JPH0450130A - Production of preform for optical fiber - Google Patents

Production of preform for optical fiber

Info

Publication number
JPH0450130A
JPH0450130A JP2159678A JP15967890A JPH0450130A JP H0450130 A JPH0450130 A JP H0450130A JP 2159678 A JP2159678 A JP 2159678A JP 15967890 A JP15967890 A JP 15967890A JP H0450130 A JPH0450130 A JP H0450130A
Authority
JP
Japan
Prior art keywords
base material
gas
core tube
optical fiber
porous glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2159678A
Other languages
Japanese (ja)
Inventor
Shinji Ishikawa
真二 石川
Yuichi Oga
裕一 大賀
Hiroo Kanamori
弘雄 金森
Ichiro Tsuchiya
一郎 土屋
Masahide Saito
斉藤 真秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2159678A priority Critical patent/JPH0450130A/en
Priority to CN93114346.2A priority patent/CN1099012A/en
Publication of JPH0450130A publication Critical patent/JPH0450130A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To make it possible to stably produce a preform for optical fiber over long period by introducing a mixed gas into a furnace core tube made of carbon, subjecting a porous glass preform to dehydration and high purification treatment and then vitrification. CONSTITUTION:A mixed gas of inert gas, halogenated gas and carbon monoxide is introduced into a carbon furnace core tube having SiC or thermally decomposed carbon film and a porous glass preform charged into the furnace core tube is subjected to dehydration and high-purity treatment thereby. Then a fluorine compound is introduced and the treated porous glass preform is vitrified in a mixed atmosphere of fluorine compound and inert gas. Thereby the aimed preform for optical fiber free from contamination with impurities and water can be stably produced and deformation, crystallization and breakage produced in a conventional quartz furnace and oxidation consumption of coating film in SiC-coated carbon material are suppressed and the furnace core tube can be used over long period.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、光ファイバ用多孔質ガラス母材を加熱処理す
る光ファイバ用母材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing an optical fiber preform by heat-treating a porous glass preform for an optical fiber.

〈従来の技術〉 光ファイバ母材を生産する代表的な方法1こは、気相軸
付は法や外付は法などの手法によって円柱状或いは円筒
状の多孔質光ファイノ(母材を作り、更にこの多孔質光
ファイノ<母材をアルゴンヘリウム等の不活性ガスや塩
素系ガスやフッ素系ガスの存在する雰囲気下の焼結炉中
で、脱水・高純度化処理し、次いでフッ素添加、透明化
処理し、高純度な光ファイバ母材を得るようなものがあ
る。
<Conventional technology> Typical method for producing optical fiber base material 1 This method involves producing a cylindrical or cylindrical porous optical fiber (base material) using methods such as the vapor phase shaft attachment method and the external attachment method. Furthermore, this porous optical fiber base material is dehydrated and purified in a sintering furnace in an atmosphere containing an inert gas such as argon helium, chlorine gas, or fluorine gas, and then fluorine is added. There is a method that uses transparent treatment to obtain a highly pure optical fiber preform.

このガラス化の際の炉の運転条件は、ドーパントの種類
、含有率によっても異なるが、約1200〜1600℃
の範囲である。また、高温下では不純物が母材に入りや
すいので、不純物混入を極力低減するために、一般(こ
は高純度石英製の炉芯管が用いられている。しかしなが
ら、この石英製の炉芯管は、高温下ではガラス状態から
結晶状態へと移行する「失透」と呼ばれる現象が生じて
急速にもろくなり、耐久性に乏しいという問題がある。
The operating conditions of the furnace during this vitrification vary depending on the type and content of the dopant, but are approximately 1200 to 1600°C.
is within the range of In addition, since impurities easily enter the base material at high temperatures, a furnace core tube made of high-purity quartz is generally used to reduce the contamination of impurities as much as possible. has the problem that it rapidly becomes brittle and has poor durability due to a phenomenon called "devitrification" in which it changes from a glassy state to a crystalline state at high temperatures.

そこで、石英炉の耐久性の問題を解決するため、灰分2
0 ppm未満の高純度炭素材に、ガス不透過性で且つ
耐酸化性のコーティングを施す手段として、CVD法、
PCVD法によりSiC膜又は熱分解カーボン膜を被覆
するようにしている。
Therefore, in order to solve the problem of durability of the quartz furnace, we decided to
CVD method,
A SiC film or a pyrolytic carbon film is coated using the PCVD method.

〈発明が解決しようとする*a> す上で紹介した従来の技術には、次のような欠点がある
<Object to be solved by the invention *a> The conventional technology introduced above has the following drawbacks.

(1)石英製の炉芯管を用いた場合、1400℃以上で
の軟化変形、1200℃以上での結晶(クリストバライ
ト)の生成のため、結晶転移温度以下(300℃す下)
に炉温を下げることができず、−度加熱したら連続して
使用しなければならないという問題がある。
(1) When using a quartz furnace core tube, the temperature is below the crystal transition temperature (below 300°C) due to softening deformation at temperatures above 1400°C and formation of crystals (cristobalite) above 1200°C.
There is a problem in that the furnace temperature cannot be lowered to a certain degree, and that once the furnace temperature has been heated to -1000 degrees, it must be used continuously.

(2]  SiC膜ないしはSiCコートカーボン炉芯
管を用いた場合、高温且つ低02濃度下で、以下の反応
を起こしてコーティングが酸化消耗するという問題があ
る。
(2) When using a SiC film or a SiC-coated carbon furnace core tube, there is a problem that the following reaction occurs at high temperatures and low O2 concentrations, causing the coating to be oxidized and consumed.

SiC(ト)+Oω→SiO軸)↑十Co(g)  ・
・(1)C(s) +1702億)→CO(g)   
      ・・(2)よって長期に互って炉芯管を使
用して いくと、(1)式の分解反応によりコーティングが消耗
し、炭素材がむき出しになる。
SiC (g) + Oω → SiO axis) ↑ 10 Co (g) ・
・(1)C(s) +170.2 billion) → CO(g)
(2) Therefore, if furnace core tubes are used for a long period of time, the coating will be consumed by the decomposition reaction of equation (1), and the carbon material will be exposed.

この場合、炭素は(2)式の反応で消耗していくことと
なる。
In this case, carbon will be consumed by the reaction of formula (2).

本発明は、以上述べた事情に艦み、カーボン炉芯管のS
iC膜又は熱分解カーボン膜の劣化がなく、光ファイバ
用母材を長期間に亙って安定して製造でき、且つ伝送損
失の少ない光ファイバとなる光ファイバ母材を製造する
光ファイバ用母材の製造方法を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned circumstances, and the S
An optical fiber base material that does not cause deterioration of the iC film or pyrolytic carbon film, allows stable production of the optical fiber base material over a long period of time, and produces an optical fiber base material that provides an optical fiber with low transmission loss. The purpose is to provide a method for manufacturing materials.

く課題を解決するための手段〉 前記目的を達成するための本発明の光フアイバ用母材の
製造方法の構成は、SiC膜又は熱分解カーボン膜を有
するカーボン製炉芯管中に、不活性ガス、ハロゲン系ガ
ス及び一酸化炭素の混合ガスを導入して、多孔質ガラス
母材を脱水・高純度化処理し、次いで、透明ガラス化処
理することを特徴とする。
Means for Solving the Problems> The structure of the method for manufacturing an optical fiber base material of the present invention to achieve the above-mentioned object is to include an inert material in a carbon furnace core tube having a SiC film or a pyrolytic carbon film. The method is characterized in that a mixed gas of gas, halogen-based gas, and carbon monoxide is introduced to dehydrate and purify the porous glass base material, and then to make it transparent.

以下、本発明の構成を図面を参照しながら詳細に説明す
る。
Hereinafter, the configuration of the present invention will be explained in detail with reference to the drawings.

本発明方法を実施するための装置は第1図に示すような
ものがあや、多孔質の光ファイバ母材用の多孔質ガラス
母材11が支持棒13に支持されて挿入される炉芯管1
2の外周には、この多孔質ガラス母材11を加熱するヒ
ータ14と該ヒータ14からの放熱が母材側に外に及ぶ
のを防ぐ断熱材を備えた炉本体15が取り巻く状態で設
けられている。この炉本体15には不活性ガス導入用の
不活性ガス導入@16が設けられている。また、との炉
芯管12の図中下方には、脱水焼結処理を行う際に必要
とする脱水・高純度ガスを炉芯管12内に導くガス導入
管17が連結されており、この導入管17には、図示し
ないガス混合器を介して不活性ガス、ハロゲン系ガス及
びCOの混合ガスが導入されている。上記炉芯管12は
、カーボン製炉芯管基材18を用い、その表面には高純
度の炭化ケイ素からなるSiC単独膜及びSiC膜の表
面にSiO2をコートしてなるSi02コー) SiC
膜等のSiC膜19が後述する公知の手法によって形成
されている。
The apparatus for carrying out the method of the present invention is as shown in FIG. 1
A furnace body 15 is provided surrounding the outer periphery of the porous glass base material 2, which is equipped with a heater 14 that heats the porous glass base material 11 and a heat insulating material that prevents heat radiation from the heater 14 from reaching the base material side. ing. This furnace body 15 is provided with an inert gas inlet @16 for introducing inert gas. In addition, a gas introduction pipe 17 is connected to the lower part of the furnace core tube 12 in the figure to introduce dehydrated and high-purity gas required for dehydration and sintering into the furnace core tube 12. A mixed gas of an inert gas, a halogen gas, and CO is introduced into the introduction pipe 17 via a gas mixer (not shown). The furnace core tube 12 uses a carbon furnace core tube base material 18, and its surface is coated with an SiC single film made of high-purity silicon carbide and a SiO2 coated with SiO2 coated on the surface of the SiC film.
A SiC film 19 such as a film is formed by a known method described later.

ここで、本発明に係る脱水・高純度ガスとは、ヘリウム
(He)、アルゴン(Ar)、窒素(N2)等の不活性
ガスに、SiCj4. SiF、。
Here, the dehydrated/high purity gas according to the present invention is an inert gas such as helium (He), argon (Ar), nitrogen (N2), SiCj4. SiF,.

CCl4. CF4から選ばれたハロゲン系ガス及び一
酸化炭素(CO)を含有させた混合ガスをいう。
CCl4. A mixed gas containing a halogen gas selected from CF4 and carbon monoxide (CO).

次に本発明に到った実験例について説明する。Next, an experimental example that led to the present invention will be explained.

実験l SiCコーティングをCVD法で50μm施したコート
材を、1600℃、 02100 ppmのHe下で1
0時間に互って加熱処理した。
Experiment 1 A coating material coated with 50 μm of SiC coating by CVD was heated at 1600°C under 0.2100 ppm of He.
Heat treatment was performed at 0 hours.

この処理後のSiCコーティング部の重量減少は10%
減少し、一部にコーティング空孔が確認された。
The weight reduction of the SiC coated part after this treatment is 10%.
The coating pores were observed in some areas.

実験2 実験1と同一製法のコート材を1600℃。Experiment 2 The coating material manufactured using the same method as in Experiment 1 was heated to 1600°C.

0100 ppm、 CO500ppm含有するHe下
で10時間に亙って加熱処理した。
Heat treatment was performed for 10 hours under He containing 0.0100 ppm and 500 ppm of CO.

この処理後のSiCコーティング部の重量減少は0.5
%未満と少なく、SICコーティング初期との差は全く
みられなかった。
The weight reduction of the SiC coated part after this treatment is 0.5
%, and there was no difference at all from the initial stage of SIC coating.

実験3 実験1と同一製法のコート材を1600℃。Experiment 3 The coating material manufactured using the same method as in Experiment 1 was heated to 1600°C.

0500ppm、CC0500pp含有He下で、10
時間に亙って加熱処理した。
0500ppm, under He containing 0500ppm CC, 10
Heat treated for a period of time.

この処理後のSiCコーティング部の重量減少は3%で
あり、消耗が認められた。
The weight loss of the SiC coated part after this treatment was 3%, indicating that it was worn out.

実験4 グラファイト基材の表面に、CH4を用いたCVD法で
熱分解グラファイトを30μmコーティングした。これ
を1600℃、0,100100pp中で5時間に亙っ
て加熱処理した。
Experiment 4 The surface of a graphite base material was coated with 30 μm of pyrolytic graphite by CVD using CH4. This was heat-treated at 1600° C. in 0.100100 pp for 5 hours.

この処理後のコーティングは消失し、グラファイト基材
がむき出しになっていた。また重量減少率は基材を含め
2%であった。
After this treatment, the coating disappeared and the graphite substrate was exposed. Moreover, the weight reduction rate including the base material was 2%.

実験5 実験4と同じコーテイング材を用い1600℃。Experiment 5 The same coating material as in Experiment 4 was used at 1600°C.

0、100 ppm、 Co 1000 ppm含有H
e下で5時間に互って加熱処理した。
0, 100 ppm, Co 1000 ppm containing H
The mixture was heat treated for 5 hours under e.g.

この処理後のコーティング厚は25μmまで減少したが
、コーティングは残存していた。
The coating thickness after this treatment was reduced to 25 μm, but the coating remained.

これらの実験結果より、CO?I加により、SiCない
しは熱分解カーボンコーティングの高温耐酸化性は向上
する。尚、COlo、比力9低い場合、完全に抑えられ
ないことも示された。
From these experimental results, CO? The addition of I improves the high temperature oxidation resistance of SiC or pyrolytic carbon coatings. It was also shown that when COlo and specific force were low by 9, it could not be completely suppressed.

以上により、炉芯管の変形が2000℃でも起こらない
カーボン材を炉芯管の基材として用い、それにガス不透
過性のコーティングとしてSiC又は熱分解カーボンを
被覆した炉芯管において、炉内ガスに、一酸化炭素(C
O)を混合することで、コーティングの耐久性が大幅に
改良されることが判明した。
As described above, in a furnace core tube that uses a carbon material that does not cause deformation of the furnace core tube even at 2000°C as the base material of the furnace core tube and coats it with SiC or pyrolytic carbon as a gas-impermeable coating, , carbon monoxide (C
It has been found that by incorporating O) the durability of the coating is significantly improved.

このことは下記反応式(3)に示された反応を調べるこ
とから説明される(尚SiCを用いた場合を説明する)
This can be explained by examining the reaction shown in reaction formula (3) below (the case using SiC will be explained)
.

SiC+O→SiO+CO・・(3) の反応の平衡定数は、 K=PS・O” Co        ・・・(4)で
示される。
The equilibrium constant of the reaction SiC+O→SiO+CO (3) is expressed as K=PS・O” Co (4).

PS、。がSiCの分解反応生成物の1つであり、(4
)式は、 P、、。=K −PO2/P、。       ・・・
(4)′と変形される。(4)′式より、SiCの分解
生成物であるSiOの分圧を低めるためには、CO混合
又はOの低減が有効であることが示される(他に高温下
ではSiOの混合も考えることができろ。)。
P.S. is one of the decomposition reaction products of SiC, and (4
) formula is P, . =K-PO2/P,. ...
(4)' is transformed. Equation (4)' shows that in order to lower the partial pressure of SiO, which is a decomposition product of SiC, mixing CO or reducing O is effective (mixing SiO can also be considered at high temperatures). ).

よって、CO添加の有効性が実証される。Therefore, the effectiveness of CO addition is demonstrated.

この際coガスの分圧は10” a tm 〜10−’
 a tmとするのがよく、COの分圧が02の分圧の
3倍す上とするのがよい。
At this time, the partial pressure of co gas is 10" atm ~ 10-'
The partial pressure of CO is preferably three times the partial pressure of 02.

また、SiCの耐ハロゲン性はハロゲンガス単味では8
00〜1000℃が限界であるが、Sl系ハロゲン化合
物(SiCj、)を添加することにより、SiCの腐食
を防止することができる。
In addition, the halogen resistance of SiC is 8 for halogen gas alone.
Although the temperature limit is 00 to 1000°C, corrosion of SiC can be prevented by adding a Sl-based halogen compound (SiCj).

この事実は息下(5)式の平衡式によって説明し得る。This fact can be explained by the equilibrium equation of equation (5).

S i C+2CI  =S i C1+C・・(5)
上記(1)の反応がSiCのCI2による腐食反応を増
加させればよいこととなる。
S i C+2CI = S i C1+C...(5)
It is sufficient that the reaction (1) above increases the corrosion reaction of SiC due to CI2.

次に上記結果をふまえて光ファイバ母材を製造する一例
を示す。
Next, an example of manufacturing an optical fiber preform based on the above results will be shown.

(脱水・高純度化処理工程) 本発明でSiCないし熱分解カーボン膜を有するカーボ
ン炉芯管を用いて、脱水・高純度ガスとして不活性ガス
とハロゲン化ケイ素との混合ガスを使用する際には、こ
の混合ガスの割合は、不活性ガス100容量%に対して
ハロゲン化ケイ素を0.3〜10容量%、好ましくは2
〜5容量%含有し、COの分圧が1O−4a tm〜l
 O−’ a tm、 02f)分圧力100−2at
未満であり、COの分圧が02の分圧の3倍以上とする
のが好ましい。これはハロゲン化ケイ素が0.3容量%
以下であると、脱水能力が十分でなく、また、10容量
%を超えるとその添加効果が薄れてしまうからである。
(Dehydration/high purity treatment process) In the present invention, when using a carbon furnace tube having a SiC or pyrolytic carbon film, a mixed gas of an inert gas and a silicon halide is used as a dehydration/high purity gas. The ratio of this mixed gas is 0.3 to 10% by volume, preferably 2% silicon halide to 100% by volume of inert gas.
Contains ~5% by volume, with a partial pressure of CO of 1O-4a tm~l
O-'atm, 02f) minute pressure 100-2at
It is preferable that the partial pressure of CO is at least three times the partial pressure of 02. This contains 0.3% by volume of silicon halide.
If it is below, the dehydration ability will not be sufficient, and if it exceeds 10% by volume, the effect of the addition will be diminished.

また、脱水・高純度化処理を効率的に行うための加熱温
度は900〜1200℃である。
Further, the heating temperature for efficiently performing dehydration and high purification treatment is 900 to 1200°C.

これは900℃以下であると脱水・高純度化処理反応が
不十分となるからであり、一方、1200℃以上では、
多孔質ガラス体の収縮が起り、脱水・高純度ガスの多孔
質ガラス母材内への拡散や、多孔質ガラス母材内部から
の除去すべき不純物の揮散が抑制されるためである。
This is because if the temperature is below 900°C, the dehydration/purification reaction will be insufficient; on the other hand, if the temperature is above 1200°C,
This is because the porous glass body shrinks, and the diffusion of dehydrated and high-purity gas into the porous glass base material and the volatilization of impurities to be removed from inside the porous glass base material are suppressed.

ところで脱水・高純度ガスにハロゲン系ガスを混合させ
た場合にSiC!lの劣化を防止する他の手段として、
多孔質ガラス母材を予じめ石英製炉芯管を有する加熱炉
内で脱水・高純度化処理したのちに、該多孔質ガラス母
材をSiCコート炉芯管で加熱処理する方法が考えられ
る。石英製炉芯管では、CI2等のハロゲン系ガスによ
っても腐食されることはないが、前述したように120
0℃以上の高温にすると結晶化により降温できないとい
う問題が生じるため、これを回避するために石英炉芯管
での脱水・高純度化処理は、1100℃以下で実施する
ことが望ましい。
By the way, when halogen-based gas is mixed with dehydrated and high-purity gas, SiC! As another means of preventing the deterioration of l,
A possible method is to dehydrate and purify the porous glass base material in advance in a heating furnace with a quartz core tube, and then heat treat the porous glass base material with a SiC coated furnace core tube. . Quartz furnace core tubes are not corroded by halogen gases such as CI2, but as mentioned above, 120
If the temperature is set to a high temperature of 0° C. or higher, there will be a problem that the temperature cannot be lowered due to crystallization, so to avoid this problem, it is desirable to carry out the dehydration and purification treatment in a quartz furnace tube at a temperature of 1100° C. or lower.

熱分解カーボンは、塩素系ガス単体による腐食はないが
、下記(6)式のスート脱水反応によって生じる0□に
より、下記(7)式の酸化消耗反応が起こるので、その
抑制のため、COx合が必要となる。
Pyrolytic carbon is not corroded by chlorine-based gas alone, but the 0□ produced by the soot dehydration reaction in equation (6) below causes the oxidative depletion reaction in equation (7) below. Is required.

S 1−OH+Cj、−81−Cj+HCj+v20.
  − (6)捧o2+c→CO・・・(7) また脱水処理は脱水反応が効率的となる900℃以上で
かつスート収縮の伴なわない1200℃以下であること
が望ましい。
S 1-OH+Cj, -81-Cj+HCj+v20.
- (6) O2+c→CO (7) It is also desirable that the dehydration treatment be carried out at a temperature of 900° C. or higher, at which the dehydration reaction is efficient, and at a temperature of 1200° C. or lower, at which soot shrinkage does not occur.

(フッ素添加工程) 次にSiC膜を有する炉芯管を用いて多孔質ガラス母材
に、フッ素を添加することについて説明する。
(Fluorine Addition Step) Next, adding fluorine to a porous glass base material using a furnace core tube having a SiC film will be described.

上記SiC膜19を有する炉芯管12を高温に保ち、炉
芯管内をフッ素化合物ガスと不活性ガスとの混合ガス雰
囲気とし、上記処理した多孔質ガラス母材を保持するか
或いは通過させその加熱温度を1400℃以下とするこ
とにより該多孔質ガラス母材にフッ素を添加している。
The furnace core tube 12 having the SiC film 19 is kept at a high temperature, the inside of the furnace core tube is made into a mixed gas atmosphere of fluorine compound gas and inert gas, and the treated porous glass base material is held or passed through it to heat it. Fluorine is added to the porous glass base material by setting the temperature to 1400° C. or lower.

ここでフッ素化合物ガスとしてはS i F4などのフ
ッ化ケイ素、CF4などのフッ化炭素、SF6などが用
いられる。また1400℃以下のフッ素添加処理により
多孔質ガラス母材が透明ガラス化しなかった場合には、
不活性ガスのみの雰囲気で1400℃以上で多孔質ガラ
ス母材の透明ガラス化を再度実施するか、或いは140
0℃以上の加熱下において雰囲気ガス中にS i F、
とともに少なくとも812F6或いはSi3F、を含有
せしめてフッ素添加処理を行いつつ透明ガラス化する。
Here, as the fluorine compound gas, silicon fluoride such as S i F4, carbon fluoride such as CF4, SF6, etc. are used. In addition, if the porous glass base material does not become transparent vitrified by the fluorine addition treatment at 1400°C or less,
Transparent vitrification of the porous glass base material is performed again at 1400°C or higher in an atmosphere of only inert gas, or
SiF,
In addition, at least 812F6 or Si3F is contained and fluorine is added thereto to form transparent glass.

このようにすることによ)) SiC膜の劣化がなり、
SIC膜を有するカーボン炉芯管を用いてフッ素添加処
理ができる。
By doing this, the deterioration of the SiC film will be reduced.
Fluorine addition treatment can be performed using a carbon furnace core tube with an SIC film.

熱分解カーボンをコーティングしたカーボン製炉芯管に
ても、SiCコーティングと同様の処理でF添加が可能
であるが、カーボンコートの場合、SiCよりも耐F化
合物ガス性に優れており2F添加条件の範囲は広い。
Although it is possible to add F to a carbon furnace core tube coated with pyrolytic carbon using the same process as SiC coating, carbon coating has better F compound gas resistance than SiC and requires 2F addition conditions. The range of is wide.

F化合物ガス11t、rc!、S i F、、 CF4
゜C2F、、 SF6が用いられる。−船釣な条件とし
ては、1200〜14oo℃にて2F添加処理を不活性
ガスとF化合物ガスとの混合ガス雰囲気で行い、145
0℃fi上の温度で、F化合物ガス・不活性ガス混合雰
囲気で透明ガラス化するものである。
F compound gas 11t, rc! , S i F,, CF4
°C2F, SF6 are used. - For boat fishing conditions, 2F addition treatment is carried out at 1200 to 14oooC in a mixed gas atmosphere of inert gas and F compound gas, and 145
It is made into transparent glass at a temperature above 0°C fi in a mixed atmosphere of F compound gas and inert gas.

尚、ここに例示した光ファイバ母材の製造方法は一例で
あり、その低回ラドインチューブ法等の所望の製法を用
いて適宜製造するようにすればよい。
Note that the method for manufacturing the optical fiber preform illustrated here is just one example, and the optical fiber preform may be manufactured as appropriate using a desired manufacturing method such as the low-turn rad-in tube method.

く実 施 例〉 以下、本発明の好適な一実施例を説明する。Example of implementation A preferred embodiment of the present invention will be described below.

H2102火炎加水分解法により、第4図に示す手法で
、外形120φ、長さ450■、密度0.35g/cl
rのガラス粒子堆積体11(以下「多孔質ガラス母材」
という)を製造した。
Using the H2102 flame hydrolysis method as shown in Figure 4, the outer diameter is 120φ, the length is 450cm, and the density is 0.35g/cl.
r glass particle deposit body 11 (hereinafter referred to as "porous glass base material")
) was manufactured.

この多孔質ガラス母材を第1図に示す内層。The inner layer of this porous glass base material is shown in FIG.

外層にSiC膜19を有する炉芯管12を有する加熱炉
に挿入した。
It was inserted into a heating furnace having a furnace core tube 12 having a SiC film 19 on the outer layer.

このSiC膜19はCVD法によりコーティングされ6
5μmの膜厚であった。
This SiC film 19 is coated by CVD method 6
The film thickness was 5 μm.

ヒータ14を加熱し、炉温を1070℃とした。このと
きの炉内の02濃度は50〜70ppmであった(N2
ガス中)。
The heater 14 was heated to bring the furnace temperature to 1070°C. The 02 concentration in the furnace at this time was 50 to 70 ppm (N2
(in gas).

ガスをHe 101/分、  SiCj、 200 c
c/分。
Gas: He 101/min, SiCj, 200 c
c/min.

GO10%−He 90%ガX100cc/分に切り換
え、上記多孔質ガラス母材11を下降速度10■/分の
速度でヒータ部を通過させ脱水を行った。ついで、ガス
種をHe1Oj/分、SiF300cc/分、GOIO
%−He90%ガス100cc/分に切り換え、多孔質
ガラス母材11の下降速度を3.5■/分とし、133
0℃としたヒータ部を通過させた。次い゛で、ヒータ温
度を1600℃とし、ガスをHe 101/分、C0I
O%−He90%ガス100cc/分に切り換え、下降
速度を10m1III/分でヒータ部を通過させ透明ガ
ラス化を行った。
GO 10%-He 90% gas was switched to 100 cc/min, and the porous glass base material 11 was passed through the heater section at a descending speed of 10 cc/min to perform dehydration. Next, the gas types were changed to He1Oj/min, SiF300cc/min, and GOIO.
%-He90% gas at 100 cc/min, and the descending speed of the porous glass base material 11 was set to 3.5 μ/min.
The sample was passed through a heater section at 0°C. Next, the heater temperature was set to 1600°C, and the gas was He 101/min, C0I
The flow rate was changed to 100 cc/min of O%-He90% gas, and the gas was passed through the heater part at a descending speed of 10 ml/min to obtain transparent vitrification.

得られた母材は、石英ガラスに対し、014%の比屈折
率差を有し、OH濃度は、0.lppm未満であった(
赤外分光光度計による3670am1のSi−OH振動
吸収より求めた。)。
The obtained base material has a relative refractive index difference of 0.014% with respect to quartz glass, and an OH concentration of 0.014%. It was less than lppm (
It was determined from Si-OH vibration absorption at 3670 am1 using an infrared spectrophotometer. ).

得られた透明ガラス体の中心部に超音波大開機を用いて
5m径の穴を開けた後、外径25φまでH2102バー
ナーを用いて加熱延伸し、パイプと石英ロッドを加熱一
体化した。
A hole with a diameter of 5 m was made in the center of the obtained transparent glass body using an ultrasonic wide opening machine, and then heated and stretched using an H2102 burner to an outer diameter of 25 φ, and the pipe and the quartz rod were heated and integrated.

得られた母材は比屈折率差0.34%、コアクラッド比
5.1であった。このロッドを10φに延伸し、内径1
2φ、外径30φのF添加石英パイプに挿入し、加熱一
体化し、外径28φ、コアクラッド比12.5.比屈折
率差0.34%の光ファイバプリフォームを製造した。
The obtained base material had a relative refractive index difference of 0.34% and a core-cladding ratio of 5.1. This rod is stretched to 10φ and has an inner diameter of 1
It is inserted into an F-added quartz pipe with a diameter of 2φ and an outer diameter of 30φ, heated and integrated to form a pipe with an outer diameter of 28φ and a core-clad ratio of 12.5. An optical fiber preform with a relative refractive index difference of 0.34% was manufactured.

このプリフォームを線引し第6図に示すシングルモード
光ファイバ20を得、その損失を測定したところ、波長
1.55μmにて0.173dB/kmであった(第2
図参照)。
This preform was drawn to obtain the single mode optical fiber 20 shown in Fig. 6, and its loss was measured to be 0.173 dB/km at a wavelength of 1.55 μm (second
(see figure).

同様の透明ガラス化プロセスを90本まで行ったが、炉
芯管の損傷は全くみられなかった。また得られた母材を
用いて製造したプリフォーム50本について1.55μ
mの損失の平均は0.1722dB/にと良好であった
A similar transparent vitrification process was performed for up to 90 tubes, but no damage to the furnace core tubes was observed. In addition, 1.55μ for 50 preforms manufactured using the obtained base material
The average loss of m was 0.1722 dB/, which was good.

比較例1 実施例1と同様の温度条件で上記多孔質母材19をCO
を流さないガス条件で実施例1と同様に処理し、シング
ルモード光ファイバを得た。
Comparative Example 1 The porous base material 19 was heated with CO under the same temperature conditions as in Example 1.
A single mode optical fiber was obtained by processing in the same manner as in Example 1 under gas conditions without flowing.

焼結本数1〜40本目までの損失の平均は0、1 ? 
31dB/にであったが、その後損失が増加し、55本
目には、0.189dB/にとなっていた。
The average loss for the 1st to 40th sintered pieces is 0 or 1?
The loss was 31 dB/, but the loss increased thereafter, and by the 55th run, it was 0.189 dB/.

炉芯管を調べたところ、ヒータ付近に小クラックが生成
し、一部のコーティングが消失していた。
When the furnace core tube was examined, small cracks had formed near the heater and some of the coating had disappeared.

実施例2 第5図に示すH、/ 02火炎加熱分解法により、外径
100φ、長さ450m、密度0.33g/carの多
孔質ガラス母材11を製造した。
Example 2 A porous glass preform 11 having an outer diameter of 100φ, a length of 450 m, and a density of 0.33 g/car was manufactured by the H,/02 flame thermal decomposition method shown in FIG.

この多孔質ガラス母材を第1図に示すSiCをカーボン
表面に65μmコーティングした炉芯管12にセツティ
ングし、と−タ14の温度を1060℃まで昇温した。
This porous glass base material was set in a furnace core tube 12 shown in FIG. 1 whose carbon surface was coated with 65 .mu.m of SiC, and the temperature of the furnace 14 was raised to 1060.degree.

ガスをHe 101/分、 SiCj、300cc/分
Gas: He 101/min, SiCj, 300cc/min.

Co 10%−He 90%200 ce/分に切り換
え、母材を5醜/分の速度でと−タ部を通過さ・せた。
The flow rate was changed to Co 10%-He 90% 200 ce/min, and the base material was passed through the converter section at a speed of 5 ce/min.

次いで、ガスをHe 101/分、C0IO%−1(e
90%200ec/分に切り換え、1670℃ヒータ温
度で4sm/分の速度とし多孔質ガラス母材11をヒー
タを通過させ透明ガラス化した。
The gas was then heated to He 101/min, C0IO%-1 (e
The speed was changed to 200 ec/min at 90%, and the speed was set to 4 sm/min at a heater temperature of 1670° C., and the porous glass base material 11 was passed through the heater to form transparent glass.

得られた母材11(純SiO8)は、OH濃度0、lp
pm未満であった。抵抗加熱炉による延伸を行った後、
第3図に示すロッドインチューブ法により、0.4%石
英より低屈折率なF添加石英管21と一体化し、その後
線引きしたところ、1.55μmでの損失は0.175
dB/kmt 。
The obtained base material 11 (pure SiO8) has an OH concentration of 0 and lp
It was less than pm. After stretching in a resistance heating furnace,
By the rod-in-tube method shown in Fig. 3, it was integrated with the F-doped quartz tube 21, which has a refractive index lower than that of 0.4% quartz, and was then drawn, resulting in a loss of 0.175 at 1.55 μm.
dB/kmt.

1、38 μmのOH吸収は0.6 dB/kmであっ
た。
The OH absorption at 1.38 μm was 0.6 dB/km.

実施例3 炉芯管として熱分解カーボンを内外にコーティングした
熱分解カーボン膜を有するカーボン炉芯管を用い、実施
例1と同様の条件でF#加石英ガラスを製造し、比屈折
率差0.34%、コア・クラッド比12.5のシングル
モードファイバプリフォームを肩ツドインチューブ法で
作製し、線引きしたところ、1.55μmの損失はファ
イバ40本の平均で0.1715dB、^飄であった。
Example 3 Using a carbon furnace core tube having a pyrolytic carbon film coated with pyrolytic carbon inside and outside as a furnace core tube, F# added silica glass was manufactured under the same conditions as in Example 1, and the relative refractive index difference was 0. When a single-mode fiber preform with a core-cladding ratio of .34% and a core-cladding ratio of 12.5 was fabricated using the shoulder-in-tube method and drawn, the loss at 1.55 μm was 0.1715 dB on average for 40 fibers. there were.

比較例2 実施例3と同じ構造の熱分解したグラファイト炉芯管を
用い、実施例3と同様な加熱プロセスを行った。焼結本
数1〜20本目ま目星結体に異常はみられなかったが、
20本目星降はガラス表面に気泡(点状)がみられるよ
うになった。
Comparative Example 2 A heating process similar to that in Example 3 was performed using a pyrolyzed graphite furnace core tube having the same structure as in Example 3. No abnormality was observed in the sintered star bodies with 1 to 20 pieces, but
On the 20th starburst, bubbles (dots) could be seen on the glass surface.

これは、カーボンコートが消失しグラファイト基材の消
耗により発生したカーボン粉が石英上に付着したため発
生したものであった。
This occurred because the carbon coat disappeared and carbon powder generated due to consumption of the graphite base material adhered to the quartz.

実施例4 第1図に示すようなSiC膜19を有する加熱炉18(
炭化ケイ素内層厚さ50μm1外層の炭化ケイ素内層厚
さ50μm、CVD法により形成、純度100%)を使
用した。ヒータ14より1050℃に加熱し、炉芯管1
2内にSiCj4を300cc/分、Heを101/分
、Co 10%−He 90%200oe/分の割合で
流し、その中に多孔質ガラス母材11を下降速度10−
/分で挿入した。多孔質ガラス母材11がヒータ14を
通過した後、ガスをSiF160cc/分およびHe1
01/分、C010%−He 90%200cc/分に
切り換え、と−ター14の温度を1400℃にし、3■
/分で多孔質ガラス母材21を移動させた。その後、ガ
スをHe 101/分に切り換え、ヒーター温度170
0℃にて20m/分で多孔質ガラス母材を処理し、透明
ガラス化した。
Example 4 A heating furnace 18 (
A silicon carbide inner layer with a thickness of 50 μm and an outer silicon carbide inner layer with a thickness of 50 μm, formed by CVD method, purity 100%) were used. Heat the furnace core tube 1 to 1050°C using the heater 14.
2 at a rate of 300 cc/min, He 101/min, Co 10%-He 90% 200 oe/min, and the porous glass base material 11 was lowered into it at a descending speed of 10-min.
/minute inserted. After the porous glass base material 11 passes through the heater 14, the gas is heated at 160 cc/min of SiF and He1.
01/min, C010%-He 90% 200cc/min, set the temperature of the reactor 14 to 1400°C, and
The porous glass base material 21 was moved at a rate of 1/min. Then, the gas was switched to He 101/min and the heater temperature was 170
The porous glass base material was processed at 20 m/min at 0° C. to make it transparent.

得られた透明化ガラス母材は石英に対し、0.34%低
い比屈折率差を有していた。
The obtained transparent glass base material had a relative refractive index difference that was 0.34% lower than that of quartz.

この得られたガラス母材を用いて、直径125μmのl
li S i Oコア型車−モードファイバを作製した
ところ、波長1.55μmにおける伝送損失値は0.1
73 dB /kmであった。また、長期間に互って加
熱処理を行っても、SiC膜19には損傷が全くみられ
なかった。
Using this obtained glass base material, a 125 μm diameter l
When a li S i O core type car-mode fiber was fabricated, the transmission loss value at a wavelength of 1.55 μm was 0.1.
It was 73 dB/km. Further, even when the heat treatments were repeated for a long period of time, no damage was observed to the SiC film 19.

〈発明の効果〉 以上、実験例、実施例と共に詳しく述べたように、本発
明によれば不純物、水分の混入の無い光ファイバ用母材
を長期間に亙って安定して製造でき、且つ従来の石英炉
に発現される変形、結晶化、破壊やSiCコートカーボ
ン材におけるコーテイング膜の酸化消耗が抑えられるこ
とから、長期に互って炉芯管を使用でき、経済的である
<Effects of the Invention> As described above in detail along with experimental examples and examples, according to the present invention, it is possible to stably manufacture an optical fiber base material free of impurities and moisture over a long period of time, and Since the deformation, crystallization, and destruction that occur in conventional quartz furnaces and the oxidative wear and tear of the coating film in SiC-coated carbon materials are suppressed, the furnace core tubes can be used interchangeably for a long period of time, making it economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に用いる加熱炉の断面図、第2図は
光ファイバの損失特性を示すグラフ、第3図はロフトイ
ンチューブ法によるプリフォ−ム製造図、第4,5図は
火炎加水分解法による母材製法概念図、第6図はファイ
バの屈折率分布図である。 図  面  中、 11は多孔質ガラス母材、 12は炉芯管、 13は支持棒、 14はヒータ、 15は炉本体、 16は不活性ガス導入路、 17は雰囲気ガス導入路、 18はカーボン炉芯管基材、 19はSiC膜ないしは熱分解カーボン膜である。
Fig. 1 is a cross-sectional view of the heating furnace used in the method of the present invention, Fig. 2 is a graph showing the loss characteristics of optical fiber, Fig. 3 is a preform manufacturing diagram by the loft-in-tube method, and Figs. A conceptual diagram of the base material manufacturing method using the hydrolysis method, and FIG. 6 is a refractive index distribution diagram of the fiber. In the drawing, 11 is a porous glass base material, 12 is a furnace core tube, 13 is a support rod, 14 is a heater, 15 is a furnace body, 16 is an inert gas introduction path, 17 is an atmospheric gas introduction path, and 18 is carbon. The furnace core tube base material 19 is a SiC film or a pyrolytic carbon film.

Claims (1)

【特許請求の範囲】 1)SiC膜又は熱分解カーボン膜を有するカーボン製
炉芯管中に、不活性ガス、ハロゲン系ガス及び一酸化炭
素の混合ガスを導入して、多孔質ガラス母材を脱水・高
純度化処理し、透明ガラス化処理することを特徴とする
光ファイバ用母材の製造方法。 2)請求項1記載の光ファイバ用母材の製造方法におい
て、 多孔質ガラス母材を脱水・高純度化処理した後、 次いで、上記炉芯管中に、SiF_4にSi_2F_6
及び/又はSi_3F_8を混合したフッ素化合物を導
入して脱水・高純度化処理後の多孔質ガラス母材にフッ
素添化処理し、 その後、透明ガラス化処理することを特徴とする光ファ
イバ用母材の製造方法。 3)請求項1又は2の光ファイバ用母材の製造方法にお
いて、 脱水・高純度化処理する混合ガスが、He、Ar、N_
2から選ばれた一種以上の不活性ガス、SiCl_4、
SiF_4、CCl_4、CF_4から選ばれたハロゲ
ン系ガス及びCOの混合ガスであることを特徴とする光
ファイバ用母材の製造方法。
[Claims] 1) A mixed gas of an inert gas, a halogen gas, and carbon monoxide is introduced into a carbon furnace core tube having a SiC film or a pyrolytic carbon film to form a porous glass base material. A method for producing an optical fiber base material, which is characterized by dehydration, high purity treatment, and transparent vitrification treatment. 2) In the method for manufacturing an optical fiber preform according to claim 1, after the porous glass preform is dehydrated and purified, Si_2F_6 is added to SiF_4 in the furnace core tube.
and/or a fluorine compound mixed with Si_3F_8 is introduced into the porous glass base material after dehydration and high purity treatment, and the porous glass base material is subjected to fluorine addition treatment, and then subjected to transparent vitrification treatment. manufacturing method. 3) In the method for manufacturing an optical fiber base material according to claim 1 or 2, the mixed gas to be dehydrated and purified is He, Ar, N_
one or more inert gases selected from 2, SiCl_4,
A method for manufacturing an optical fiber base material, characterized in that the mixed gas is a halogen gas selected from SiF_4, CCl_4, and CF_4 and CO.
JP2159678A 1990-06-20 1990-06-20 Production of preform for optical fiber Pending JPH0450130A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2159678A JPH0450130A (en) 1990-06-20 1990-06-20 Production of preform for optical fiber
CN93114346.2A CN1099012A (en) 1990-06-20 1990-06-29 Be used for the glass fiber preform heat-treating methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2159678A JPH0450130A (en) 1990-06-20 1990-06-20 Production of preform for optical fiber
CN93114346.2A CN1099012A (en) 1990-06-20 1990-06-29 Be used for the glass fiber preform heat-treating methods

Publications (1)

Publication Number Publication Date
JPH0450130A true JPH0450130A (en) 1992-02-19

Family

ID=36846108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2159678A Pending JPH0450130A (en) 1990-06-20 1990-06-20 Production of preform for optical fiber

Country Status (2)

Country Link
JP (1) JPH0450130A (en)
CN (1) CN1099012A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026645A1 (en) * 2000-09-27 2002-04-04 Corning Incorporated Process for drying porous glass preforms
JP2004523454A (en) * 2000-12-22 2004-08-05 コーニング インコーポレイテッド Processing of soot and preforms using reducing agents
JP2022049501A (en) * 2020-09-16 2022-03-29 信越化学工業株式会社 Method for manufacturing optical fiber glass preform

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188314A (en) * 2011-03-10 2012-10-04 Shin-Etsu Chemical Co Ltd Method of manufacturing fluorine-containing optical fiber base material and fluorine-containing optical fiber base material
CN106116121A (en) * 2016-08-31 2016-11-16 中国建筑材料科学研究总院 The preparation method of quartz glass and quartz glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026645A1 (en) * 2000-09-27 2002-04-04 Corning Incorporated Process for drying porous glass preforms
WO2002026646A3 (en) * 2000-09-27 2002-10-31 Corning Inc Process for drying porous glass preforms
JP2004523454A (en) * 2000-12-22 2004-08-05 コーニング インコーポレイテッド Processing of soot and preforms using reducing agents
JP2022049501A (en) * 2020-09-16 2022-03-29 信越化学工業株式会社 Method for manufacturing optical fiber glass preform

Also Published As

Publication number Publication date
CN1099012A (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US4082420A (en) An optical transmission fiber containing fluorine
US4772302A (en) Optical waveguide manufacture
JPS60239337A (en) Preparation of parent glass material for optical fiber
JPH08502470A (en) Method and apparatus for manufacturing preforms for quartz glass lightwave conductors
JPH1053423A (en) Production of synthetic silica glass
JP2007513862A (en) Alkali-doped optical fiber, preform thereof and method for producing the same
US4161505A (en) Process for producing optical transmission fiber
US4295869A (en) Process for producing optical transmission fiber
US4504297A (en) Optical fiber preform manufacturing method
EP0177040B1 (en) Method for producing glass preform for optical fiber
US4165152A (en) Process for producing optical transmission fiber
WO2016021576A1 (en) Optical fiber base material and method for producing optical fiber
JP4464958B2 (en) Synthetic silica glass tube for preform manufacture, its manufacturing method in vertical stretching process and use of the tube
JPS6081033A (en) Manufacture of optical fiber
JPH05350B2 (en)
JP2808857B2 (en) Heating furnace and manufacturing method of glass preform for optical fiber
JPH0450130A (en) Production of preform for optical fiber
KR100545813B1 (en) Optical fiber preform manufacturing method using crystal chemical vapor deposition including dehydration and dechlorination process and optical fiber manufactured by this method
JPH051221B2 (en)
JPH06263468A (en) Production of glass base material
JP2004338992A (en) Method for manufacturing glass preform
JPS62153130A (en) Production of parent material for optical fiber glass
JPH01126236A (en) Production of optical fiber preform
JPS6183639A (en) Production of quartz pipe of high purity
JPS61168544A (en) Production of glass tube mainly composed of quartz