JP2561103B2 - Method for manufacturing glass article - Google Patents

Method for manufacturing glass article

Info

Publication number
JP2561103B2
JP2561103B2 JP62303356A JP30335687A JP2561103B2 JP 2561103 B2 JP2561103 B2 JP 2561103B2 JP 62303356 A JP62303356 A JP 62303356A JP 30335687 A JP30335687 A JP 30335687A JP 2561103 B2 JP2561103 B2 JP 2561103B2
Authority
JP
Japan
Prior art keywords
glass
preform
gas
bubbles
opaque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62303356A
Other languages
Japanese (ja)
Other versions
JPH01145344A (en
Inventor
良三 山内
朗 和田
雅博 堀越
吉哉 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62303356A priority Critical patent/JP2561103B2/en
Publication of JPH01145344A publication Critical patent/JPH01145344A/en
Application granted granted Critical
Publication of JP2561103B2 publication Critical patent/JP2561103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、高純度ガラス物品の製造方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for producing a high-purity glass article.

<従来の技術> 現在、高純度ガラスを多量に必要とする分野に光フア
イバがある。この光フアイバを例にとると、従来はガラ
ス形成用の先駆物質たとえばSiCl4,GeCl4,POCl3等を火
炎加水分解もしくは熱酸化反応させてガラス微粒子とな
し、これを出発部材の先端もしくは外周に付着堆積させ
て多孔質プリフオームとなし、次いでこれを高温に加熱
して透明ガラスプリフオームとする方法が採用されてい
る。
<Prior Art> Currently, there is an optical fiber in a field requiring a large amount of high-purity glass. Taking this optical fiber as an example, conventionally, precursors for forming glass such as SiCl 4 , GeCl 4 , POCl 3 are subjected to flame hydrolysis or thermal oxidation reaction to form fine glass particles, which are formed at the tip or the outer periphery of the starting member. A method is adopted in which a transparent preform is formed by adhering and depositing it to form a porous preform, and then heating this to a high temperature to form a transparent glass preform.

しかしながらこの方法によると多孔質ガラスプリフオ
ームが破損し易いためにその取扱いに十分な注意を要
し、このためその透明ガラス化も1本づつ加熱処理せね
ばならず極めて非効率という欠点がある。また多孔質ガ
ラスが石英系ガラスである場合、高温処理のため発熱体
からの不純物の混入を防ぐ目的で通常発熱体の内側に炉
心管を配し、この炉心管内に多孔質ガラスプリフオーム
を通して透明ガラス化するということが行われている
が、炉心管の材質として高温に耐え得るものということ
から石英ガラスまたはアルミナ製のものが使用されてい
る。而して石英炉心管の場合、多孔質ガラスプリフオー
ムも石英系ガラスということから炉心管そのものが変形
することとなりその寿命が問題となる。一方アルミナ炉
心管の場合石英ガラスよりも耐熱性に優れているものの
急冷、急熱に弱くクラツクが生じやすいという欠点があ
る。またさらに加熱炉発熱体としてカーボン抵抗発熱体
を使用している場合、炉内中心の温度が仮に1600℃であ
るとしても炉心管を通して熱を供給するわけであるから
発熱体自体の表面温度は1750℃程度になることもまれで
はない。実際にこのような高温に発熱体がなると炉心管
である石英ガラスとカーボンとの反応が生じ炉心管表面
から僅かづつ蒸発したSiO2がカーボンと反応して炭化珪
素(SiC)ができたり、カーボン発熱体がSiO2から遊離
する酸素と反応してCOやCO2となり消耗してゆくなどの
問題がある。
However, according to this method, the porous glass preform is apt to be damaged, so that it needs to be handled with care, and therefore the transparent vitrification must be heat-treated one by one, which is extremely inefficient. Also, if the porous glass is quartz glass, a furnace core tube is usually placed inside the heating element to prevent contamination of impurities from the heating element due to high temperature processing, and a transparent glass preform is passed through this furnace tube. Although vitrification is performed, quartz glass or alumina is used as the material for the core tube because it can withstand high temperatures. Thus, in the case of a quartz furnace core tube, since the porous glass preform is also a silica-based glass, the furnace core tube itself is deformed and its life becomes a problem. On the other hand, the alumina core tube is superior to quartz glass in heat resistance, but has a drawback that it is susceptible to rapid cooling and rapid heat and is prone to cracking. When a carbon resistance heating element is used as the heating element for the heating furnace, the surface temperature of the heating element itself is 1750 because heat is supplied through the core tube even if the temperature at the center of the furnace is 1600 ° C. It is not uncommon to reach around ℃. When a heating element is actually heated to such a high temperature, reaction occurs between the quartz glass, which is the core tube, and carbon, and the SiO 2 slightly evaporated from the surface of the core tube reacts with carbon to form silicon carbide (SiC). There is a problem that the heating element reacts with oxygen released from SiO 2 to become CO or CO 2 and is consumed.

