.となる。かかる密度分布を持つ
た上記円柱状の多孔質母材を1400〜1500℃に加熱
して透明ガラス化しようとすると、焼成途中で母
材外周部からクラツクが発生し破損したり、また
透明ロツド中に欠点が多量に発生する問題が見出
された。 かかる欠点発生の一つの原因としては、多孔質
石英ガラス母材を焼結して透明ガラス化する際、
母材は径方向、軸方向に50〜60%の収縮を伴う
が、上記密度分布を持つた母材では中心部と外周
部の収縮が不均一に進むため径が30cmもの大型母
材を一段でガラス化しようとすると急激な熱収縮
に耐えられなくなり、外周部からクラツクが発生
するものと思われる。さらに、大口径母材では焼
成時に中心部と外周部の温度差が大きくなり、一
段で透明ガラス化しようとすると低密度でかつ高
温にされされる外周部の焼結がはやく進行し、母
材中に含まれる気泡が外周部に抜けにくくなり、
ロツド中に気泡等の欠点が発生する原因になるも
のと思われる。 上記したような多孔質石英ガラス母材の径方向
の密度分布を一定にして母材の収縮を均一化し、
欠点の発生を防ぐことも考えられるが、火炎の温
度分布を均一にすることが困難であり、径方向の
密度分布の一定した大口径な多孔質石英ガラス母
材を得ることははなはだ困難であつた。 [問題点を解決するための手段] 本発明は、上記従来技術の問題点を解決し、大
口径の多孔質石英ガラス母材を破損させることな
く透明ガラス化し、得られた石英ガラス中に気泡
等の欠点が含まれないようにした多孔質石英ガラ
ス母材のガラス化方法を提供することを目的とし
て研究の結果発明されたものであり、石英ガラス
種棒の一端に堆積・成長させた多孔質石英ガラス
母材を加熱して透明ガラス化するに際して、予め
多孔質石英ガラス母材を回転させながら加熱装置
内に徐々に挿入し1200〜1350℃の範囲で仮焼して
該母材を径方向において飽和収縮率に達しない範
囲で10〜45%収縮させて該母材の径方向の密度分
布を整えた後、1400〜1500℃の範囲で焼成して透
明ガラス化することを特徴とする高純度石英ガラ
スの製造方法を提供するものである。 本発明において、多孔質母材は、例えば第1図
に示したような装置によつて製造される。すなわ
ち、ボンベ1およびボンベ2から水素および酸素
がマスフローコントローラー3,4を通して多重
管バーナ5に供給される。また四塩化珪素、トリ
クロロシラン、四臭化珪素等の珪素化合物のガス
が、タンク6からポンプ7により熱交換器8を通
して多重管バーナ5に供給される。多重管バーナ
5は反応室9内において酸水素炎を形成し、珪素
化合物を加水分解してシリカ微粒子を形成する。
なお、図示していないが、窒素、アルゴン等の不
活性ガスもバーナ5に供給され、これら珪素化合
物のキヤリアガスとしてあるいは酸水素炎中のエ
アーカーテンとして使用される。この加水分解反
応を珪素化合物が四塩化珪素である場合について
化学式を示すと次式の用になる。 2H2+O2→2H2O ……(1) 2H2O+SiCl4→SiO2+4HCl ……(2) このシリカ微粒子が反応室9で鉛直に懸下され
た石英製種棒10の下端部に付着・堆積して順次
成長し、大口径の多孔質石英ガラス母材11が形
成される。なお、反応によつて発生するHClは
NaOH液と洗浄塔13で向流に接触して吸収除
去される。 本発明においては、上記した方法により製造さ
れる多孔質石英ガラス母材が、1400〜1500℃の温
度範囲における焼成により透明ガラス化する前
に、予め1200〜1350℃の温度範囲にて仮焼して多
孔質石英ガラス母材の径方向の密度分布を整え
る。この仮焼はクリーンな雰囲気で行なうことが
好ましく、必要に応じて予めフイルター等で処理
された空気、窒素あるいはその他の不活性ガスを
導入しながら加熱炉内で上記温度範囲内で行な
う。仮焼の時間は温度、後述する炉内均温域の長
さ等によつて異なるが、仮焼後の多孔質石英ガラ
ス母材の径方向の収縮率が10〜45%、好ましくは
25〜40%の範囲になる条件から選ぶことが出来
る。ここで仮焼前の多孔質母材の長さ方向の中心
部での直径をDo、仮焼後の母材の同じく直径を
Dとしたとき、径方向の収縮率(%)=[(Do−
D)/Do]×100(%)である。収縮率が10%未満
では多孔質石英ガラス母材の外周部密度がまだ十
分高まらず、透明ガラス化工程において不均質な
収縮がおこり母材がこわれたり、透明石英ガラス
外周部に欠点が発生する原因になる。また収縮率
が45%を超えると、今度は仮焼した多孔質石英ガ
ラスの表面層が実質的にほぼ完全な石英ガラス層
となつて密度が高くなり、仮焼後に行う透明ガラ
ス化工程において、内部の気泡の除去が困難とな
り、透明ガラス中に気泡等の欠点が残存したり、
もしくはそれら欠点を完全に除去するためには長
時間を要するようになり、高品質の高純度石英ガ
ラスの製造が実質的に困難となる。 本願発明における上記収縮率は、上記仮焼温度
における飽和収縮率ではない。本願発明は仮焼温
度での飽和収縮率まで仮焼を行うものではなく、
本発明の実施例に示すように、仮焼による多孔質
母材の収縮を適切な範囲で中断するものである。 第3図に多孔質石英ガラス母材の仮焼温度と当
該温度における径方向の飽和収縮率のグラフを示
す。本願発明において仮焼は1200〜1350℃の温度
範囲で仮焼して多孔質石英ガラス母材を径方向に
おいて飽和収縮率に達しない範囲で10〜45%収縮
する如く行われる。第3図によれば、例えば1200
℃での飽和収縮率は約14%であり、1350℃での飽
和収縮率は約55%である。本願発明においては
1200〜1350℃の範囲から選定した所定の仮焼温度
において、第3図に示される如き飽和収縮率に達
しない段階で仮焼を中断させるものであり、その
操作としては仮焼を行う時間を制御する等の方法
をとることができる。 本発明において、上記した母材の仮焼は、例え
ば後記する実施例の如く、母材が破損しない程度
の比較的低い温度に昇温した加熱炉(図示せず)
内に母材を回転させながら挿入し、その後徐々に
1200〜1350℃の温度範囲の温度まで昇温し、該母
材を回転させながら該温度に所要の時間保持する
方法で行なうことができる。また、例えば炉内の
下部から上部に向けて高まる温度勾配を設けた加
熱炉あるいは前記温度勾配をもつと共に加熱炉内
上部の部分領域が上下方向に温度がほぼ均等な均
温域になるような温度分布を設けた加熱炉におい
て、前記した方法により製造した母材を先ず前記
仮焼を行なう加熱炉(図示せず)の下部に挿入し
種棒を回転させながら該加熱炉の上部に移動させ
つつ母材の上部より徐々に仮焼を行なつたのち前
記加熱炉の上部から仮焼ずみ母材を抜き出す方法
で行なうこともできる。 かかる仮焼を行なつたのち、多孔質石英ガラス
母材は仮焼を行なつた炉において又は別の加熱炉
に移して、直ちに又は所定時間をおいて本焼結さ
せ透明ガラス化させる。この本焼結は、Heガス
を少なくとも70%以上好ましくは80〜90%を含む
雰囲気の加熱炉において1400〜1500℃の温度域に
おいて行なう。本焼結の時間は、温度やHe濃度
によつても異なるが1.5〜4時間が適当である。 本発明において、多孔質石英ガラス母材を透明
ガラス化(以下、上記の本焼結と透明ガラス化を
単に透明ガラス化と書く)する加熱炉は、上部か
ら下部に向けて高まる温度勾配が設けられるよう
にするのが好ましい。このようにすれば、多孔質
石英ガラス母材を加熱炉の上方から該炉内に挿入
するに際して母材の温度を徐々に高めていくこと
ができ、また急激な温度変化により透明ガラス中
に気泡が残留するのを防止することができる。こ
の際の温度勾配は、多孔質石英ガラス母材のガラ
ス化温度が1400℃以上であることから、加熱炉の
上部を1200℃前後、炉の下部の温度を1400〜1500
℃とするのが適当であり、透明ガラス化に際して
種棒の下端部近傍が1400℃以上の高温域に達した
時点で下降を停止するのが最適である。このよう
にすれば、母材を種棒に支持した状態で多孔質石
英ガラス母材を完全に透明ガラス化することがで
きる。 このようにすれば、石英製種棒が軟化する1400
℃以上の高温域に種棒を長時間さらすことなく母
材の透明ガラス化が可能であり、これにより種棒
が軟化して熱変するのを防止し、大口径石英ガラ
スロツドを落下することなく支持出来る。さらに
透明ガラス化に伴なつて流出する気泡は、まだ透
明ガラス化されていない上部の多孔質層に逃げる
ことができるので、得られた石英ガラス中に気泡
が含有するのを防止することができる。 本発明において、仮焼及び透明ガラス化時の加
熱は多孔質石英ガラス母材を回転させながら加熱
炉内に徐々に挿入しておこなう。回転することに
より、母材を均一に加熱することができ、焼成時
に不均一な収縮がおこり母材が変形するのを防止
することができる。 また、本発明において母材を透明ガラス化する
加熱炉は上記の如く該加熱炉内の上部から下部に
向けて高まる温度勾配が設けられているが、前記
温度勾配をもつと共に加熱炉内下部の部分領域が
上下方向に温度がほぼ均等な均温域になるような
温度分布をもつていてもよい。 実施例 第1図に示した装置を利用して製造された石英
製の種棒に形成された円柱状の多孔質石英ガラス
母材{直径30cm、長さ0.5m、中心部(中心から
径3cmの部分)の平均密度は0.45g/c.c.、表面部
(表層部から4cmの部分)の平均密度は0.2g/
c.c.}をゆつくり回転させながら300℃に保持され
た加熱炉(図示せず)内に挿入し、炉下端より
N2ガスを3m3/Hrで供給しながら250℃/Hrの
昇温速度で1300℃まで熱上げし、この条件下で60
分間保持した。これが母材の仮焼である。この仮
焼後の多孔質石英ガラス母材の直径は19.5cm、径
方向の収縮率は約35%であり、中心部の平均密度
が0.6g/c.c.で外周部の平均密度は0.68g/c.c.で
あつた。仮焼を行なつた後、直ちに第2図に示す
ように、石英製の種棒10の付いた仮焼した多孔
質石英ガラス母材11を、径が35cmの環状ヒータ
22が設けられ、85%濃度のヘリウム雰囲気に保
たれている加熱炉21内に上方から挿入した。こ
の加熱炉21は、上部が約1200℃、下部が約1430
℃の温度勾配を有し、1400℃以上の均温域が約20
cmになるように制御されている。種棒10をゆつ
くり回転させながら100mm/Hrの速度で下降さ
せ、多孔質石英ガラス母材11をその下端部から
ヒータ22内に挿入した(第2図a)。 この多孔質石英ガラス母材11は、下端部から
徐々に脱泡されて透明ガラス化し、径が約13cm、
長さ約31cmの透明ガラス23となつた(第2図
b)。このようにして透明ガラス化した石英ガラ
スは、その表面層(約5mm厚み)から内側の中心
部には欠点の発生はなく、又、この表面に発生し
た気泡も表面積1cm2当り平均0.8個と少なかつた。 一方、仮焼を行なわずに同上の方法により透明
ガラス化を行なつたところ母材が下端部から約1/
3程透明ガラス化した時点で、上部多孔質ガラス
部にクラツクが発生し、この部分から下が落下し
た。この透明ガラス化した部分について内部欠点
を評価した結果、その表面層(約3cm厚み)から
内側の中心部には欠点の発生はなかつたものの、
この表面層には1cm2当り平均20個もの多量の欠点
が発生していた。 また、前述した方法による仮焼時の保持時間を
約180分と長くし、多孔質石英ガラス母材の径方
向の収縮率を51%まで高めたものについて上記方
法により透明ガラス化した結果、母材にクラツク
が入ることなく透明ガラス化が可能であつた。し
かし、この石英ガラスの表面層(約5mm厚み)に
は欠点が1cm2当り0.8個程度と少なかつたものの、
表面層から内側の部分にも石英ガラス1Kg当り
0.6〜1個程度の欠点が認められた。上記保持時
間を約180分としたときの仮焼温度は前述したよ
うに1300℃であるが、このときの上記収縮率51%
は、第3図で示される当該1300℃における飽和収
縮率51%に等しい。即ち、仮焼により多孔質石英
ガラス母材をその温度における飽和収縮率まで収
縮させるとわるい結果となることがわかる。 また前記と同様にして形成された円柱状の多孔
質石英ガラス母材{直径30cm、長さ0.5m、中心
部(中心から径3cmの部分)の平均密度が0.45
g/c.c.、表面部(表層部から4cmの部分)の平均
密度が0.2g/c.c.}について仮焼温度と保持時間
を変えて収縮率、透明ガラス化の成否、透明ガラ
ス化した石英ガラスの欠点を調べた。上記の結果
を仮焼を行わない場合も含め実施例No.1〜7とし
て括めて表1に示す。表中で表面層とは表面から
約5mm厚の層部である。また表面層の欠点は表面
層の表面単位面積当り個数、内部の欠点は透明ガ
ラス化した石英ガラスの単位重量当り個数であ
る。
[Industrial Field of Application] The present invention relates to a method for producing high-purity quartz glass. [Prior Art] Conventionally, one method for producing synthetic quartz glass has been to form a porous quartz glass base material through a gas phase reaction, and then heat this base material to vitrify it. . For example, regarding the production of synthetic quartz glass as a material for optical fibers, VAD
A method known as the law is used. In this method, raw material gases such as silicon compounds, hydrogen, and oxygen are supplied from a burner to a vertically suspended seed rod, and silicon compounds such as silicon tetrachloride are hydrolyzed in an oxyhydrogen flame to produce silica fine particles. is attached and deposited on the lower end of a seed rod made of quartz or the like to form a porous quartz glass base material (hereinafter sometimes referred to as porous base material or base material), and then This method uses a heater to create transparent glass.
This method has the advantage that formation of a porous base material and transparent vitrification can be performed continuously. The porous base material formed by this method has a substantially cylindrical shape. [Problems to be Solved by the Invention] When using this method to manufacture large quartz glass for photomask substrates, etc., it is necessary to make the porous quartz glass base material large and a large burner is used. The flame emitted from the burner has a high temperature at the center, but a lower temperature at the outer periphery than the center. Due to this difference in temperature, the density at the outer periphery of the porous quartz glass base material formed is lower than that at the center. There is a tendency to For example, when a cylindrical porous quartz glass base material with a diameter of 30 cm is produced by the above method, the density of the outer periphery, where silica particles adhere at a lower temperature than the center, is 0.1 to 0.2 g/cc, and the density of the center is 0.1 to 0.2 g/cc.
It becomes 0.35-0.45g/cc. When an attempt is made to heat the above-mentioned cylindrical porous base material with such a density distribution to 1400 to 1500°C to make it into transparent vitrification, cracks may occur from the outer periphery of the base material during firing, resulting in breakage, or the transparent rod may be damaged. A problem was discovered in which a large number of defects occurred. One of the causes of such defects is that when a porous quartz glass base material is sintered to become transparent glass,
The base material shrinks by 50 to 60% in the radial and axial directions, but with the base material having the above density distribution, the shrinkage progresses unevenly between the center and the outer periphery, so a large base material with a diameter of 30 cm is If an attempt was made to vitrify it, it would not be able to withstand rapid thermal contraction, and cracks would appear from the outer periphery. Furthermore, with large-diameter base materials, there is a large temperature difference between the center and the outer periphery during firing, and if you try to make it transparent in one step, the sintering of the outer periphery, which has a lower density and is heated to a higher temperature, will proceed more quickly. The air bubbles contained inside become difficult to escape to the outer periphery,
This is thought to be the cause of defects such as bubbles occurring during the rod. By keeping the radial density distribution of the porous quartz glass base material constant as described above, the shrinkage of the base material is made uniform,
Although it is possible to prevent the occurrence of defects, it is difficult to make the temperature distribution of the flame uniform, and it is extremely difficult to obtain a large-diameter porous quartz glass base material with a constant density distribution in the radial direction. Ta. [Means for Solving the Problems] The present invention solves the problems of the prior art described above, converts a large-diameter porous quartz glass base material into transparent glass without damaging it, and eliminates air bubbles in the resulting quartz glass. It was invented as a result of research with the aim of providing a vitrification method for a porous quartz glass base material that does not include the disadvantages of quartz glass. When heating a porous quartz glass base material to turn it into transparent glass, the porous quartz glass base material is first rotated and gradually inserted into a heating device, and then calcined in the range of 1200 to 1350°C to give the base material a diameter. The base material is shrunk by 10 to 45% in the direction without reaching a saturation shrinkage rate to adjust the density distribution in the radial direction of the base material, and then fired at a temperature of 1400 to 1500°C to form transparent glass. The present invention provides a method for manufacturing high-purity quartz glass. In the present invention, the porous base material is manufactured using, for example, an apparatus as shown in FIG. That is, hydrogen and oxygen are supplied from cylinders 1 and 2 to multi-tube burner 5 through mass flow controllers 3 and 4. Further, gases of silicon compounds such as silicon tetrachloride, trichlorosilane, and silicon tetrabromide are supplied from the tank 6 to the multi-tube burner 5 by a pump 7 through a heat exchanger 8. The multi-tube burner 5 forms an oxyhydrogen flame in the reaction chamber 9 and hydrolyzes the silicon compound to form silica fine particles.
Although not shown, an inert gas such as nitrogen or argon is also supplied to the burner 5 and used as a carrier gas for these silicon compounds or as an air curtain in the oxyhydrogen flame. The chemical formula for this hydrolysis reaction when the silicon compound is silicon tetrachloride is as follows. 2H 2 +O 2 →2H 2 O ...(1) 2H 2 O+SiCl 4 →SiO 2 +4HCl ...(2) These silica particles adhere to the lower end of the quartz seed rod 10 suspended vertically in the reaction chamber 9. - It is deposited and grows sequentially to form a large-diameter porous quartz glass base material 11. In addition, HCl generated by the reaction is
It comes into contact with the NaOH solution in a countercurrent flow in the washing tower 13 and is absorbed and removed. In the present invention, the porous quartz glass base material produced by the method described above is pre-calcined at a temperature range of 1200-1350°C before being turned into transparent glass by firing at a temperature range of 1400-1500°C. to adjust the radial density distribution of the porous quartz glass matrix. This calcination is preferably carried out in a clean atmosphere, and is carried out in a heating furnace within the above temperature range while introducing air, nitrogen or other inert gas that has been previously treated with a filter or the like as necessary. The calcination time varies depending on the temperature and the length of the temperature-uniforming zone in the furnace, which will be described later, but the radial shrinkage rate of the porous quartz glass base material after calcination is preferably 10 to 45%.
You can choose from conditions ranging from 25% to 40%. Here, when the diameter at the center in the longitudinal direction of the porous base material before calcination is Do, and the same diameter of the base material after calcination is D, radial shrinkage rate (%) = [(Do −
D)/Do]×100(%). If the shrinkage rate is less than 10%, the density of the outer periphery of the porous quartz glass base material will not be sufficiently increased, and non-uniform shrinkage will occur during the transparent vitrification process, resulting in breakage of the base material or defects on the outer periphery of the transparent quartz glass. become the cause. Moreover, when the shrinkage rate exceeds 45%, the surface layer of the calcined porous quartz glass becomes a substantially complete silica glass layer and its density increases, and in the transparent vitrification process performed after calcining, It becomes difficult to remove internal air bubbles, and defects such as air bubbles may remain in the transparent glass.
Alternatively, it takes a long time to completely eliminate these defects, making it substantially difficult to produce high-quality, high-purity quartz glass. The shrinkage rate in the present invention is not the saturated shrinkage rate at the calcination temperature. The present invention does not perform calcination until the saturated shrinkage rate at the calcination temperature;
As shown in the examples of the present invention, shrinkage of the porous base material due to calcination is interrupted within an appropriate range. FIG. 3 shows a graph of the calcination temperature of the porous quartz glass base material and the radial saturation shrinkage rate at that temperature. In the present invention, calcination is carried out at a temperature range of 1200 to 1350°C so that the porous quartz glass base material shrinks by 10 to 45% in the radial direction without reaching the saturation shrinkage rate. According to Figure 3, for example 1200
The saturated shrinkage rate at °C is about 14%, and the saturated shrinkage rate at 1350°C is about 55%. In the claimed invention
At a predetermined calcination temperature selected from the range of 1200 to 1350°C, calcination is interrupted at the stage when the saturated shrinkage rate as shown in Figure 3 is not reached. It is possible to take methods such as controlling. In the present invention, the above-mentioned base material is calcined using a heating furnace (not shown) heated to a relatively low temperature that does not damage the base material, for example, as in the embodiment described later.
Insert the base material inside while rotating, then gradually
This can be carried out by raising the temperature to a temperature in the range of 1200 to 1350°C and maintaining the base material at that temperature for a required time while rotating the base material. In addition, for example, a heating furnace with a temperature gradient that increases from the bottom to the top of the furnace, or a heating furnace with the above-mentioned temperature gradient and a partial area in the upper part of the heating furnace that becomes a uniform temperature region where the temperature is almost uniform in the vertical direction. In a heating furnace provided with a temperature distribution, the base material produced by the method described above is first inserted into the lower part of the heating furnace (not shown) in which the calcination is performed, and the seed rod is moved to the upper part of the heating furnace while rotating. Alternatively, the calcining can be carried out gradually from the upper part of the base material, and then the calcined base material is extracted from the upper part of the heating furnace. After performing such calcination, the porous quartz glass base material is transferred to the furnace in which the calcination was performed or to another heating furnace, and is sintered immediately or after a predetermined period of time to become transparent vitrification. This main sintering is carried out at a temperature range of 1400 to 1500° C. in a heating furnace in an atmosphere containing at least 70% or more preferably 80 to 90% He gas. The time for main sintering varies depending on the temperature and He concentration, but 1.5 to 4 hours is appropriate. In the present invention, the heating furnace for converting the porous quartz glass base material into transparent vitrification (hereinafter, the above-mentioned main sintering and transparent vitrification will simply be referred to as transparent vitrification) has a temperature gradient that increases from the top to the bottom. It is preferable that the In this way, when the porous quartz glass base material is inserted into the heating furnace from above, the temperature of the base material can be gradually increased, and the sudden temperature change can also prevent air bubbles from forming in the transparent glass. can be prevented from remaining. Since the vitrification temperature of the porous quartz glass base material is 1400°C or higher, the temperature gradient at this time is approximately 1200°C at the upper part of the heating furnace and 1400 to 1500°C at the lower part of the furnace.
℃ is appropriate, and it is optimal to stop the descent when the vicinity of the lower end of the seed rod reaches a high temperature range of 1400°C or higher during transparent vitrification. In this way, the porous quartz glass base material can be completely transformed into transparent glass while the base material is supported by the seed rod. This will soften the quartz seed rod.
It is possible to make the base material transparent without exposing the seed rod to high temperature ranges above ℃ for a long time.This prevents the seed rod from softening and changing due to heat, and allows large-diameter quartz glass rods to be made without falling. I can support it. Furthermore, air bubbles that flow out due to transparent vitrification can escape to the upper porous layer that has not yet been transparent vitrified, making it possible to prevent air bubbles from being contained in the obtained quartz glass. . In the present invention, heating during calcination and transparent vitrification is performed by gradually inserting the porous quartz glass base material into a heating furnace while rotating it. By rotating, the base material can be heated uniformly, and it is possible to prevent the base material from being deformed due to uneven shrinkage during firing. Further, in the present invention, the heating furnace for converting the base material into transparent vitrification is provided with a temperature gradient that increases from the top to the bottom in the heating furnace as described above. The partial region may have a temperature distribution such that the temperature is approximately equal in the vertical direction and is a uniform temperature region. Example: A cylindrical porous quartz glass base material formed on a quartz seed rod manufactured using the apparatus shown in Fig. 1 {diameter 30 cm, length 0.5 m, center part (diameter 3 cm from the center) The average density of the surface part (4 cm from the surface part) is 0.45 g/cc, and the average density of the surface part (4 cm from the surface part) is 0.2 g/cc.
cc} into a heating furnace (not shown) maintained at 300℃ while slowly rotating it, and insert it from the bottom of the furnace.
While supplying N 2 gas at 3 m 3 /Hr, the temperature was raised to 1300℃ at a rate of 250℃/Hr.
Hold for minutes. This is the calcination of the base material. The diameter of this porous quartz glass base material after calcination is 19.5 cm, the shrinkage rate in the radial direction is approximately 35%, the average density at the center is 0.6 g/cc, and the average density at the outer periphery is 0.68 g/cc. It was hot. Immediately after the calcining, as shown in FIG. The sample was inserted from above into a heating furnace 21 maintained in a helium atmosphere with a helium concentration of 1.5%. This heating furnace 21 has an upper temperature of approximately 1200°C and a lower temperature of approximately 1430°C.
It has a temperature gradient of ℃, and the isothermal temperature range of 1400℃ or more is about 20.
It is controlled to be cm. The seed rod 10 was slowly rotated and lowered at a speed of 100 mm/hr, and the porous quartz glass base material 11 was inserted into the heater 22 from its lower end (FIG. 2a). This porous quartz glass base material 11 is gradually defoamed from the lower end to become transparent glass, and has a diameter of approximately 13 cm.
It became a transparent glass 23 with a length of about 31 cm (Fig. 2b). The quartz glass that has been made transparent in this way has no defects in its surface layer (approximately 5 mm thick) and its inner center, and the average number of bubbles generated on this surface is 0.8 per 1 cm 2 of surface area. There weren't many. On the other hand, when transparent vitrification was performed using the same method as above without performing calcination, the base material was reduced by about 1/2 inch from the lower end.
When the glass became transparent and vitrified for about 3 minutes, a crack occurred in the upper porous glass part, and the lower part fell off from this part. As a result of evaluating the internal defects of this transparent vitrified part, although there were no defects in the inner center from the surface layer (approximately 3 cm thick),
This surface layer had an average of 20 defects per cm 2 . In addition, as a result of using the method described above to increase the holding time during calcination to approximately 180 minutes and increasing the radial shrinkage rate of the porous quartz glass matrix to 51%, the matrix was made transparent by the method described above. It was possible to make the material transparent and vitrified without any cracks. However, although the surface layer of this quartz glass (approximately 5 mm thick) had only a few defects, about 0.8 defects per 1 cm2,
From the surface layer to the inner part, quartz glass per 1 kg
Approximately 0.6 to 1 defect was observed. When the above holding time is about 180 minutes, the calcination temperature is 1300℃ as mentioned above, and the above shrinkage rate at this time is 51%.
is equal to the saturated shrinkage rate of 51% at 1300°C shown in FIG. That is, it can be seen that if the porous quartz glass base material is shrunk to the saturated shrinkage rate at that temperature by calcination, bad results will result. In addition, a cylindrical porous quartz glass base material formed in the same manner as above {diameter 30 cm, length 0.5 m, average density at the center (3 cm diameter from the center) is 0.45
g/cc, the average density of the surface part (4 cm from the surface part) is 0.2 g/cc}, the shrinkage rate by changing the calcination temperature and holding time, the success or failure of transparent vitrification, and the disadvantages of transparent vitrified quartz glass I looked into it. The above results are summarized in Table 1 as Examples Nos. 1 to 7, including cases where calcination was not performed. In the table, the surface layer is a layer approximately 5 mm thick from the surface. Further, the number of defects in the surface layer is determined by the number per unit surface area of the surface layer, and the number of internal defects is determined by the number per unit weight of transparent vitrified quartz glass.

【表】【table】

【表】 実施例No.2は表面層の欠点が多く不合格であ
る。また、実施例No.3における表面層の欠点はご
く表面に偏在する2〜3個/cm2であつて、製品歩
留上は問題にならず、良品が得られたとみなせ
る。また、実施例No.6における内部欠点0.1〜0.2
個/Kgは石英ガラスの重量約9Kgからみて、やは
り製品歩留上は問題にならず、良品が得られたと
みなせる。実施例No.3〜No.6は何れも実質的に良
品が得られたものであるが、何れの場合も仮焼を
飽和収縮率に達する以前に中断しているものであ
る。 No.7の場合の収縮率は51%であるが、前述した
ようにこれは第3図から1300℃での飽和収縮率
(約51%)にほとんど等しいことがわかる。この
場合、透明ガラス化は可能なものの内部の欠点数
からみて製品歩留上問題であり、不都合な結果で
ある。即ち、実施例No.7は、飽和収縮率まで仮焼
収縮を行うことは避けなければならないことを示
している。 [発明の効果] 以上説明したように、本発明によれば多孔質石
英ガラス母材を焼結によつて透明ガラス化処理す
る前に、予め透明ガラス化処理の温度より低い温
度で仮焼して多孔質石英ガラス母材の径方向の密
度分布の均一化をはかつているので、急激な収縮
によりクラツクが発生するのを防止出来る。ま
た、多孔質石英ガラス母材の径方向の密度分布の
差に起因する気泡等内部欠点の発生を著しく低下
することができ、品質の向上、歩留りを向上が得
られる。 特に、大口径の多孔質石英ガラス母材の透明ガ
ラス化に本発明の方法は最適であり、上記の効果
が顕著であつて、高純度石英ガラスを得ることが
できる。
[Table] Example No. 2 had many defects in the surface layer and was rejected. Further, the defects in the surface layer in Example No. 3 were 2 to 3 defects/cm 2 unevenly distributed on the very surface, which did not pose a problem in terms of product yield, and it can be considered that a good product was obtained. In addition, the internal defect in Example No. 6 is 0.1 to 0.2
Considering the weight of the quartz glass, which is approximately 9 kg, the number of pieces/kg does not pose a problem in terms of product yield, and it can be considered that a good product was obtained. In all of Examples No. 3 to No. 6, substantially good products were obtained, but in all cases, the calcination was interrupted before the saturated shrinkage rate was reached. The shrinkage rate in the case of No. 7 is 51%, but as mentioned above, it can be seen from FIG. 3 that this is almost equal to the saturated shrinkage rate (about 51%) at 1300°C. In this case, although transparent vitrification is possible, the number of internal defects poses a problem in terms of product yield, which is an inconvenient result. That is, Example No. 7 shows that it is necessary to avoid performing calcination shrinkage to a saturated shrinkage rate. [Effects of the Invention] As explained above, according to the present invention, before the porous quartz glass base material is subjected to transparent vitrification treatment by sintering, it is pre-calcined at a temperature lower than the temperature for transparent vitrification treatment. Since the density distribution in the radial direction of the porous quartz glass base material is made uniform, it is possible to prevent cracks from occurring due to rapid shrinkage. Furthermore, the occurrence of internal defects such as bubbles due to differences in the radial density distribution of the porous quartz glass base material can be significantly reduced, resulting in improved quality and yield. In particular, the method of the present invention is most suitable for transparent vitrification of a large-diameter porous quartz glass base material, the above-mentioned effects are remarkable, and high-purity quartz glass can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多孔質石英ガラス母材を得るための装
置の一例を示す説明図、第2図a,bは本発明に
よるガラス化方法の実施例を示す説明図である。
第3図は多孔質石英ガラス母材の仮焼温度と径方
向の飽和収縮率の関係を示すグラフである。 10……種棒、11……多孔質石英ガラス母
材、21……加熱炉、22……ヒータ、23……
高純度石英ガラス。
FIG. 1 is an explanatory view showing an example of an apparatus for obtaining a porous quartz glass base material, and FIGS. 2a and 2b are explanatory views showing an example of the vitrification method according to the present invention.
FIG. 3 is a graph showing the relationship between the calcination temperature and the radial saturation shrinkage rate of the porous quartz glass base material. 10... Seed rod, 11... Porous quartz glass base material, 21... Heating furnace, 22... Heater, 23...
High purity quartz glass.

Claims (1)

【特許請求の範囲】[Claims] 1 石英ガラス種棒の一端に堆積・成長させた多
孔質石英ガラス母材を加熱して透明ガラス化する
に際して、予め多孔質石英ガラス母材を回転させ
ながら加熱装置内に徐々に挿入し1200〜1350℃の
範囲で仮焼して該母材を径方向において飽和収縮
率に達しない範囲で10〜45%収縮させて該母材の
径方向の密度分布を整えた後、1400〜1500℃の範
囲で焼成して透明ガラス化することを特徴とする
高純度石英ガラスの製造方法。
1. When heating the porous quartz glass base material deposited and grown on one end of the quartz glass seed rod to turn it into transparent vitrification, the porous quartz glass base material is first rotated and gradually inserted into the heating device for 1200 ~ After calcining in the range of 1350℃ and shrinking the base material in the radial direction by 10 to 45% without reaching the saturation shrinkage rate to adjust the density distribution of the base material in the radial direction, A method for manufacturing high-purity quartz glass, which is characterized by firing in a range to make it transparent.
JP22279985A 1985-10-08 1985-10-08 Production of quartz glass having high purity Granted JPS6283325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22279985A JPS6283325A (en) 1985-10-08 1985-10-08 Production of quartz glass having high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22279985A JPS6283325A (en) 1985-10-08 1985-10-08 Production of quartz glass having high purity

Publications (2)

Publication Number Publication Date
JPS6283325A JPS6283325A (en) 1987-04-16
JPH0478567B2 true JPH0478567B2 (en) 1992-12-11

Family

ID=16788077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22279985A Granted JPS6283325A (en) 1985-10-08 1985-10-08 Production of quartz glass having high purity

Country Status (1)

Country Link
JP (1) JPS6283325A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561103B2 (en) * 1987-12-02 1996-12-04 株式会社フジクラ Method for manufacturing glass article
JPH0733259B2 (en) * 1988-08-30 1995-04-12 信越化学工業株式会社 Ultraviolet-resistant synthetic quartz glass and method for producing the same
DE59102740D1 (en) * 1990-12-21 1994-10-06 Kabelmetal Electro Gmbh Method of making an optical fiber preform.
US5356449A (en) * 1993-05-24 1994-10-18 At&T Bell Laboratories Vad process improvements

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186427A (en) * 1984-03-01 1985-09-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber preform
JPS59174538A (en) * 1983-03-24 1984-10-03 Hitachi Cable Ltd Manufacture of base material for optical fiber
JPS61281036A (en) * 1985-06-03 1986-12-11 Nippon Telegr & Teleph Corp <Ntt> Production of preform for optical fiber
JPH0699163B2 (en) * 1985-07-30 1994-12-07 古河電気工業株式会社 Vitrification method of optical fiber base material

Also Published As

Publication number Publication date
JPS6283325A (en) 1987-04-16

Similar Documents

Publication Publication Date Title
JP4639274B2 (en) Method and apparatus for producing glass ingots from synthetic silica
US8393179B2 (en) Method for producing a semifinished product from synthetic quartz glass
JPS5844619B2 (en) Manufacturing method of optical fiber base material
JPH0478567B2 (en)
US20060144094A1 (en) Method for the production of a hollow cylinder made of synthetic quartz glass with the aid of a holding device, and appropriate holding device for carrying out said method
JP2001089166A (en) Production of tube type silica glass
KR20060092392A (en) Method for dehydrating and consolidating porous optical fiber preform
US20150135772A1 (en) Furnace for Sintering Silica Soot Bodies
JPH03109223A (en) Quartz glass and production thereof
JPH09202632A (en) Production of cylindrical quartz glass
JPH0416416B2 (en)
JP3188517B2 (en) Manufacturing method of quartz glass
JPH0421614B2 (en)
JPH0776098B2 (en) Method for producing high-purity quartz glass
JP2002249342A (en) Glass body and method for manufacturing it
WO2004101457A1 (en) Process for producing glass parent material of optical fiber
JP7428413B2 (en) Synthetic quartz manufacturing method
JP3036993B2 (en) Manufacturing method of synthetic quartz glass member
JPH0226848A (en) Production of high-purity quartz glass
JPS6324937B2 (en)
JPH0784326B2 (en) Method for firing porous quartz glass preform
JP2003192357A (en) Method and apparatus for heat treatment for base material of porous glass
JP3649801B2 (en) Method for producing transparent quartz glass ingot
JPH0524854A (en) Production of glass article
JP2022049501A (en) Method for manufacturing optical fiber glass preform

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees