JPS60186427A - Manufacture of optical fiber preform - Google Patents

Manufacture of optical fiber preform

Info

Publication number
JPS60186427A
JPS60186427A JP59037223A JP3722384A JPS60186427A JP S60186427 A JPS60186427 A JP S60186427A JP 59037223 A JP59037223 A JP 59037223A JP 3722384 A JP3722384 A JP 3722384A JP S60186427 A JPS60186427 A JP S60186427A
Authority
JP
Japan
Prior art keywords
base material
preform
optical fiber
core tube
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59037223A
Other languages
Japanese (ja)
Other versions
JPS6328853B2 (en
Inventor
Hiroyuki Suda
裕之 須田
Shuichi Shibata
修一 柴田
Motohiro Nakahara
基博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59037223A priority Critical patent/JPS60186427A/en
Priority to CA000475011A priority patent/CA1284921C/en
Priority to AU39122/85A priority patent/AU556545B2/en
Priority to US06705362 priority patent/US4618354B1/en
Priority to KR1019850001192A priority patent/KR870001739B1/en
Priority to DE8585301304T priority patent/DE3575414D1/en
Priority to EP85301304A priority patent/EP0154500B1/en
Publication of JPS60186427A publication Critical patent/JPS60186427A/en
Priority to AU60204/86A priority patent/AU584223B2/en
Priority to AU60205/86A priority patent/AU586490B2/en
Priority to US07/054,886 priority patent/US4801322A/en
Publication of JPS6328853B2 publication Critical patent/JPS6328853B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the corrosion of a furnace core tube, and to obtain an optical fiber preform at a low cost, by heating a porous preform at a low temperature to effect the thermal shrinkage, and reheating to the vitrification temperature. CONSTITUTION:The porous preform 13 deposited in the reaction vessel 16 made of e.g. Pyrex glass, etc. is heated in the electric furnace 15 maintained at about 1,300 deg.C (lower than the vitrification temperature) to effect the thermal shrinkage and obtain a semitransparent preform 12. The porous preform 13 is dehydrated in the above process with chlorine gas. The semitransparent preform 12 is transferred to another electric furnace, and reheated at about 1,500 deg.C to obtain a transparent glass preform. The reheating process is carried out using a furnace core tube made of carbon in the stream of pure helium gas to minimize the corrosion of the carbon core tube. Since the pressure control in the electric furnace and the core tube is not necessary, the operation can be simplified and the yield of the optical fiber preform can be improved.

Description

【発明の詳細な説明】 (技術分野) 本発明は光フアイバ母材の製造における透明ガ1゛ラス
化の方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for producing transparent glass in the production of optical fiber preforms.

(従来技術) 従来、光フアイバ母材の製造方法において、ガラス微粒
子を合成し、それを堆積させ形成した多孔質母材から透
明ガラス母材を得るに際して、該J・・多孔質母材を一
度の昇温において透明ガラス化しIている。
(Prior art) Conventionally, in a method for manufacturing an optical fiber base material, when obtaining a transparent glass base material from a porous base material formed by synthesizing glass fine particles and depositing them, the J... It becomes transparent vitrified at elevated temperature.

第1図は従来用いられている光フアイバ母材の作製系の
一例を示し、1は石英ガラス製種棒、2は透明化母材、
8は多孔質母材、4は石英ガラス5製炉心管、5は透明
化用電気炉、6はパイレックスガラス製反応容器、7は
石英ガラス製合成トーチ、8はガラス原料供給系、9は
ガスシール部、lOは電気炉内圧力計である。A、Hに
おいて石英ガラス製炉心管はフランジ加工され、密閉性
が1・:保たれている。
Figure 1 shows an example of a conventional optical fiber base material production system, in which 1 is a quartz glass seed rod, 2 is a transparent base material,
8 is a porous base material, 4 is a furnace tube made of quartz glass 5, 5 is an electric furnace for transparency, 6 is a reaction vessel made of Pyrex glass, 7 is a synthesis torch made of quartz glass, 8 is a glass raw material supply system, and 9 is a gas The seal portion, IO, is an electric furnace internal pressure gauge. In A and H, the quartz glass furnace core tube is flanged to maintain hermeticity of 1.

通常、多孔質母材8の外径が61腸程度の場合、透明化
するために電気炉5を1500’Cまで昇温しなければ
ならず、かつまた多孔質母材を脱水するため塩化チオニ
ル、塩素ガス等の塩紫系脱1)水剤を使用するので、シ
ール性、加工性かラヤむを得ず石英ガラス製炉心管4を
使用せねばならなかった。しかし石英ガラス製炉心管4
は使用温度が1800°Cの付近までであり、形状を保
つため、電気炉の内圧を電気炉内圧力計10で監視せね
ばな!・・らず、その適正値も炉心管内圧により変化し
、そ1の調整はむずかしかった。さらに使用可能温度以
上で常時用いるので、石英ガラスの失透およびひび割れ
等があり、消耗がはげしかった。
Normally, when the outer diameter of the porous base material 8 is about 61 mm, the electric furnace 5 must be heated to 1500'C to make it transparent, and thionyl chloride is required to dehydrate the porous base material. Since a salt-purple removal agent such as chlorine gas is used, a quartz glass furnace core tube 4 had to be used due to poor sealing and processability. However, the quartz glass furnace core tube 4
The operating temperature is up to around 1800°C, and in order to maintain the shape, the internal pressure of the electric furnace must be monitored with the electric furnace internal pressure gauge 10! ...and the appropriate value also changes depending on the pressure inside the reactor core tube, making adjustment of the first part difficult. Furthermore, since it is constantly used at temperatures above the usable temperature, the quartz glass suffers from devitrification and cracking, resulting in rapid wear and tear.

また近年、光ファイバの量産化に伴い、′経済化・を図
るため、多孔質母材の外径を大きくする必要があり、多
孔質母材の直径が太くなるにつれて、多孔質母材の熱吸
収および炉内径が大きくなるために生じる熱損′失が増
加し、発熱体における負荷密度が高くなる。管状の電気
炉においては、発熱用部の面積は大きく変えられず、′
負荷密度の増加に伴い、発熱体の表面温度が増加する。
In addition, in recent years, with the mass production of optical fibers, it has become necessary to increase the outer diameter of the porous base material in order to make it more economical. Heat losses due to absorption and the larger furnace diameter increase, leading to higher loading densities on the heating elements. In a tubular electric furnace, the area of the heating part cannot be changed significantly;
As the load density increases, the surface temperature of the heating element increases.

−例として挙げると内径150關を有するカーボン抵抗
炉において、石英ガラス製炉心管を挿入した状態で外径
1801Isの多孔質母材を透明化する場合、8℃/”
minの昇温で1550°Cの発熱部温度が必要であっ
た。
- For example, when transparentizing a porous base material with an outer diameter of 1801Is with a quartz glass furnace tube inserted in a carbon resistance furnace with an inner diameter of 150mm, 8℃/''
A heating part temperature of 1550°C was required with a temperature increase of min.

そのため、それに応じた電気炉内径と透明ガラスを得る
までの昇温能力を同時に持つ電気炉は、エネルギー損失
も大きく、発熱体温度を高く設定パ″しなければならず
、その使用電力およびその寸法1において、非常に大形
にしなければならなかった。
Therefore, an electric furnace that has a corresponding inner diameter and the ability to raise the temperature to obtain transparent glass at the same time has a large energy loss, and the heating element temperature must be set high, and its power consumption and dimensions 1, it had to be made very large.

また多孔質母材作製装置に同時に具備させることが困難
になるという欠点があった。
Another drawback is that it is difficult to simultaneously equip a porous base material manufacturing apparatus.

(発明の目的) 本発明はこれらの欠点を除去するため、一度多孔質母材
の体積が収縮する温度で、該多孔質母材を加熱処理を行
うものであり、その目的は石英ガラス製炉心管の消耗を
少なくし、かつ電気炉および炉心管内の圧力調整を不必
要として操作を簡単l・・にし、光フアイバ用母材ひい
ては光ファイバのコストの低価格化にある。
(Object of the Invention) In order to eliminate these drawbacks, the present invention heat-treats the porous base material at a temperature at which the volume of the porous base material once shrinks. The purpose of the present invention is to reduce the wear and tear of the tube, eliminate the need for pressure adjustment in the electric furnace and the furnace core tube, simplify the operation, and lower the cost of the base material for optical fibers and, in turn, the cost of optical fibers.

(発明の構成および作用) まず本発明における基本的概念を説明する。(Structure and operation of the invention) First, the basic concept of the present invention will be explained.

第2図に多孔質母材の収縮率を示す。これは多l・孔質
母材を切り出し、ヘリウムガス中で種々の温度において
熱処理した時の収縮率を示したものである。
Figure 2 shows the shrinkage rate of the porous base material. This shows the shrinkage rate when a porous base material is cut out and heat treated in helium gas at various temperatures.

収縮率をkとして、k=Δl/lo= (lo−1)/
l。
When the contraction rate is k, k=Δl/lo= (lo-1)/
l.

をとった。ここに!。は熱処理前の多孔質母材の211
(8) 長さであり、!は熱処理後の多孔質母材の長さで1ある
I took it. Here! . 211 of the porous base material before heat treatment
(8) It is the length! is the length of the porous base material after heat treatment, which is 1.

なおIは多孔質母材中のGeog含有量が多い場合の特
性を示し、■は多孔質母材中の060.含有量が少ない
場合の特性を示す。
Note that I indicates the characteristics when the Geog content in the porous base material is high, and ■ indicates the characteristics when the Geog content is high in the porous base material. The characteristics when the content is small are shown.

第2図かられかるようにGoo、濃度、多孔質母材の初
期密度により異なるがおよそ1000’Cより収縮が始
まり、1200−1800’Cでおよそ50%の収縮率
で飽和する。その後透明化が始まり、およそ1500℃
で透明化が完了する。
As can be seen from FIG. 2, shrinkage begins at about 1000'C, although it varies depending on the concentration, initial density of the porous matrix, and saturates at about 50% shrinkage at 1200-1800'C. After that, it begins to become transparent and reaches approximately 1500℃.
Transparency is completed.

次に本発明の一実施例について述べる。Next, one embodiment of the present invention will be described.

本実施例において使用した光フアイバ母材の作製系を第
8図に示す。ここで11は石英ガラス製種棒、12は半
透明化母材、18は多孔質母材、14は石英ガラス製炉
心管、■5は電気炉、1615はパイレックスガラス製
反応容器、17は石英ガラス製合成トーチ、18はガラ
ス原料供給系、19はガラスシール部である。ここで電
気炉15は本実施例においては内径1 (l Qwgの
カーボン発熱体を有する電気炉を使用した。炉壁は水冷
し、7゜また特に圧力調整する必要はなかった。石英ガ
ラlス製炉心管14はA、Bにおいてフランジ加工され
、密閉性が保たれていた。
FIG. 8 shows a production system for the optical fiber base material used in this example. Here, 11 is a quartz glass seed rod, 12 is a translucent base material, 18 is a porous base material, 14 is a quartz glass furnace tube, 5 is an electric furnace, 1615 is a Pyrex glass reaction vessel, 17 is a quartz glass A glass synthesis torch, 18 is a glass raw material supply system, and 19 is a glass sealing part. In this example, the electric furnace 15 used was an electric furnace having a carbon heating element with an inner diameter of 1 (l Qwg).The furnace wall was water-cooled, and there was no need to particularly adjust the pressure. The furnace core tube 14 was flanged at A and B to maintain airtightness.

パイレックスガラス製反応容器16内で堆積された多孔
質母材18は1800℃に保たれた電気へ炉内で収縮し
、半透明化母材12として取り出した。この際、本実施
例においては塩素ガスを使用することにより多孔質母材
を脱水した。取り出された半透明化母材12は他の電気
炉により1500°Cに再加熱し、透明ガラス母材とし
た。この際使]0用した電気炉をこおいては塩素ガスは
流さず、カーボン炉心管を使用し・ヘリウムガスのみを
流シタ。
The porous preform 18 deposited in the Pyrex glass reaction vessel 16 was shrunk in an electric furnace kept at 1800° C. and taken out as a translucent preform 12. At this time, in this example, the porous base material was dehydrated by using chlorine gas. The semi-transparent base material 12 taken out was reheated to 1500°C in another electric furnace to obtain a transparent glass base material. At this time, the electric furnace used for this purpose was heated without flowing chlorine gas, using a carbon furnace tube and only flowing helium gas.

そのためカーボン炉心管の消耗は見られなかった。Therefore, no wear and tear on the carbon core tube was observed.

堆積した多孔質母材18の外径は1δQ ws 、半透
明化母材12の外径は64Nであった。さらに15透明
化された母材から得られた光ファイバの損失特性におい
ても、従来作製された光ファイバと同等であった。この
時石英ガラス製炉心管14は圧力調整等を行わずとも、
使用後においても特に外見的に何ら変化は見られなかっ
た。また半透明化2□母材12は多孔質母材18より焼
結度が高く、寸1法も小さくなっているので、取り出し
等の操作にiいても容易であった (発明の効果) 以上説明したように、本発明によれば、石英ガ・ラス製
炉心管の消耗が少なくなり、また電気炉および炉心管内
の圧力調整が不必要で操作も簡単になり、光フアイバ用
母材の歩止まりが向上するので、光フアイバコストの低
価格化に寄与できる利点がある。
The outer diameter of the deposited porous base material 18 was 1δQ ws , and the outer diameter of the semitransparent base material 12 was 64N. Furthermore, the loss characteristics of the optical fiber obtained from the 15-transparent base material were also comparable to those of conventionally produced optical fibers. At this time, the quartz glass furnace core tube 14 can be operated without pressure adjustment, etc.
Even after use, no changes were observed in appearance. In addition, the translucent 2□ base material 12 has a higher degree of sintering than the porous base material 18, and its dimensions are smaller, so operations such as removal were easier (effects of the invention). As explained above, according to the present invention, wear and tear on the quartz glass furnace core tube is reduced, and there is no need for pressure adjustment in the electric furnace and the furnace core tube, making the operation simple, and the progress of the base material for optical fibers has been improved. Since the termination is improved, there is an advantage that it can contribute to lowering the cost of optical fiber.

同様に光フアイバ母材の合成の高速化時においても連続
に焼結できるので、低価格化に寄与できる。またこれら
は光フアイバ製造のみならず、ガラスロッド等を作製す
る場合にも適用できる。
Similarly, even when the optical fiber base material is synthesized at high speed, continuous sintering can be performed, contributing to cost reduction. Furthermore, these methods can be applied not only to the production of optical fibers but also to the production of glass rods and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光フアイバ母材の作製系の一例を示す図
、 第2図は多孔質母材の温度と収縮率の関係を示す図、 第8図は本発明の一実施例における光ファイバ20(7
) 母材の作製系を示す図である。 11・・・石英ガラス製種棒 12・・・半透明化母材
18・・・多孔質母材 トド・・石英ガラス製炉心管 15・・・電気炉 16・・・パイレックスガラス製反応容器17・・・石
英ガラス製合成トーチ 18・・・ガラス原料供給系 19・・・ガスシール部。 特許出願人 日本電信電話公社 (8) 第2図 g1開昭GO−186427(4)
Figure 1 is a diagram showing an example of a conventional optical fiber base material production system, Figure 2 is a diagram showing the relationship between temperature and shrinkage rate of a porous base material, and Figure 8 is a diagram showing an example of an optical fiber base material production system of the present invention. Fiber 20 (7
) It is a diagram showing the production system of the base material. DESCRIPTION OF SYMBOLS 11... Quartz glass seed rod 12... Translucent base material 18... Porous base material Todo... Quartz glass furnace core tube 15... Electric furnace 16... Pyrex glass reaction vessel 17 ...Quartz glass synthetic torch 18...Glass raw material supply system 19...Gas seal section. Patent applicant Nippon Telegraph and Telephone Public Corporation (8) Figure 2 g1 Kaisho GO-186427 (4)

Claims (1)

【特許請求の範囲】[Claims] L ガラス原料を反応させることによって、ガラス微粒
子を生成し、該ガラス微粒子を堆積)させて多孔質母材
を形成し、その後高温に加熱、焼結して透明ガラス化す
る光フアイバ用母材の製造方法において、透明ガラス化
する前段階として、透明ガラス化温度より低い温度で加
熱収縮させた後、透明ガラス化温度に1・・再加熱する
ことを特徴とする光フアイバ用母材の製造方法。
L A base material for an optical fiber in which glass fine particles are generated by reacting glass raw materials, and the glass fine particles are deposited to form a porous base material, which is then heated to a high temperature and sintered to become transparent vitrification. A method for producing an optical fiber base material, which comprises heating and shrinking at a temperature lower than the transparent vitrification temperature and then reheating to the transparent vitrification temperature as a step before transparent vitrification. .
JP59037223A 1979-06-12 1984-03-01 Manufacture of optical fiber preform Granted JPS60186427A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP59037223A JPS60186427A (en) 1984-03-01 1984-03-01 Manufacture of optical fiber preform
CA000475011A CA1284921C (en) 1984-02-27 1985-02-22 Method, apparatus and burner for fabricating an optical fiber preform
AU39122/85A AU556545B2 (en) 1984-02-27 1985-02-25 Producing optical fibre preforms
US06705362 US4618354B1 (en) 1984-02-27 1985-02-25 Method,apparatus and burner for fabricating an optical fiber preform
DE8585301304T DE3575414D1 (en) 1984-02-27 1985-02-26 METHOD, DEVICE AND BURNER FOR PRODUCING A PREFORM FOR OPTICAL FIBERS.
KR1019850001192A KR870001739B1 (en) 1984-02-27 1985-02-26 Making method for optical fiber preform and apparatus
EP85301304A EP0154500B1 (en) 1984-02-27 1985-02-26 Method, apparatus and burner for fabrication an optical fiber preform
AU60204/86A AU584223B2 (en) 1984-02-27 1986-07-14 Apparatus for fabricating an optical fiber preform
AU60205/86A AU586490B2 (en) 1979-06-12 1986-07-14 Burner for fabricating an optical fiber preform
US07/054,886 US4801322A (en) 1984-02-27 1987-05-27 Method, apparatus and burner for fabricating an optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59037223A JPS60186427A (en) 1984-03-01 1984-03-01 Manufacture of optical fiber preform

Publications (2)

Publication Number Publication Date
JPS60186427A true JPS60186427A (en) 1985-09-21
JPS6328853B2 JPS6328853B2 (en) 1988-06-10

Family

ID=12491590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59037223A Granted JPS60186427A (en) 1979-06-12 1984-03-01 Manufacture of optical fiber preform

Country Status (1)

Country Link
JP (1) JPS60186427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283325A (en) * 1985-10-08 1987-04-16 Asahi Glass Co Ltd Production of quartz glass having high purity
JPH04108060U (en) * 1991-02-19 1992-09-18 慶隆 勝川 U-shaped washing tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738332A (en) * 1980-07-16 1982-03-03 Nippon Telegr & Teleph Corp <Ntt> Manufacture of glass rod by vapor axial deposition method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738332A (en) * 1980-07-16 1982-03-03 Nippon Telegr & Teleph Corp <Ntt> Manufacture of glass rod by vapor axial deposition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283325A (en) * 1985-10-08 1987-04-16 Asahi Glass Co Ltd Production of quartz glass having high purity
JPH04108060U (en) * 1991-02-19 1992-09-18 慶隆 勝川 U-shaped washing tool

Also Published As

Publication number Publication date
JPS6328853B2 (en) 1988-06-10

Similar Documents

Publication Publication Date Title
JP3388742B2 (en) Heat treatment equipment for synthetic vitreous silica moldings
JPS6038345B2 (en) Manufacturing method of glass material for optical transmission
JPS60186427A (en) Manufacture of optical fiber preform
JP2813752B2 (en) Manufacturing method of optical waveguide preform
KR100521958B1 (en) method and apparatus for fabricating of optical fiber preform with double torch in MCVD
JPH0788231B2 (en) Manufacturing method of optical fiber preform
JP2722573B2 (en) Manufacturing method of high purity quartz glass
JP2003505321A (en) Method for producing a glass preform and optical fiber obtained from said preform
JPH02217329A (en) Production of glass preform for optical glass fiber
JPS63147840A (en) Production of quartz glass material
JPH04260630A (en) Production of preform optical fiber
JPS6291439A (en) Production of fluorine-added transparent quartz glass body
JP3439258B2 (en) Method for producing glass preform for optical fiber
JP4230073B2 (en) Method for producing aluminum-added glass base material
JPS62292647A (en) Production of decentralized-shift single-mode optical fiber
JPS63151639A (en) Production of glass preformer for optical fiber
JP4403623B2 (en) Optical fiber preform manufacturing method
JPH0416412B2 (en)
JPS6065742A (en) Production of porous glass base material for optical fiber by vad method
JPS60145927A (en) Production of base material for optical fiber
JPH03115136A (en) Optical fiber preform and its production
JPS62191434A (en) Production of parent material for optical fiber
JPH04164836A (en) Production of glass preform for optical fiber
JPS61222936A (en) Plasma cvd process
JPS6117432A (en) Manufacture of optical fiber preform

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term