この発明者等は、このようなことから特願昭62−1790
20号として多孔質ガラスプリフオームを完全透明ガラス
化することを止め、しかしながら取扱いに際して破損す
ることのない程度に、かつ内部に気泡が独立して存在す
る程度に低温加熱処理することにより、外部からの不純
物の混入は防止された、体積は多孔質ガラスプリフオー
ムの段階よりも収縮された不透明ガラスプリフオームを
提案した。かくして透明ガラス化に際しては複数本まと
めて行うことができ高効率を図ることができ、また不透
明ガラスプリフオームとする温度は透明ガラス化温度よ
りも低温ですむため炉心管の損傷を低減でき長寿命化を
図りうる。またカーボン発熱体の消耗も防止することが
できるという効果をもたらしたものである。
From the above, the present inventors
As No. 20, we stopped the porous glass preform from completely transparent vitrification, however, by low temperature heat treatment to the extent that it did not break during handling, and to the extent that bubbles were independently present inside, We have proposed an opaque glass preform that has a reduced volume of impurities, and has a smaller volume than the porous glass preform stage. In this way, it is possible to perform multiple vitrification in a batch and achieve high efficiency.Because the temperature of the opaque glass preform is lower than the vitrification temperature, the damage to the core tube can be reduced and the life is long. Can be realized. In addition, it is possible to prevent the consumption of the carbon heating element.

<発明が解決しようとする問題点> しかしながらプリフオームの大型化を図るために基に
なる多孔質ガラスプリフオームを径大にすると不透明ガ
ラス体も必然的に大サイズとなるが、これを透明ガラス
化しようとしたときに内部の気泡が消滅せず、時として
遂には膨脹して不良品となつてしまうことが判明した。
この気泡内に含まれるガスとしては、炉内に流すガスに
依存するが、He,O2,Ar,Cl2,SO2…等がある。この発明者
等はこの現象につき理論的な解明を図つた。図面は、種
々の直径の円柱状透明石英ガラスロツドからのHeガスの
温度に対する拡散時間を測定したもので、拡散時間は円
柱状ガラスの中心部におけるHe濃度が1/e(e:2.718:自
然対数)になる時間で定義してある。図から明らかなよ
うにHeの拡散時間はガラスの粘度のように余り大きな温
度依存性を持たない。例えば、純粋な石英ガラスの粘度
としては、1100℃では、10の12乗程度であるのに対し
て、1400℃では、5×10の9乗にまで低下する。すなわ
ち、温度差300℃で2桁半も粘度が低下する。これに対
してHe(ヘリウム)の拡散時間の方は、図に示すように
温度が1400℃から500℃に低下しても精々3倍(約0.5桁
増加)になるだけである。このことはガラス中の気泡が
膨らまないような幾らか低い温度を選択すれば、かなり
大きな母材であつてもその中の気泡の中のガスを、透明
ガラス化の高温度にプリフオームを晒す前にかなり追出
すことが可能であることを示している。而してこの時幸
いなことには、気泡中に残留するガスの濃度を完全にゼ
ロにするまでプリフオームを処理する必要がないことで
ある。すなわち、ヘリウムや水素等の拡散速度が大きな
ガスはガラス中への溶解度も高く、例えば、常温では、
ガラス容積の2.0%程度の標準容積のガスがガラス内に
溶存できる。それゆえ、本発明の気泡の消滅工程はガラ
ス内のガスの残留量がこの溶存可能なレベル以下になる
まで行えば良い。その他、図からわかることは、プリフ
オームからのガスの拡散時間がプリフオームの直径の2
乗に比例し、プリフオーム(母材)サイズが大型化する
につれて、ガスの拡散が非常に難しくなつていくことで
ある。これは、本発明の目的の一つである大型母材の高
温における透明ガラスが予備的なプリフオームの加熱な
しに行われた場合には、プリフオーム中心部からのガス
の拡散放出が間に合わず拡散する前に熱膨張して母材を
台無しにすることを示している。
<Problems to be Solved by the Invention> However, when the diameter of the base porous glass preform is increased in order to increase the size of the preform, the opaque glass body inevitably becomes large in size. When I tried to do so, it was found that the bubbles inside did not disappear, and sometimes it eventually expanded and became a defective product.
The gas contained in the bubbles depends on the gas flowing in the furnace, but includes He, O 2 , Ar, Cl 2 , SO 2, ... The inventors have attempted to elucidate this phenomenon theoretically. The figure shows the measured diffusion time of He gas from cylindrical transparent quartz glass rods of various diameters with respect to temperature. The diffusion time is the He concentration at the center of the cylindrical glass is 1 / e (e: 2.718: natural logarithm). ) Is defined as the time. As is clear from the figure, the diffusion time of He does not have a very large temperature dependence like the viscosity of glass. For example, the viscosity of pure quartz glass is about 10 12 at 1100 ° C., while it decreases to 5 × 10 9 at 1400 ° C. That is, the viscosity decreases by two and a half digits when the temperature difference is 300 ° C. On the other hand, the diffusion time of He (helium) is at most tripled (about 0.5 digit increase) even if the temperature is lowered from 1400 ° C to 500 ° C as shown in the figure. This means that if a slightly lower temperature is selected so that the bubbles in the glass do not swell, the gas in the bubbles in even a fairly large base material is exposed to the high temperature of transparent vitrification before exposing the preform. It shows that it is possible to expel a lot. Fortunately at this time, it is not necessary to treat the preform until the concentration of the gas remaining in the bubbles is completely zero. That is, a gas with a large diffusion rate such as helium or hydrogen has a high solubility in glass, and, for example, at room temperature,
A standard volume of gas, approximately 2.0% of the glass volume, can be dissolved in the glass. Therefore, the bubble extinguishing step of the present invention may be carried out until the residual amount of gas in the glass falls below this dissolvable level. In addition, the figure shows that the diffusion time of the gas from the preform is 2 times the diameter of the preform.
As the size of the preform (base material) becomes larger in proportion to the power, diffusion of gas becomes very difficult. This is one of the objects of the present invention, when the transparent glass at a high temperature of the large-sized base material is performed without preliminary heating of the preform, diffusion and release of gas from the center of the preform diffuses in time. It has been shown before to thermally expand and ruin the base material.

ところで、ガラス中に残留している独立気泡が透明ガ
ラス化中に消滅する機構は次の様に考えられている。
By the way, the mechanism by which the closed cells remaining in the glass disappear during the transparent vitrification is considered as follows.

気泡の中のガスは温度の上昇に伴つて膨張しようとす
る。一方、気泡の堆積を縮めようとする力は、ガラスの
表面張力であり、これは余り温度には依らないことが知
られている。また、膨張するにせよ収縮するにせよその
必要とする時間はガラスの粘度によつて決定され、粘度
が1桁増せば、泡の変形に必要な時間も1桁増加する。
気泡中のガスの種類によつてガラス中に拡散/溶解して
ゆく速度が異なるが、この拡散速度も温度依存性が高
く、温度の上昇とともに指数関数的に増加して行くこと
が知られている。もし、ガスの拡散速度が速く、温度上
昇に伴うガスの膨張、すなわち、気泡内のガス圧力の高
まりをバーできる程度に気泡内のガスのガラス中への拡
散が進行すれば、気泡は気泡内表面のガラスの表面張力
によつて潰れて行くことになる。
The gas in the bubbles tends to expand as the temperature rises. On the other hand, it is known that the force that tries to shrink the accumulation of bubbles is the surface tension of the glass, which does not depend much on the temperature. Also, the time required for expansion or contraction is determined by the viscosity of the glass, and if the viscosity increases by one digit, the time required for foam deformation increases by one digit.
The rate of diffusion / melting in glass differs depending on the type of gas in the bubbles, but this diffusion rate is also highly temperature dependent and is known to increase exponentially with increasing temperature. There is. If the gas diffusion rate is fast and the gas expansion with temperature rise, that is, the diffusion of the gas in the bubble into the glass progresses to such an extent that the increase in gas pressure in the bubble can be barred, the bubble is in the bubble. It will be crushed by the surface tension of the glass on the surface.

しかし、不透明ガラス体のサイズが大きくガラス内の
ガスの外への拡散放出が十分な速度で行われない場合
や、次の工程=不透明プリフオームの透明ガラス化にお
ける加熱速度が速すぎる場合には、前述の気泡が消滅す
る機構において、気泡内のガスの膨張の方がより大きな
力を持つことになるので、気泡は潰れるどころかより膨
らむことになる。
However, when the size of the opaque glass body is large and the diffusion and release of the gas in the glass is not performed at a sufficient rate, or the next step = the heating rate in the vitrification of the opaque preform is too fast, In the above-described bubble disappearance mechanism, the expansion of the gas in the bubble has a larger force, so that the bubble expands rather than collapses.

<問題点を解決するための手段> この発明は、以上の観点からガラス形成用先駆物質か
ら得られるガラス微粒子を収集して多孔質ガラスプリフ
オームとなし、この多孔質ガラスプリフオームを加熱炉
内で加熱処理してその体積が収縮された、内部に独立し
た気泡を含む不透明ガラスプリフオームとなし、引き続
いてこの不透明ガラスプリフオームを前記炉内で加熱処
理して不透明ガラスの状態を維持したまま気泡内のガス
を放出し、しかる後、この気泡内のガスが放出された不
透明ガラスプリフオームを加熱炉から取り出して別の加
熱手段により高温に加熱して透明ガラス化するようにし
たものである。
<Means for Solving Problems> From the above viewpoints, the present invention collects glass fine particles obtained from a glass-forming precursor to form a porous glass preform, and the porous glass preform is used in a heating furnace. An opaque glass preform containing independent bubbles inside is heat-treated to reduce its volume, and subsequently this opaque glass preform is heat-treated in the furnace while maintaining the state of opaque glass. The gas in the bubbles is released, and then the opaque glass preform from which the gas in the bubbles is released is taken out from the heating furnace and heated to a high temperature by another heating means so that it becomes transparent glass. .

以下この発明を実施例に基づいて説明する。 The present invention will be described below based on examples.

実施例 いわゆるVAD法により、4本の酸水素バーナを用いてS
iO4からなる多孔質ガラスプリフオームを作成した。こ
の時1本のバーナはプリフオームの生長端の下方から、
他はプリフオームの成長軸に直交する側方から火炎がプ
リフオームに向うようにした。なお酸水素バーナはいづ
れも同一構成のもので以下の動作条件とした。
Example Using the so-called VAD method, four oxyhydrogen burners were used for S
A porous glass preform made of iO 4 was created. At this time, one burner from below the growing end of the preform,
In other cases, the flame was directed to the preform from the side orthogonal to the growth axis of the preform. The oxyhydrogen burners had the same structure, and the operating conditions were as follows.

バーナ内ガス量 流 量 酸素 9SLM(標準リツタ) 水素 10SLM SiCl4 4SLM Ar 2SLM かくして得られたSiO2多孔質ガラスプリフオームのサ
イズは直径200mm、長さ1500mmであつた。
Amount of gas in the burner Flow rate Oxygen 9SLM (standard rectifier) Hydrogen 10SLM SiCl 4 4SLM Ar 2SLM The SiO 2 porous glass preform thus obtained was 200 mm in diameter and 1500 mm in length.

この多孔質プリフオームを1340℃作動する加熱炉内に
毎時200mmの速度で挿入して全体に気泡を含む不透明の
ガラスプリフオームとした。この加熱炉のサイズは内径
250mm、最高温度とこれよりも50℃低い温度の範囲にあ
る炉内の高温領域の長さ300mmである。また得られた不
透明ガラスプリフオームのサイズは直径90mm、長さ650m
m(有効長)であつた。次にこの不透明ガラスプリフオ
ームを1100℃の加熱炉に6時間放置した。この加熱炉の
サイズは内径120mm、長さ800mm(均熱ゾーン長)、発熱
体SiCである。また加熱炉内は約10TORRの真空とした
が、Arなどの雰囲気でもよい。次いでこのプリフオーム
を1950℃の温度の酸水素バーナを用いて加熱しつつこれ
を毎分50mmの速度でトラバースさせたところ完全に透明
なSiO2ガラスプリフオームが得られた。このプリフオー
ムのサイズは直径89.8mm、長さ650mmで不透明ガラスプ
リフオームのサイズとほとんど差がなかつた。
This porous preform was inserted into a heating furnace operating at 1340 ° C. at a speed of 200 mm / h to obtain an opaque glass preform containing bubbles throughout. The size of this heating furnace is the inner diameter
The length of the high temperature region in the furnace is 250 mm, the maximum temperature and the temperature 50 ° C lower than that, 300 mm. The size of the obtained opaque glass preform is 90mm in diameter and 650m in length.
It was m (effective length). Next, this opaque glass preform was left in a heating furnace at 1100 ° C. for 6 hours. The size of this heating furnace is 120 mm in inner diameter, 800 mm in length (uniform heating zone length), and a heating element SiC. The heating furnace has a vacuum of about 10 TORR, but an atmosphere such as Ar may be used. Then, this preform was traversed at a rate of 50 mm / min while being heated with an oxyhydrogen burner at a temperature of 1950 ° C., whereby a completely transparent SiO 2 glass preform was obtained. The size of this preform was 89.8 mm in diameter and 650 mm in length, which was almost the same as the size of the opaque glass preform.

比較例 不透明ガラスプリフオームを得るまで実施例と同様と
し、これを熱処理することなく1950℃の酸水素バーナを
用いて毎分50mmでトラバースさせつつ透明ガラス化を図
つたところ不透明ガラスプリフオームの表面から深さ20
mm程度の部分のガラスは完全に透明ガラス化されたが、
それよりも内側に存在する気泡は消滅せずむしろ膨脹
し、完全に透明なガラスプリフオームを得ることはでき
なかつた。
Comparative Example Same as the example until obtaining an opaque glass preform, and without heat treatment, it was made transparent glass while traversing at 50 mm / min using an oxyhydrogen burner at 1950 ° C. The surface of the opaque glass preform From depth 20
The glass of about mm part was completely transparent, but
The bubbles existing inside did not disappear, but rather expanded, and it was impossible to obtain a completely transparent glass preform.

<発明の効果> この発明は以上のように内部に気泡を含む不透明ガラ
スプリフオームを得、これを低温で熱処理して気泡内の
ガスを放出させ、気泡内を真空とするかガスのガラス内
への溶存可能な程度のガス量とするとともに、この気泡
内のガスが放出された不透明ガラスプリフオームを加熱
炉から取り出して、別の加熱手段により高温に加熱して
透明ガラス化するものであり、以つて高品質のものを得
ることができるという効果を奏する。
<Effects of the Invention> As described above, the present invention obtains an opaque glass preform containing bubbles therein, heat-treats it at a low temperature to release the gas in the bubbles, and the inside of the bubbles is vacuumed or in the glass of the gas. The opaque glass preform from which the gas in the bubbles is released is taken out of the heating furnace and heated to a high temperature by another heating means to become transparent glass. Therefore, it is possible to obtain a high quality product.

【図面の簡単な説明】[Brief description of drawings]

図面は、ガラス内のガスの拡散時間と温度との関係を示
すグラフ。
The drawing is a graph showing the relationship between the diffusion time of gas in glass and the temperature.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス形成用の先駆物質から得られるガラ
ス微粒子を収集して多孔質ガラスプリフオームとなし、
この多孔質ガラスプリフオームを加熱炉内で加熱処理し
てその体積が収縮された、内部に独立した気泡を包む不
透明ガラスプリフオームとなし、引き続いてこの不透明
ガラスプリフオームを前記炉内で加熱処理して不透明ガ
ラスの状態を維持したまま気泡内のガスを放出し、しか
る後、この気泡内のガスが放出された不透明ガラスプリ
フオームを加熱炉から取り出して加熱手段により高温に
加熱して不透明ガラス化することを特徴とするガラス物
品の製造方法。
1. A method for collecting glass fine particles obtained from a precursor for forming glass to form a porous glass preform.
This porous glass preform is heat-treated in a heating furnace to reduce its volume to form an opaque glass preform that encloses independent bubbles inside, and subsequently this opaque glass preform is heat-treated in the furnace. Then, the gas in the bubbles is released while maintaining the state of the opaque glass, and then the opaque glass preform in which the gas in the bubbles is released is taken out from the heating furnace and heated to a high temperature by the heating means to make the opaque glass. A method for producing a glass article, comprising:
JP62303356A 1987-12-02 1987-12-02 Method for manufacturing glass article Expired - Fee Related JP2561103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303356A JP2561103B2 (en) 1987-12-02 1987-12-02 Method for manufacturing glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303356A JP2561103B2 (en) 1987-12-02 1987-12-02 Method for manufacturing glass article

Publications (2)

Publication Number Publication Date
JPH01145344A JPH01145344A (en) 1989-06-07
JP2561103B2 true JP2561103B2 (en) 1996-12-04

Family

ID=17919993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303356A Expired - Fee Related JP2561103B2 (en) 1987-12-02 1987-12-02 Method for manufacturing glass article

Country Status (1)

Country Link
JP (1) JP2561103B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712359B2 (en) * 2004-11-29 2011-06-29 古河電気工業株式会社 Optical fiber manufacturing method
CN102583997B (en) 2004-11-29 2015-03-11 古河电气工业株式会社 Optical fiber preform, method of manufacturing optical fiber preform, and method of manufacturing optical fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283325A (en) * 1985-10-08 1987-04-16 Asahi Glass Co Ltd Production of quartz glass having high purity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283325A (en) * 1985-10-08 1987-04-16 Asahi Glass Co Ltd Production of quartz glass having high purity

Also Published As

Publication number Publication date
JPH01145344A (en) 1989-06-07

Similar Documents

Publication Publication Date Title
US6109065A (en) Method of making optical waveguide devices using perchloryl fluoride to make soot
US4225330A (en) Process for producing glass member
US4082420A (en) An optical transmission fiber containing fluorine
CA1260684A (en) Optical waveguide manufacture
JPH02196045A (en) Heating furnace for producing base material of high-purity quartz
US4734117A (en) Optical waveguide manufacture
US4165152A (en) Process for producing optical transmission fiber
EP0523692B1 (en) Method for producing glass preform for optical fiber
JP2810941B2 (en) Method for producing polygonal columnar silica glass rod
JP2561103B2 (en) Method for manufacturing glass article
JP2808857B2 (en) Heating furnace and manufacturing method of glass preform for optical fiber
KR20040017024A (en) Method of manufacturing optical fiber preform using dehydration and dechlorination, and optical fiber preform and optical fiber manufactured by the method
JPH0436100B2 (en)
JPH0450130A (en) Production of preform for optical fiber
JP3258175B2 (en) Method for producing non-doped or doped silica glass body
JP3188517B2 (en) Manufacturing method of quartz glass
JP2640745B2 (en) Method for manufacturing opaque glass preform
CA1261127A (en) Optical waveguide manufacture
JPS6183639A (en) Production of quartz pipe of high purity
JP2002234750A (en) Method for producing quartz glass preform for optical fiber
JPH0416416B2 (en)
JPH0478567B2 (en)
JP2002249342A (en) Glass body and method for manufacturing it
WO2004101457A1 (en) Process for producing glass parent material of optical fiber
JP3407961B2 (en) Semiconductor heat treatment materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees