JPS6117432A - Manufacture of optical fiber preform - Google Patents

Manufacture of optical fiber preform

Info

Publication number
JPS6117432A
JPS6117432A JP13525584A JP13525584A JPS6117432A JP S6117432 A JPS6117432 A JP S6117432A JP 13525584 A JP13525584 A JP 13525584A JP 13525584 A JP13525584 A JP 13525584A JP S6117432 A JPS6117432 A JP S6117432A
Authority
JP
Japan
Prior art keywords
glass
rod
composite
gas
pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13525584A
Other languages
Japanese (ja)
Other versions
JPH0451497B2 (en
Inventor
Hiroo Kanamori
弘雄 金森
Gotaro Tanaka
豪太郎 田中
Naoki Yoshioka
直樹 吉岡
Tsunehisa Kyodo
倫久 京藤
Futoshi Mizutani
太 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13525584A priority Critical patent/JPS6117432A/en
Publication of JPS6117432A publication Critical patent/JPS6117432A/en
Publication of JPH0451497B2 publication Critical patent/JPH0451497B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • C03B2207/38Fuel combinations or non-standard fuels, e.g. H2+CH4, ethane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To produce a preform for single mode optical fiber having low transmission loss, by carrying out the deposition of pure glass soot using a hydrocarbon or CO as the combustion gas in the first stage, and using an oxyhydrogen flame in the second stage and thereafter. CONSTITUTION:SiCl4 is introduced into a flame generated by using a hydrocarbon or CO as the combustion gas to deposit pure SiO2 glass soot to the outer surface of a high-purity quartz glass rod. The obtained composite is heated in an atmosphere containing at least a fluorine compound gas to obtain a composite composed of the high-purity quartz rod and a fluorine-containing quartz glass layer surrounding the core quartz rod. The composite rod is drawn to a prescribed diameter. A pure SiO2 glass soot layer is deposited to the outer surface of the rod using an oxyhydrogen flame, and the product is heat-treated in an atmosphere containing at least fluorine. If necessary, the above procedure is repeated twice or more.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発FJAは低損失な単一モード光ファイバー用ガラス
母材の新規な製造方法に関する。%に本発明は、第1図
に実線で示す構造を持つ、コアが純石英ガラスであり、
クラッドが弗素を添加した石英ガラスからなる単一モー
ド光ファイバー用ガラス母材の製法に関する。なお本発
明にいう単一モード光ファイバ用ガラス母材は、第1図
のクラッド層の外側にさらに石英ジャケット#(第1図
に破線で示す)を持つものも含む。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present FJA relates to a novel method for manufacturing a glass base material for a single mode optical fiber with low loss. %, the present invention has a structure shown in the solid line in FIG. 1, and the core is made of pure silica glass,
This invention relates to a method for producing a glass base material for a single mode optical fiber whose cladding is made of fluorine-doped quartz glass. Note that the glass preform for single mode optical fiber according to the present invention also includes one having a quartz jacket # (indicated by a broken line in FIG. 1) on the outside of the cladding layer shown in FIG.

(従来の技術〉 第1図に示すような構造金もつ単一モード型光ファイバ
ー作製方法に関しては、すでに種々公報に記載されるよ
うに、[第1の円柱状のガラス物体の外側に、第1の屈
折率より低い屈折率を有する粒状ガラス物質を耐着およ
び被覆し、更に加熱延伸する」方法がある。
(Prior Art) Regarding a method for manufacturing a single mode optical fiber having a structural metal as shown in FIG. 1, as already described in various publications, There is a method of adhering and coating a granular glass material having a refractive index lower than the refractive index of the material, and then heating and stretching the material.

上記公報記載の方法に従って、第1図に示す構造をもつ
光ファイバーを炸裂するには、まず純粋石英ガラス棒全
用意し、5lcz4 と弗素化合物金入炎中に投入して
火炎加水分解反応により合成した弗素含有シリカ微粒子
を該石英ガラス棒の外側に堆積した後、加熱焼結して透
明ガラス化する〇 しかし上記の方法には実際的な生産手段としては大きな
難点がある。すなわち弗素をシリカ微粒子形成プロセス
に導入すると、シリカ微粒子の核成長が抑制され、実質
的なガラス微粒子堆積体の成長速度が低下することであ
る。
In order to explode an optical fiber having the structure shown in Figure 1 according to the method described in the above publication, first, all pure silica glass rods were prepared and put into a flame containing 5lcz4 and a fluorine compound metal, and synthesized by a flame hydrolysis reaction. After depositing fluorine-containing silica fine particles on the outside of the quartz glass rod, the rod is heated and sintered to form transparent glass. However, the above method has a major drawback as a practical means of production. That is, when fluorine is introduced into the silica fine particle formation process, the nucleus growth of the silica fine particles is suppressed, and the substantial growth rate of the glass fine particle deposit is reduced.

第5図はこの事実を示す実験データのグラフであって、
第4図の横軸にはガラス原料ガス中の弗素原子濃度(%
ンを、又縦軸にはガラス微粒子堆積体の成長速度(f/
分〕がとっである。
FIG. 5 is a graph of experimental data showing this fact,
The horizontal axis of Figure 4 shows the fluorine atom concentration (%) in the glass raw material gas.
The growth rate (f/) of the glass particle deposit is plotted on the vertical axis.
minute] is taken.

このグラフからも明らかなように、ガラス原料ガス中の
弗素原子濃度が増すほど、ガラス微粒子堆積体の成長速
度は低下することがわかる。
As is clear from this graph, it can be seen that as the fluorine atom concentration in the frit gas increases, the growth rate of the glass fine particle deposit decreases.

したがって上記方法では石英ガラス中に含有させる弗素
量は実質的には限界があると言える。
Therefore, in the above method, it can be said that there is a practical limit to the amount of fluorine that can be contained in the quartz glass.

一方、た在単−モード型ファイバーが実゛用的に使用さ
れる波長帯に、石英ガラスの透過率が最も高くなる1、
0μm〜1.7μmの長波長領域である。該波長域にお
いて、低損失ファイバーとするには、OH基に由来する
吸収をできるだけ低減する必要がある。ここで上記のよ
うに火炎加水分解反応によりクラッド層として弗素を含
んだガラス微粒子をコアとなる透明、ガラス母材の外側
に堆積する前に、該コア用透明ガラス母材を所定の径に
延伸する工程があるが、該工程では延伸の熱源として酸
水素炎を使用することが多い。ところが酸水素炎の高温
水蒸気がガラス表面に浸透し、OI(基としてガラス中
に残留し該長波長帯での吸収損失要因となってしまう。
On the other hand, the transmittance of silica glass is highest in the wavelength band where single-mode fibers are practically used.
This is a long wavelength region of 0 μm to 1.7 μm. In order to obtain a low-loss fiber in this wavelength range, it is necessary to reduce absorption derived from OH groups as much as possible. As described above, before depositing fluorine-containing glass particles as a cladding layer on the outside of the transparent glass base material to serve as the core, the transparent glass base material for the core is stretched to a predetermined diameter. However, in this process, an oxyhydrogen flame is often used as a heat source for stretching. However, high-temperature water vapor from the oxyhydrogen flame penetrates the glass surface and remains in the glass as OI (OI), causing absorption loss in the long wavelength band.

さらに、単一モードファイバーの伝送損失特性全良好な
ものとするためには、合成されたクラッドの径とコアの
径の比率を大きくとることがめげられる。これは、単一
モードコアイノ(−においでは、伝送される基底モード
の〕くワーの拡9が大きく、外側の石英パイプの影響を
受けて、伝送損失が劣化するためで、これを防ぐにはク
ラツド径がコア径の6〜7倍以上であることが必要であ
ると、実験的に知られている。特に第1図に示すような
本発明の目的とするファイバー構造においては、基底モ
ードが厳密には漏洩モードとしてしか伝搬しえないため
、合成りラッド径を大きくとることは必須となる。
Furthermore, in order to obtain good transmission loss characteristics of a single mode fiber, it is necessary to increase the ratio of the diameter of the synthesized cladding to the diameter of the core. This is because the single-mode core ino (in negative odor, the transmitted fundamental mode) has a large expansion, and is affected by the outer quartz pipe, resulting in deterioration of transmission loss. It is experimentally known that the diameter needs to be at least 6 to 7 times the core diameter.In particular, in the fiber structure targeted by the present invention as shown in Figure 1, the fundamental mode is strictly Since it can only propagate as a leaky mode, it is essential to have a large composite rad diameter.

以上に述べた従来法における諸問題点、すなわち、■弗
素化合物ガス導入によるガラス微粒子成長速度低下の問
題、■延伸熱源どしての酸水素炎に由来する、OH基に
よる吸収損失増大の問題、さらには0合成りラッドの径
をコア径のて1つの新しい光ファイバ製造方法を提案し
ている。上記明細書に記載の方法は、基本的にに、「表
面加工を施した棒状の高純度石英ガラスの外側に純石英
ガラス微粒子を堆積させ、次いで少なくとも弗素化合物
ガスを含む雰囲気において加熱処理することにより光フ
ァイバ用コアクラッド母材とする」ものであって、従来
法における上記の問題点■〜■を解決する有力な方法で
はあるが、得られたファイバの特性として多少の残留O
H基による伝送損失増加を生じる場合があるという問題
があった。本発明者はこの残留OH基の原因を調べた結
果以下の但見を得た。
The problems with the conventional method described above are: (1) a decrease in the growth rate of glass particles due to the introduction of fluorine compound gas; (2) an increase in absorption loss due to OH groups resulting from an oxyhydrogen flame as a stretching heat source; Furthermore, we have proposed a new optical fiber manufacturing method in which the diameter of the zero composite rad is equal to the core diameter. The method described in the above specification basically involves depositing pure silica glass fine particles on the outside of a surface-treated rod-shaped high-purity quartz glass, and then heat-treating it in an atmosphere containing at least a fluorine compound gas. This is an effective method for solving the above-mentioned problems (■ to ■) in the conventional method, but the resulting fiber has some residual O.
There is a problem in that transmission loss may increase due to the H group. The inventor of the present invention investigated the cause of this residual OH group and obtained the following findings.

即ち、棒状の出発石英ガラスの外側に火炎加水分解反応
を用いて純石英ガラス微粒子を堆積させる過程において
、火炎の燃料ガスとして馬ガス金用いると火炎中に含ま
れる未反応のH1分子が出発石英ガラス棒の表面から内
部へ拡散浸透し、石英ガラス中で5i−OH結合全形成
しこれが後工程での加熱処理段階で完全に排除すること
ができず残留することが判明した。
That is, in the process of depositing pure silica glass fine particles on the outside of a rod-shaped starting quartz glass using a flame hydrolysis reaction, when horse gas gold is used as the flame fuel gas, unreacted H1 molecules contained in the flame are removed from the starting quartz glass. It was found that 5i-OH bonds were diffused into the interior of the glass rod from the surface thereof, and all 5i-OH bonds were formed in the quartz glass, which could not be completely eliminated in the subsequent heat treatment step and remained.

ここで、純石英ガラス堆積工程でH,ガスを用いること
の理由としては、H3ガスの燃焼反応により生成する物
質がH,Oのみであることから、ガラス微粒子堆積層中
に含まれるOH基或いはH,O以外の不純物濃度を極め
て低くすることが容易であることによる。その他の燃料
ガスについては、資源的に豊富で安価な為入手しやすい
、OH4ガスなどの炭化水素系ガスが利用される場合が
あるが、炭化水素系ガスでは、燃焼反応に伴い、炭素が
ガラス微粒子堆積体中に析出し易い。特に生産性の向上
を目指してガラス原料を多量に火炎中に供給しガラス微
粒子堆積速IKt−向上させようとする際には多重の燃
焼ガスも供給する必要があり、炭素の析出防止がより困
難になる。
Here, the reason for using H gas in the pure silica glass deposition process is that the substances produced by the combustion reaction of H3 gas are only H and O. This is because it is easy to make the concentration of impurities other than H and O extremely low. As for other fuel gases, hydrocarbon gases such as OH4 gas, which are abundant in resources and easy to obtain because they are inexpensive, are sometimes used. Easily deposited in fine particle deposits. In particular, when trying to increase the glass particle deposition rate IKt by supplying a large amount of glass raw material into the flame with the aim of improving productivity, it is necessary to supply multiple combustion gases, making it more difficult to prevent carbon precipitation. become.

また燃焼ガスとして、■原子を含まないCOガラス用い
ることも考えられる。しかしながらCOガラス用いる場
合、ガラス原料である51cz4のガラス化反応は 5i074  +  O冨 →  8101  +  
2(を雪なる酸化反応であり、H:または炭化水素ガス
を用いた場合の火炎加水分解反応に比べ反応効率が悪く
、生産性向上を目指したガラス微粒子の堆積速度向上に
対しては不利である。
It is also conceivable to use CO glass, which does not contain atoms, as the combustion gas. However, when using CO glass, the vitrification reaction of 51cz4, which is a glass raw material, is 5i074 + O-tomi → 8101 +
2. This is an oxidation reaction known as snow, and the reaction efficiency is lower than the flame hydrolysis reaction when H: or hydrocarbon gas is used, and it is disadvantageous for increasing the deposition rate of glass particles aimed at improving productivity. be.

一方、燃焼ガスとして炭化水素ガス金柑いる利点として
は、火炎中1cHz分子が存在する確率が、H,ガスケ
燃焼ガスとして用いる場合に比べ格段に低くなることが
期待でき、出発石英ガラス棒内部へのH!拡散によるO
H基汚染を低減できる可能性がある。
On the other hand, the advantage of using hydrocarbon gas kumquat as the combustion gas is that the probability of a 1 cHz molecule existing in the flame can be expected to be much lower than when using H, gas as the combustion gas, and H! O due to diffusion
There is a possibility that H group contamination can be reduced.

また燃焼ガスとしてCOガラス用いる利点としては、火
炎中にH,分子或はH,0分子が存在することがないた
め、出発石英ガラス棒のOH基汚染が全くなくなること
が期待できることである。
Further, an advantage of using CO glass as the combustion gas is that since no H, molecules or H,0 molecules are present in the flame, it can be expected that there will be no OH group contamination of the starting quartz glass rod.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は以上の問題点全解決し、生産性を低下させずか
つ出発石英ガラス棒のOH汚染を低減し、低損失な単一
モード光ファイバ用母材を提供すること全目的としてい
る。
The object of the present invention is to solve all of the above problems, reduce OH contamination of the starting quartz glass rod without reducing productivity, and provide a low-loss single-mode optical fiber preform.

〔問題点全解決するための手段〕[Means to solve all problems]

すなわち本発明は、(A)炭化水素ガス又は一酸化炭素
ガスを燃焼ガスとする火炎中に5lc42導入し、純S
iO2ガラス微粒子を発生させ、該SiO2  ガラス
微粒子を高純度石英カラス棒の外側に堆積させたのち、
該高純度石英ガラス棒と該SiO2ガラス微粒子堆積体
の複合体を少なくとも弗素化合物ガスを含む雰囲気中で
加熱処理することにより、該高純度石英ガラス棒とこれ
を取り囲む弗素を含有した石英ガラス層との複合体を形
成したのち、(B)該ガラス複合体を所定の径に延伸し
、該ガラス複合体の外側に酸・水素火炎により純810
冨ガラス微粒子堆積体を形成し、該ガラス複合体と該純
SiO2ガラス微粒子堆積体とのさらなる複合体を少な
くとも弗素を含む雰囲気中で加熱処理することからなり
、工程(B)は必要に応じて2回以上繰り返すこと全特
徴とする光ファイバ用母材の製造方法を提供する。
That is, in the present invention, (A) 5lc42 is introduced into a flame whose combustion gas is hydrocarbon gas or carbon monoxide gas, and pure S
After generating iO2 glass particles and depositing the SiO2 glass particles on the outside of a high-purity quartz glass rod,
By heat-treating the composite of the high-purity quartz glass rod and the SiO2 glass fine particle deposit in an atmosphere containing at least a fluorine compound gas, the high-purity quartz glass rod and the fluorine-containing quartz glass layer surrounding it are combined. After forming a composite, (B) the glass composite is stretched to a predetermined diameter, and the outside of the glass composite is coated with pure 810 with an acid/hydrogen flame.
The step (B) consists of forming a rich glass fine particle deposit, and heat-treating a further composite of the glass composite and the pure SiO2 glass fine particle deposit in an atmosphere containing at least fluorine. Provided is a method for manufacturing an optical fiber preform, which is characterized in that it is repeated two or more times.

本発明の基本的な構成は、炭化水素ガス或いはCOガラ
ス酸素からなる火炎中K SiC!4 を導入して純8
10.ガラス微粒子を発生させ、該純S10ニガラス微
粒子を棒状の高純度石英ガラスの外側に堆積させたのち
、該高純度ガラス棒と純sho。
The basic structure of the present invention is K SiC! in a flame consisting of hydrocarbon gas or CO glass oxygen! Introducing 4 to make pure 8
10. After generating glass fine particles and depositing the pure S10 glass fine particles on the outside of a rod-shaped high-purity quartz glass, the high-purity glass rod and pure quartz glass were combined.

ガラス微粒子堆積層の複合棒金、少なくとも弗素化合物
ガスを含む雰囲気中にて加熱処理することにより、該純
5102ガラス微粒子堆積層中に弗素を含有せしめると
ともに透明ガラス化し、高純度石英ガラス部とこれ全取
り囲む弗素を含有した石英ガラス部からなる複合ガラス
体を形成したのち、芒らvc該複合ガラス体を所定の径
に延伸加工し、次いで該複合ガラス体の外側に酸水素火
炎により、純5102ガラス微粒子を堆積させ再び該複
合ガラス体と純5102ガラス微粒子層の複合体を少な
くとも弗素化合物ガスを含む雰囲気中にて加熱処理する
ことからなる。
The composite bar of the glass fine particle deposit layer is heat-treated in an atmosphere containing at least a fluorine compound gas to make the pure 5102 glass fine particle deposit layer contain fluorine and turn it into transparent glass, forming a high-purity quartz glass part. After forming a composite glass body consisting of a fluorine-containing quartz glass portion that surrounds the entire body, the composite glass body is stretched to a predetermined diameter, and then pure 5102 is coated on the outside of the composite glass body with an oxyhydrogen flame. The process consists of depositing glass particles and heat-treating the composite glass body and pure 5102 glass particle layer again in an atmosphere containing at least a fluorine compound gas.

本発明の特徴は、I) 弗素全含有したクラッド層の厚
みを十分に厚くとるために、透明ガラス棒上への純s1
o、ガラス微粒子堆積層の形成及び核純sio、ガラス
微粒子堆積層への弗素添加の為の加熱処理會2回以上く
り返して行うこと、H)  OH吸収損失に与える影響
の大きい、1回目のガラス微粒子堆積層の形成に、出発
石英ガラス棒へのOH汚染の少ない炭化水素ガス、或い
は出発石英ガラス棒へのOH汚染のないCOガラス全燃
焼ガスとして用いること、+++)on 吸収損失に与
える影響の小ない2回目以降のガラス微粒子堆積層の形
成全生産性向上に有利な水素ガスを燃焼ガスとして用い
ること、である。
The features of the present invention are: I) In order to obtain a sufficiently thick cladding layer containing all fluorine, pure s1 is deposited on a transparent glass rod.
o. The heating treatment for forming the glass fine particle deposit layer, nuclear purity, and adding fluorine to the glass fine particle deposit layer should be repeated two or more times. H) The first glass treatment has a large effect on OH absorption loss. To form a fine particle deposit layer, use a hydrocarbon gas with little OH contamination to the starting quartz glass rod, or a CO glass total combustion gas without OH contamination to the starting quartz glass rod, +++)on Effect on absorption loss. The purpose is to use hydrogen gas as the combustion gas, which is advantageous in improving the overall productivity of forming a small glass particle deposit layer from the second time onward.

以下本発明を具体的に説明する。The present invention will be specifically explained below.

光ファイバのコア部に相当する高純度石英ガラス棒は、
ガラス原料f 5iOt4のみとした通常のVAD法等
を用いて作製でき、該高純度石英ガラス棒に含まれる残
留OH基量會数ppbレベルに下げることができる。こ
の高純度石英ガラス棒を棒表面からのOH基の浸入のな
い方法にて所定外径に延伸加工する。この加工法として
はプラズマ火炎、或いは電気抵抗炉等の水蒸気を発生さ
せない熱源により高純度石英ガラス棒を加熱し延伸する
方法がある。得られた高純度ガラス棒と純5102ガラ
ス微粒子複合体全弗素化合物ガス雰囲気中で加熱処理す
る際には、1000−1650℃の温度域にて弗素化合
物としてS?、 。
A high-purity quartz glass rod, which corresponds to the core of an optical fiber, is
It can be produced using a normal VAD method using only the glass raw material f5iOt4, and the amount of residual OH groups contained in the high purity quartz glass rod can be reduced to the ppb level. This high-purity quartz glass rod is stretched to a predetermined outer diameter using a method that does not allow OH groups to penetrate from the rod surface. This processing method includes a method in which a high purity quartz glass rod is heated and stretched using a heat source that does not generate water vapor, such as a plasma flame or an electric resistance furnace. When the obtained high-purity glass rod and pure 5102 glass fine particle composite are heat-treated in a total fluorine compound gas atmosphere, S? , .

01F、 、 C,F、等のフロン系ガスとヘリウム等
の不活性、ガスの混合ガス雰囲気中に該複合体を置くこ
とにより、十分な量の弗素がガラス微粒子堆積1−中V
C実質的に均一に添加せしめることができる。
By placing the composite in a mixed gas atmosphere of a fluorocarbon gas such as 01F, , C, F, etc. and an inert gas such as helium, a sufficient amount of fluorine can be deposited in glass fine particle deposition 1-V.
C can be added substantially uniformly.

この際、弗素化合物ガスは脱水剤としての役割も果たす
ので十分な量のフッ素化合物ガスを雰囲気ガス中に供給
しておくことによりガラス微粒子堆積層中の水分或いは
OH基は十分除去できると考えられるが、ガラス微粒子
堆積層の収縮が進まない時点までCt箕等の他の脱水剤
を雰囲気ガス中に流しておくことにより脱水をより完壁
なものにすることも可能である。
At this time, since the fluorine compound gas also serves as a dehydrating agent, it is thought that by supplying a sufficient amount of the fluorine compound gas into the atmospheric gas, water or OH groups in the glass fine particle deposit layer can be sufficiently removed. However, it is also possible to make the dehydration more complete by flowing another dehydrating agent such as a Ct winnow into the atmospheric gas until the shrinkage of the glass fine particle deposit layer does not proceed.

〔実施例〕〔Example〕

実施例1 VAD法により外径40調φ、長さ200mの十分に脱
水された純810.ガラス母材を作製した。
Example 1 A fully dehydrated pure 810. A glass base material was produced.

核母材f 4 MHz、  50 kW の高周波プラ
ズマ炎奮用いて延伸加工し外径12闘φの石英ガラス棒
とした。次に第2図に示す装置を用いて、上記純石英ガ
ラス棒1の外周部に純810gガラス微粒子堆積層2を
形成した。5はガラス微粒子合成用バーナーであり、該
バーナー5に燃焼ガスとしてaH425t1分、助燃ガ
スとして0s10t/分をガラス原料として8104 
500 cc/分を送り込み、810冨微粒子を火炎中
で形成し、ガラス棒1上に堆積させていった。この時ガ
ラス棒1を回転・引上装置4により接続棒5t−介して
回転させつつ、徐々に上方に引き上げていくことにより
、純石英棒1上に軸方向に、ガラス微粒子堆積*2t−
形成していった。この時のガラス微粒子堆積速度は(L
 5 t 7分であった。
The core base material was stretched using a high frequency plasma flame of f 4 MHz and 50 kW to obtain a quartz glass rod with an outer diameter of 12 mm. Next, using the apparatus shown in FIG. 2, a pure 810 g glass fine particle deposition layer 2 was formed on the outer circumference of the pure silica glass rod 1. 5 is a burner for synthesizing glass particles, and the burner 5 is charged with 8104 aH425t/min as a combustion gas and 0s10t/min as an auxiliary combustion gas as a glass raw material.
500 cc/min was fed, and 810-rich particles were formed in the flame and deposited on the glass rod 1. At this time, the glass rod 1 is rotated by the rotating/pulling device 4 via the connecting rod 5t- and gradually pulled upward, thereby depositing glass fine particles *2t- on the pure quartz rod 1 in the axial direction.
It was formed. The glass particle deposition rate at this time is (L
It was 5t 7 minutes.

得られたガラス微粒子堆積層2と石英ガラス棒1との複
合体の外径は75wmφであった。該複合体f 8F、
とHeとの容量比が2:50の雰囲気中で加熱処理しつ
つ、透明ガラス化した。透明ガラス化後の母材径は30
■φであった。
The outer diameter of the resulting composite of the glass fine particle deposit layer 2 and the quartz glass rod 1 was 75 wmφ. the complex f8F,
Transparent vitrification was performed while heat-treating in an atmosphere with a volume ratio of 2:50 and He. The base material diameter after transparent vitrification is 30
■It was φ.

さらに、得られた母材を再度プラズマ火炎により11■
φに延伸し、該延伸母材上に第2図に示した装置により
今度はH,ガスを燃焼ガスとして用いて、純s4o、ガ
ラス微粒子層を形成した。
Furthermore, the obtained base material was heated again with plasma flame for 11 seconds.
φ, and a layer of pure S4O glass particles was formed on the stretched base material using the apparatus shown in FIG. 2 using H gas as a combustion gas.

このときの流量条件は、H,2at1分、0.16t/
分、  B10t4 450 cc/分であった。該純
SiO2  ガラス微粒子層の外径は120諭φであっ
た。また、該純SiO2ガラス微粒子堆積速度は1.5
t/分であった。
The flow conditions at this time were H, 2at 1 minute, 0.16t/
min, B10t4 450 cc/min. The outer diameter of the pure SiO2 glass fine particle layer was 120 mm. In addition, the pure SiO2 glass fine particle deposition rate was 1.5
It was t/min.

得られた母材の外径は44− であった。該母材全延伸
し市販の天然石英パイプで被覆したのち、外径125−
 の光ファイバとした。該光ファイバの屈折率分布を第
3図に示す。第5図において1′は出発棒の純粋石英ガ
ラスの部分、2′はOH4’ii用いて合成されたガラ
ス微粒子堆積層を弗素化合物ガスを含む雰囲気中で加熱
処理した部分 21はHa を用いて合成されたガラス
微粒子堆積層を弗素化合物ガス金含む雰囲気中で加熱処
理した部分、6は天然石英管の部分に各々対応する。ク
ラッド・コア間の比屈折率差は132%、クラツド径/
コア径比は110であった。このファイバは単長5km
、カットオフ波長1.15μm、波長1,3μmでの伝
送損失はa5dB/km以下と良好であり、波長1.3
9μmでのOH吸収損失増加量も5dB/kI11と実
用上問題のないものでおった。
The outer diameter of the obtained base material was 44 mm. After fully stretching the base material and covering it with a commercially available natural quartz pipe, the outer diameter was 125-
optical fiber. FIG. 3 shows the refractive index distribution of the optical fiber. In FIG. 5, 1' is the pure silica glass part of the starting rod, 2' is the part where the glass fine particle deposited layer synthesized using OH4'ii was heat-treated in an atmosphere containing fluorine compound gas, and 21 is the part where Ha is used. The part where the synthesized glass fine particle deposit layer was heat-treated in an atmosphere containing fluorine compound gas gold, and 6 correspond to the part of the natural quartz tube, respectively. The relative refractive index difference between the cladding and the core is 132%, and the cladding diameter/
The core diameter ratio was 110. This fiber has a single length of 5km
, the cutoff wavelength is 1.15 μm, and the transmission loss at wavelengths of 1 and 3 μm is good, less than a5 dB/km, and the wavelength is 1.3 μm.
The increase in OH absorption loss at 9 μm was also 5 dB/kI11, which was not a problem for practical use.

実施例2 実施例1と同様にVAD法により、外径40簡φ。Example 2 As in Example 1, the outer diameter was 40φ by the VAD method.

長さ200.の十分に脱水された純s1o、ガラス母材
を作製し、該母材f 4 MHz、  301cWの高
周波プラズマ炎を用いて延伸加工し、外径12−の石英
ガラス棒とし、次に第2図に示す装置音用いて、上記石
英ガラス棒1の外周部に純810゜カラス微粒子堆積層
2を作成した。ここで実施例1とは異なり、ガラス微粒
子合成用バーナー5には燃焼ガスとしてCOガラス供給
した。この時のバーナー3の各ガス原料の供給量は、C
Oガス10t/分、0!ガス10t/分、  810A
4250cc/分であり、ガラス微粒子堆積速度はα1
f/分であった。得られたガラス微粒子堆積層2と石英
ガラス棒1との複合体の外径は60−であった。該複合
体を実施例1と同様に透明ガラス化した。透明ガラス化
後の母材径は24−であった。
Length 200. A fully dehydrated pure s1o glass base material was prepared, and the base material was stretched using a high frequency plasma flame of f4 MHz and 301 cW to form a quartz glass rod with an outer diameter of 12-. A pure 810° glass fine particle deposit layer 2 was created on the outer periphery of the quartz glass rod 1 using the apparatus sound shown in FIG. Here, unlike in Example 1, CO glass was supplied as combustion gas to the burner 5 for glass particle synthesis. At this time, the supply amount of each gas raw material to burner 3 is C
O gas 10t/min, 0! Gas 10t/min, 810A
4250cc/min, and the glass particle deposition rate is α1
f/min. The outer diameter of the resulting composite of the glass fine particle deposit layer 2 and the quartz glass rod 1 was 60-. The composite was made into transparent glass in the same manner as in Example 1. The diameter of the base material after transparent vitrification was 24-.

該母材を15tIIIφ に延伸し、第2図に示した装
置により、塩ガス全燃焼ガスとして用いて、実施例1と
同様の条件で2度目のガラス微粒子堆積層の形成及び透
明ガラス化を行った。得られた母材の外径は45鰭φ 
であった。
The base material was stretched to 15tIIIφ, and using the apparatus shown in FIG. 2, a second glass fine particle deposit layer was formed and transparent vitrification was performed under the same conditions as in Example 1 using salt gas as the total combustion gas. Ta. The outer diameter of the obtained base material is 45 fins
Met.

さらに、再々度該母材f 25 Bφ に延伸し、5度
目のガラス微粒子層の形成、透明ガラス化を行い、外径
50喘φの透明ガラス母材を得九その後実施例1と同様
に天然石英パイプで該母材を被覆したのち、外径125
態φ の光ファイバとした。
Furthermore, the base material f 25 Bφ was stretched again, a fifth glass fine particle layer was formed, and transparent glass was obtained to obtain a transparent glass base material with an outer diameter of 50 mmφ. After covering the base material with English pipe, the outer diameter is 125
The optical fiber has the state φ.

得られたファイバのクラッド/コア間の比屈折率差は0
.32%、クラッド/コア径比は12倍であった。この
ファイバはカットオフ波長1.1/ltm、波長1.5
11mでの伝送損失id [145dB/km以下と良
好で必り、波長1.59μmでのOH吸収損失増加量は
1 aB/kmと実施例1と比べてもさらに残留oy+
量を低減させることができている。
The relative refractive index difference between the cladding and core of the obtained fiber is 0.
.. 32%, and the cladding/core diameter ratio was 12 times. This fiber has a cutoff wavelength of 1.1/ltm and a wavelength of 1.5
The transmission loss id at 11 m is good (below 145 dB/km), and the increase in OH absorption loss at a wavelength of 1.59 μm is 1 aB/km, which is even more residual oy+ than in Example 1.
We have been able to reduce the amount.

〔発明の効果〕〔Effect of the invention〕

本発明の方法に、酸水素炎に由来するOH基のもたらす
吸収損失増大を第1回目の純ガラス微粒子堆積には炭化
水素ガス或いはCOガラス燃焼ガスに用いることにより
低減し、かつ第2回目以降の純ガラス微粒子堆積には酸
水素炎を用いて生産性全向上し、さらにフッ素を含有す
るクラッドの径がコアの径の6倍以上の伝送特性のすぐ
れた単一モードファイバを安定製造できる非常に有効、
かつ経済的な方法である。
In the method of the present invention, the increase in absorption loss caused by OH groups originating from an oxyhydrogen flame is reduced by using hydrocarbon gas or CO glass combustion gas for the first pure glass particle deposition, and for the second and subsequent depositions. An oxyhydrogen flame is used to deposit pure glass particles, which improves productivity. Furthermore, the diameter of the fluorine-containing cladding is more than 6 times the diameter of the core, making it possible to stably produce single-mode fibers with excellent transmission characteristics. Valid for
And it is an economical method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の目的とする単一モード型光ファイバー
の屈折率分布金示す図。第2図は本発明の実施態様例に
おいてガラス微粒子堆積体を作製する工程の説明図。第
5図は本発明の実施例において得られた元ファイバの屈
折率分布。 第4図は第3図の光ファイバの伝送損失スペクトルであ
る。第5図は従来方法による場合の、ガラス原料ガス中
の弗素原子濃度(%)とガラス微粒子堆積体成長速度(
f/分ンの関係を示すグラフ。 第1図 第2図
FIG. 1 is a diagram showing the refractive index distribution of a single mode optical fiber, which is the object of the present invention. FIG. 2 is an explanatory diagram of the process of producing a glass fine particle deposit body in an embodiment of the present invention. FIG. 5 shows the refractive index distribution of the original fiber obtained in an example of the present invention. FIG. 4 is a transmission loss spectrum of the optical fiber of FIG. 3. Figure 5 shows the fluorine atom concentration (%) in the frit gas and the glass particle deposit growth rate (
Graph showing the relationship between f/min. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)(A)炭化水素ガス又は一酸化炭素ガスを燃焼ガ
スとする火炎中にSiCl_4を導入し、純SiO_2
ガラス微粒子を発生させ、該SiO_2ガラス微粒子を
高純度石英ガラス棒の外側に堆積させたのち、該高純度
石英ガラス棒と該SiO_2ガラス微粒子堆積体の複合
体を少なくとも弗素化合物ガスを含む雰囲気中で加熱処
理することにより、該高純度石英ガラス棒とこれを取り
囲む弗素を含有した石英ガラス層との複合体を形成した
のち、(B)該ガラス複合体を所定の径に延伸し、該ガ
ラス複合体の外側に酸・水素火炎により純SiO_2ガ
ラス微粒子堆積体を形成し、該ガラス複合体と該純Si
O_2ガラス微粒子堆積体とのさらなる複合体を少なく
とも弗素を含む雰囲気中で加熱処理することからなり、
工程(B)は必要に応じて2回以上繰り返すことを特徴
とする光ファイバ用母材の製造方法。
(1) (A) SiCl_4 is introduced into a flame with hydrocarbon gas or carbon monoxide gas as combustion gas, and pure SiO_2
After generating glass particles and depositing the SiO_2 glass particles on the outside of a high-purity quartz glass rod, the composite of the high-purity quartz glass rod and the SiO_2 glass particle deposit is placed in an atmosphere containing at least a fluorine compound gas. After forming a composite of the high-purity quartz glass rod and the fluorine-containing quartz glass layer surrounding it by heat treatment, (B) stretching the glass composite to a predetermined diameter; A pure SiO_2 glass fine particle deposit is formed on the outside of the body using an acid/hydrogen flame, and the glass composite and the pure Si
further comprising heating the composite body with the O_2 glass fine particle deposit in an atmosphere containing at least fluorine,
A method for manufacturing an optical fiber preform, characterized in that step (B) is repeated two or more times as necessary.
JP13525584A 1984-07-02 1984-07-02 Manufacture of optical fiber preform Granted JPS6117432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13525584A JPS6117432A (en) 1984-07-02 1984-07-02 Manufacture of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13525584A JPS6117432A (en) 1984-07-02 1984-07-02 Manufacture of optical fiber preform

Publications (2)

Publication Number Publication Date
JPS6117432A true JPS6117432A (en) 1986-01-25
JPH0451497B2 JPH0451497B2 (en) 1992-08-19

Family

ID=15147431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13525584A Granted JPS6117432A (en) 1984-07-02 1984-07-02 Manufacture of optical fiber preform

Country Status (1)

Country Link
JP (1) JPS6117432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242941A (en) * 1987-03-30 1988-10-07 Sumitomo Electric Ind Ltd Production of preform for optical fiber
FR2758549A1 (en) * 1997-01-20 1998-07-24 Samsung Electronics Co Ltd PROCESS FOR PRODUCING AN OPTICAL FIBER PREFORM
JP2007536580A (en) * 2004-05-06 2007-12-13 ベイカー ヒューズ インコーポレイテッド Long wavelength pure silica core single mode fiber and method of forming the fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978943A (en) * 1982-10-22 1984-05-08 Sumitomo Electric Ind Ltd Manufacture of glass containing fluorine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978943A (en) * 1982-10-22 1984-05-08 Sumitomo Electric Ind Ltd Manufacture of glass containing fluorine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242941A (en) * 1987-03-30 1988-10-07 Sumitomo Electric Ind Ltd Production of preform for optical fiber
FR2758549A1 (en) * 1997-01-20 1998-07-24 Samsung Electronics Co Ltd PROCESS FOR PRODUCING AN OPTICAL FIBER PREFORM
JP2007536580A (en) * 2004-05-06 2007-12-13 ベイカー ヒューズ インコーポレイテッド Long wavelength pure silica core single mode fiber and method of forming the fiber

Also Published As

Publication number Publication date
JPH0451497B2 (en) 1992-08-19

Similar Documents

Publication Publication Date Title
CA1080562A (en) Method of and apparatus for manufacturing an optical fibre with plasma activated deposition in a tube
US4125389A (en) Method for manufacturing an optical fibre with plasma activated deposition in a tube
JPS6038345B2 (en) Manufacturing method of glass material for optical transmission
JPH0196039A (en) Production of optical fiber preform
EP0164103A2 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
CN101066834B (en) Process of preparing fiber preformrod
JPS6117432A (en) Manufacture of optical fiber preform
JPS6086047A (en) Manufacture of glass preform for optical fiber
JPH0788231B2 (en) Manufacturing method of optical fiber preform
JPS63315530A (en) Production of optical fiber preform
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JPH0791081B2 (en) Method for manufacturing glass base material for single mode fiber
JPS63139028A (en) Production of optical fiber glass base material
JPS6172643A (en) Manufacture of optical fiber preform
JPS6289B2 (en)
JPH01111747A (en) Production of optical fiber preform
JPS6144725A (en) Method of treating quartz porous glass layer
JPS6183639A (en) Production of quartz pipe of high purity
JPS6042242A (en) Manufacture of glass for optical fiber
JPS62191434A (en) Production of parent material for optical fiber
JPS62292647A (en) Production of decentralized-shift single-mode optical fiber
JPS62108748A (en) Preparation of glass fiber base material
JPH1059730A (en) Production of synthetic quartz glass
JPH06122527A (en) Production of optical fiber preform
JPH11180725A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees