JP3393063B2 - Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same - Google Patents

Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same

Info

Publication number
JP3393063B2
JP3393063B2 JP12672898A JP12672898A JP3393063B2 JP 3393063 B2 JP3393063 B2 JP 3393063B2 JP 12672898 A JP12672898 A JP 12672898A JP 12672898 A JP12672898 A JP 12672898A JP 3393063 B2 JP3393063 B2 JP 3393063B2
Authority
JP
Japan
Prior art keywords
silica glass
synthetic silica
heat
shielding
resistant synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12672898A
Other languages
Japanese (ja)
Other versions
JPH11302026A (en
Inventor
洋一郎 丸子
茂 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP12672898A priority Critical patent/JP3393063B2/en
Priority to DE1999118001 priority patent/DE19918001C2/en
Publication of JPH11302026A publication Critical patent/JPH11302026A/en
Application granted granted Critical
Publication of JP3393063B2 publication Critical patent/JP3393063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1438Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. solution doping of the article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/50Doped silica-based glasses containing metals containing alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、不純物金属元素、
特に、Na、K、Liの遮蔽性に優れた耐熱性合成シリ
カガラス及びその製造方法に関し、さらに詳細には、特
にシリコンウェハー等半導体材料の熱処理に使用する治
具、すなわち、ウエハーボート、チャンバー及び炉心管
等、或いは、紫外線用光学材料の熱処理に使用する治
具、すなわち、レンズブランクスセッター、炉床板及び
炉心管等に用いられる耐熱性合成シリカガラス及びその
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to an impurity metal element,
In particular, the present invention relates to a heat-resistant synthetic silica glass having an excellent shielding property against Na, K, and Li and a method for producing the same, and more specifically, a jig used for heat treatment of a semiconductor material such as a silicon wafer, that is, a wafer boat, a chamber, and The present invention relates to a heat-resistant synthetic silica glass used for a jig used for heat treatment of a furnace core tube or the like, or an optical material for ultraviolet rays, that is, a lens blank setter, a hearth plate, a furnace tube, and the like, and a manufacturing method thereof.

【0002】[0002]

【関連技術】従来、シリコンウエハー等の半導体材料の
熱処理、または紫外線用光学材料の熱処理に使用される
高温電気炉は、一般に、内側にアルミナ、ムライト、ジ
ルコニア等の耐火材が張られている。これらの耐火材は
製造工程において各種のバインダーを使って成型される
ため、高濃度の不純物、特にNaを含有している。
Related Art Conventionally, a high temperature electric furnace used for heat treatment of a semiconductor material such as a silicon wafer or heat treatment of an optical material for ultraviolet rays is generally covered with a refractory material such as alumina, mullite or zirconia. Since these refractory materials are molded using various binders in the manufacturing process, they contain a high concentration of impurities, especially Na.

【0003】上記のシリコンウエハーや紫外線光学材料
等の被熱処理物を高温電気炉で熱処理する場合には、こ
の被熱処理物と上記耐火材との間にシリカガラス治具を
介在させて行うが、該耐火材に含まれているNaはその
拡散係数が大きいため、Naがシリカガラス治具を媒体
としてシリコンウエハーや紫外線用光学材料等の被熱処
理物に拡散し、これらを汚染してしまうという問題があ
った。
When heat-treating an object to be heat-treated such as the silicon wafer or the ultraviolet optical material in a high temperature electric furnace, a silica glass jig is interposed between the object to be heat-treated and the refractory material. Since Na contained in the refractory material has a large diffusion coefficient, Na diffuses into a heat-treated object such as a silicon wafer or an optical material for ultraviolet rays using a silica glass jig as a medium and contaminates them. was there.

【0004】このような問題を解決するために、本願出
願人は、OH基含有量が10〜500wtppmのシリカガ
ラスマトリックス中に高純度ジルコニウムの微粒子が2
0〜10,000wtppm及び酸化アルミニウムの微粒子
が20〜5,000wtppm均一に分散させることによっ
て、不純物金属、特にアルカリ金属元素やアルカリ土類
金属元素による汚染の起こらない不純物金属遮蔽性シリ
カガラスを既に提案した(特開平10−017334
号)。
In order to solve such a problem, the applicant of the present application has found that 2 particles of high-purity zirconium are contained in a silica glass matrix having an OH group content of 10 to 500 wtppm.
Already proposed an impurity metal shielding silica glass that does not cause contamination by impurity metals, especially alkali metal elements or alkaline earth metal elements, by uniformly dispersing 0 to 10,000 wtppm and aluminum oxide fine particles at 20 to 5,000 wtppm. (JP-A-10-017334)
issue).

【0005】この提案済の上記したシリカガラスは、製
法上、シリカ粉体を主原料とするものであり、製法が限
定されている他に、酸化ジルコニウム及び酸化アルミニ
ウムを微粒子の形でドープさせるため、気泡含有量が多
いという問題やガラス化時に粒状構造が残存するといっ
た問題を有していた。このシリカガラスの粒状構造の残
存は、熱処理における失透の要因にもなっている。
The above-mentioned proposed silica glass uses silica powder as a main raw material in the manufacturing method. In addition to the limited manufacturing method, zirconium oxide and aluminum oxide are doped in the form of fine particles. However, there are problems that the bubble content is large and that a granular structure remains during vitrification. The remaining granular structure of the silica glass also causes devitrification during heat treatment.

【0006】ここで言う粒状構造とは、シリカガラスの
均一性の問題であり、ガラス化時に溶融された微粒子
が、ガラス化後も粒子の構造が残存し、粒子径が0.5
μm以上であって光学顕微鏡で観察されるものを指して
いる。粒状構造を示すシリカガラスの表面形状の一例の
顕微鏡写真を図2に示してある。
The granular structure referred to here is a problem of the uniformity of silica glass, and the fine particles melted during vitrification retain the particle structure even after vitrification, and the particle diameter is 0.5.
It is the one having a size of μm or more and observed with an optical microscope. A micrograph of an example of the surface shape of silica glass showing a granular structure is shown in FIG.

【0007】また、製法上、シリカ粉体と酸化ジルコニ
ウム微粒子、酸化アルミニウム微粒子を均一に混合する
ことが非常に困難であり、しばしばこれら2種類の微粒
子が凝集し、不均一なガラスが得られる場合があった。
その結果、得られたシリカガラスの不純物金属遮蔽性が
不十分であったり、部分的に再結晶、失透を起こすこと
があった。
In addition, it is very difficult to uniformly mix silica powder with zirconium oxide fine particles and aluminum oxide fine particles due to the manufacturing method, and when these two types of fine particles are often agglomerated, a non-uniform glass is obtained. was there.
As a result, the silica glass obtained may have insufficient shielding properties against impurity metals, or may partially cause recrystallization and devitrification.

【0008】このように従来の合成シリカガラスは耐熱
性が劣ることや、失透する問題があり、特に高温の熱処
理用途の部材としては不向きであった。
As described above, the conventional synthetic silica glass is inferior in heat resistance and has a problem of devitrification, and is not suitable as a member for heat treatment at high temperature.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記した従
来技術の問題点に鑑みなされたもので、半導体材料の熱
処理や紫外線用光学材料の熱処理に使用する治具に好適
に用いられ、当該熱処理における不純物金属元素、特
に、Na、K、Liの遮蔽性に優れ、失透がない上に粒
状構造を有することなくかつ均一で滑らかな表面形状の
耐熱性合成シリカガラス及びその合成シリカガラスを効
率よく製造することのできる方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, and is suitably used for a jig used for heat treatment of semiconductor materials and heat treatment of optical materials for ultraviolet rays. A heat-resistant synthetic silica glass having a uniform and smooth surface shape, which is excellent in shielding impurity metal elements in heat treatment, particularly Na, K, and Li, has no devitrification, and has no granular structure, and its synthetic silica glass. An object is to provide a method that can be efficiently manufactured.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の不純物金属遮蔽用耐熱性合成シリカガラス
は、OH基含有量が10〜300wtppmの高純度合成シ
リカガラスにジルコニウム1〜100wtppm 及びアルミ
ニウム1〜100wtppm を粒状構造を生成することなく
均一にドープせしめてなることを特徴とする。ただし、
ドープ溶液濃度と実際に生成したガラス中のドープ濃度
とは異なり、従ってガラスに所定濃度ドープさせるため
の必要なドープ溶液濃度の調整が必要である。
In order to achieve the above object, the heat-resistant synthetic silica glass for shielding impurity metals of the present invention comprises a high purity synthetic silica glass having an OH group content of 10 to 300 wtppm and zirconium of 1 to 100 wtppm. And aluminum of 1 to 100 wtppm are uniformly doped without forming a granular structure. However,
The concentration of the dope solution and the concentration of the dope in the glass actually formed are different, and thus it is necessary to adjust the concentration of the dope solution necessary for doping the glass to a predetermined concentration.

【0011】上記構成とすることによって、該合成シリ
カガラスの熱処理時における不純物金属の遮断性を向上
させることができる。Zr4+はSi−O結合中に組み込
まれ、そのイオン半径がSi4+より大きいことからアル
カリ金属イオンの拡散を遮蔽する作用がある。
With the above-mentioned structure, it is possible to improve the barrier property against the impurity metal during the heat treatment of the synthetic silica glass. Zr 4+ is incorporated in the Si—O bond and has an ionic radius larger than that of Si 4+ , so that it has a function of blocking diffusion of alkali metal ions.

【0012】上記Zr4+をドープしてさらにAl3+をド
ープするとAl3+イオン周辺の電荷平衡が崩れ、正電荷
の補償が必要とされる状態となり、高温電気炉にて熱処
理中に不純物金属をトラップし、半導体製品等の汚染を
一層少なくする作用がある。また、ジルコニウム及びア
ルミニウムを共ドープすることによって、高温下での耐
再結晶性が高くなり、900℃〜1300℃の高温処理
においても耐熱性が高く、強度劣化が少なく、治具用シ
リカガラスとして好ましい性能を付与することができ
る。
When the above Zr 4+ is doped and then Al 3+ is further doped, the charge balance around the Al 3+ ions is disrupted, and a state where compensation for positive charges is required occurs, and impurities are generated during heat treatment in a high temperature electric furnace. It has the function of trapping metal and further reducing the pollution of semiconductor products and the like. Further, by co-doping with zirconium and aluminum, the recrystallization resistance at high temperature becomes high, the heat resistance is high even at a high temperature treatment of 900 ° C to 1300 ° C, the strength is less deteriorated, and the silica glass as a jig is used. It is possible to impart preferable performance.

【0013】上記ジルコニウムとアルミニウムの含有量
が各々1wtppm未満になると本発明の効果を達成するこ
とができない。一方、これらの含有量が各々100wtpp
m を越えるとシリカガラスの製造時のガラス化が困難に
なり、かつ熱処理中に再結晶化し易いという不利があ
る。
If the contents of zirconium and aluminum are each less than 1 wtppm, the effect of the present invention cannot be achieved. On the other hand, each of these contents is 100 wtpp
If it exceeds m, there are disadvantages that vitrification during production of silica glass becomes difficult, and recrystallization during heat treatment is likely to occur.

【0014】上記ジルコニウム及びアルミニウムのドー
プ量をそれぞれ10〜50wtppmに設定することによっ
て、該合成シリカガラスの熱処理時における耐失透性を
さらに向上させることができる。
By setting the doping amounts of zirconium and aluminum to 10 to 50 wtppm, the devitrification resistance of the synthetic silica glass during heat treatment can be further improved.

【0015】上記合成シリカガラスは、OH基を10〜
300wtppm 含有するが、これによって、該合成シリカ
ガラスの熱処理時の粘性度を向上させることができる
上、900〜1300℃の高温で半導体製品を長時間加
熱しても熱処理雰囲気中に存在する不純物金属、特にア
ルカリ金属がシリカガラス中のOH基又はH+イオンと
イオン交換し、優先的にシリカガラス中に取り込まれ、
半導体製品を汚染することが少なくなる。
The above synthetic silica glass has 10 to 10 OH groups.
Although it contains 300 wtppm, the viscosity of the synthetic silica glass during heat treatment can be improved, and the impurity metal existing in the heat treatment atmosphere even if the semiconductor product is heated at a high temperature of 900 to 1300 ° C. for a long time. , Especially alkali metal ion-exchanges with OH groups or H + ions in silica glass and is preferentially taken into silica glass,
Less contamination of semiconductor products.

【0016】OH基含有量が10wtppm未満では前記作
用がなく、また300wtppmを超えるとシリカガラスの
粘性度が低下し(耐熱性の低下)、熱処理時に被熱処理
物と融着したり、或いは変形を起こすため好ましくな
い。
If the OH group content is less than 10 wtppm, the above effect does not occur, and if it exceeds 300 wtppm, the viscosity of the silica glass decreases (reduction of heat resistance), so that it is fused with a heat-treated object during heat treatment or is deformed. It is not preferable because it will occur.

【0017】上記の熱処理の温度条件は通常900〜1
300℃程度の範囲であり、シリコンウエハー等の半導
体材料や紫外線用光学材料の熱処理に使用される高温電
気炉の一般的な処理温度条件である。
The temperature condition of the above heat treatment is usually 900-1.
The temperature is in the range of about 300 ° C., which is a general processing temperature condition of a high temperature electric furnace used for heat treatment of semiconductor materials such as silicon wafers and optical materials for ultraviolet rays.

【0018】上記不純物金属遮蔽用耐熱性合成シリカガ
ラスは、珪素化合物原料から火炎加水分解法のスート再
溶融法によって製造されるのが好ましい。
The heat-resistant synthetic silica glass for shielding impurity metals is preferably produced from a silicon compound raw material by a soot remelting method of flame hydrolysis.

【0019】前記ジルコニウム及びアルミニウムは、ジ
ルコニウムイオン及びアルミニウムイオンを含む溶液を
用いて均一にドープされるのが好ましい。
The zirconium and aluminum are preferably uniformly doped with a solution containing zirconium ions and aluminum ions.

【0020】前記不純物金属遮蔽用耐熱性合成シリカガ
ラスに含まれるCl基は、1000wtppm 以下であるの
が好ましい。Cl基含有量が1000wtppmを超えると
Cl基が、シリカガラス中でSi−Cl構造を形成し、
粘性度の低下(耐熱性の低下)をもたらし好ましくな
い。
The Cl group contained in the heat-resistant synthetic silica glass for shielding impurity metals is preferably 1000 wtppm or less. When the Cl group content exceeds 1000 wtppm, the Cl group forms a Si-Cl structure in silica glass,
It is not preferable because it causes reduction of viscosity (reduction of heat resistance).

【0021】前記不純物金属遮蔽用耐熱性合成シリカガ
ラスのLi、Na及びKの含有量がそれぞれ50wtppb
以下でありかつFe、Ni及びCuの含有量がそれぞれ
10wtppb 以下であることが好ましい。
The content of Li, Na and K of the heat resistant synthetic silica glass for shielding the impurity metals is 50 wtppb.
It is preferable that the content of Fe, Ni, and Cu is 10 wtppb or less.

【0022】前記不純物金属遮蔽用耐熱性合成シリカガ
ラスの1000℃におけるNaの拡散係数が1×10
-10cm2/sec 以下であることが好ましい。
The diffusion coefficient of Na at 1000 ° C. of the heat-resistant synthetic silica glass for shielding impurity metals is 1 × 10.
It is preferably −10 cm 2 / sec or less.

【0023】前記不純物金属遮蔽用耐熱性合成シリカガ
ラスの1280℃における粘性度が1011.6ポアズ以上
であることが好ましい。1280℃における粘性度が1
11.6ポアズ未満であると、耐熱性も低下するため好ま
しくない。
It is preferable that the heat-resistant synthetic silica glass for shielding impurity metals has a viscosity at 1280 ° C. of 10 11.6 poise or more. Viscosity at 1280 ℃ is 1
When it is less than 0 11.6 poise, heat resistance is also deteriorated, which is not preferable.

【0024】さらに具体的に言えば、本発明の耐熱性合
成シリカガラスは、原料の珪素化合物を酸水素火炎加水
分解法によって作成したシリカガラスのスート体に、い
わゆるソリューションドーピング法等によって、ジルコ
ニウム及びアルミニウムを各々イオンの形で存在する溶
液からスート体へ均一にドープし、このスート体をガラ
ス化して形成、即ちスート再溶液法によって形成するの
が好ましい。
More specifically, the heat-resistant synthetic silica glass of the present invention comprises a soot body of silica glass prepared by subjecting a silicon compound as a raw material to an oxyhydrogen flame hydrolysis method to obtain zirconium and It is preferred that aluminum is uniformly doped into the soot body from a solution each present in the form of ions, and the soot body is vitrified, that is, formed by the soot re-solution method.

【0025】この場合、上記珪素化合物としては四塩化
珪素が通常用いられる。
In this case, silicon tetrachloride is usually used as the silicon compound.

【0026】さらに、上記シリカガラスのスート体にジ
ルコニウム及びアルミニウムを各々イオンの形で存在す
る溶液から均一にドープする場合には、当該シリカガラ
スのスート体をジルコニウム塩、例えば二塩化酸化ジル
コニウム(IV)八水和物、二硝酸酸化ジルコニウム(IV)八
水和物及びアルミニウム塩、例えば塩化アルミニウム六
水和物、硝酸アルミニウム九水和物の水溶液に浸漬して
行い、該水溶液には必要に応じてアルコール等の極性溶
媒を添加してもよい。
Further, in the case where the soot body of the silica glass is uniformly doped with zirconium and aluminum in the form of ions, the soot body of the silica glass is zirconium salt such as zirconium dichloride (IV). ) Octahydrate, zirconium dinitrate (IV) dihydrate octahydrate and aluminum salts, for example, aluminum chloride hexahydrate, aluminum nitrate nonahydrate by immersion in an aqueous solution, the aqueous solution if necessary A polar solvent such as alcohol may be added.

【0027】なお、上記ジルコニウムとアルミニウムは
シリカガラス中において共存していることが好ましく、
ジルコニウム及びアルミニウムが上記の含有量範囲でそ
れぞれ存在することによって、900〜1300℃の高
温下でのシリカガラスの耐再結晶性や耐熱性が向上し、
強度劣化も低減できる。
The zirconium and the aluminum preferably coexist in silica glass.
The presence of zirconium and aluminum in the above content ranges improves the recrystallization resistance and heat resistance of the silica glass at a high temperature of 900 to 1300 ° C.,
Strength deterioration can also be reduced.

【0028】本発明の不純物金属遮蔽用耐熱性合成シリ
カガラスの製造方法は、(a)珪素化合物原料を用いて
火炎加水分解法によって非晶質シリカ母材即ちスート体
を製造する工程、(b)このスート体をジルコニウム化
合物及びアルミニウム化合物の溶液に浸漬することによ
ってこのスート体にジルコニウム及びアルミニウムを均
一にドープせしめる工程、(c)このジルコニウム及び
アルミニウムが均一にドープされたスート体を乾燥させ
る工程、(d)この乾燥したスート体を減圧雰囲気下で
透明ガラス化する工程、とからなることを特徴とする。
The method for producing a heat-resistant synthetic silica glass for shielding impurity metals of the present invention comprises: (a) a step of producing an amorphous silica base material, that is, a soot body by a flame hydrolysis method using a silicon compound raw material; ) A step of uniformly doping the soot body with zirconium and aluminum by immersing the soot body in a solution of a zirconium compound and an aluminum compound, and (c) a step of drying the soot body uniformly doped with zirconium and aluminum. , (D) a step of vitrifying the dried soot body under a reduced pressure atmosphere.

【0029】このように本発明の耐熱性合成シリカガラ
スの製造に所謂スート再溶融法を適用することによって
粒状構造を有することなくかつ均一で滑らかな表面形状
の不純物金属遮蔽用耐熱性合成シリカガラスを効率よく
製造することが可能である。
As described above, by applying the so-called soot remelting method to the production of the heat-resistant synthetic silica glass of the present invention, the heat-resistant synthetic silica glass for shielding impurity metals having a uniform and smooth surface shape without a granular structure. Can be efficiently manufactured.

【0030】[0030]

【実施例】以下に実施例を挙げて本発明をさらに具体的
に説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0031】(実施例1〜4)四塩化珪素を酸水素火炎
中で加水分解するCVD法(火炎加水分解法)により、
すす状シリカ微粒子をターゲット上に堆積させて非晶質
シリカ母材(スート)を作成し、当該スート体をZr濃
度及びAl濃度を表1に示すように変動させたドープ溶
液に浸漬させた後、大気圧下で100〜200℃で乾燥
して水分を除去した。
(Examples 1 to 4) By the CVD method (flame hydrolysis method) in which silicon tetrachloride is hydrolyzed in an oxyhydrogen flame,
After depositing soot-like silica fine particles on a target to prepare an amorphous silica base material (soot), and immersing the soot body in a dope solution in which the Zr concentration and the Al concentration are varied as shown in Table 1 Water was removed by drying at 100 to 200 ° C. under atmospheric pressure.

【0032】その後、乾燥したスート体を5×10-4To
rrの減圧下で1650℃で真空熱処理炉内で加熱するこ
とによって透明ガラス化を行って、不純物金属遮蔽用耐
熱性合成シリカガラスをそれぞれ作成した。
Thereafter, the dried soot body was subjected to 5 × 10 -4 To
By heating in a vacuum heat treatment furnace at 1650 ° C. under reduced pressure of rr, transparent vitrification was performed, and heat-resistant synthetic silica glass for shielding impurity metals was prepared.

【0033】得られたが合成シリカガラスについて、表
1に示した不純物元素についての不純物濃度、OH基濃
度、Naの拡散係数、粘性度、耐失透性、Na汚染量を
それぞれ測定して表1に示した。
With respect to the obtained synthetic silica glass, the impurity concentration, the OH group concentration, the Na diffusion coefficient, the viscosity, the devitrification resistance, and the Na contamination amount shown in Table 1 were measured. Shown in 1.

【0034】表1の結果から明らかなように、実施例1
〜4の合成シリカガラスのZr及びAlの含有量はいず
れも1〜100wtppmの範囲に収まっており、さらにL
i、Na及びKの含有量はそれぞれ50wtppb以下、か
つFe、Cu及びNiの含有量はそれぞれ10wtppb以
下で、Clの含有量も30wtppm以下に抑えられ、かつ
OH基は90又は80wtppmであり、いずれも良好な範
囲に調整されていた。
As is clear from the results shown in Table 1, Example 1
The Zr and Al contents of the synthetic silica glass of Nos. 4 to 4 are both within the range of 1 to 100 wtppm, and L
The content of i, Na and K is 50 wtppb or less, the content of Fe, Cu and Ni is 10 wtppb or less, the content of Cl is suppressed to 30 wtppm or less, and the OH group is 90 or 80 wtppm. Was also adjusted to a good range.

【0035】このような不純物組成を有する実施例1〜
4の合成シリカガラスのNaの拡散係数は低い数値を示
しており、この合成シリカガラスを媒体として熱処理を
行う場合にNaが被熱処理物へ拡散し、それを汚染する
という不都合は抑制される。また、実施例1〜4の合成
シリカガラスの粘性度は低下しておらず、したがって耐
熱性も低下していないことが確認できた。
Examples 1 to 1 having such an impurity composition
The diffusion coefficient of Na in the synthetic silica glass of No. 4 shows a low numerical value, and when heat treatment is performed using this synthetic silica glass as a medium, the disadvantage that Na diffuses into the heat-treated object and contaminates it is suppressed. It was also confirmed that the synthetic silica glasses of Examples 1 to 4 did not have reduced viscosity, and therefore did not have reduced heat resistance.

【0036】さらに、実施例1〜4の合成シリカガラス
の耐失透性も良好であり、特に実施例2及び3の合成シ
リカガラスの失透は非常に少なかった。さらにまた、N
a汚染量も極めて低い値に抑えられていることがわかっ
た。
Furthermore, the devitrification resistance of the synthetic silica glasses of Examples 1 to 4 was also good, and the devitrification of the synthetic silica glasses of Examples 2 and 3 was very small. Furthermore, N
It was found that the a contamination amount was also suppressed to an extremely low value.

【0037】なお、実施例3の合成シリカガラスの顕微
鏡写真(倍率50倍)をとったところ、図1に示したよ
うに均一で滑らかな表面形状を有することが確認でき
た。
When a micrograph (magnification of 50) of the synthetic silica glass of Example 3 was taken, it was confirmed that it had a uniform and smooth surface shape as shown in FIG.

【0038】[0038]

【表1】 [Table 1]

【0039】(比較例1)スート体をZr及びAlのド
ープ溶液に浸漬しなかったこと以外は実施例1〜4と同
様にして合成シリカガラスを作成した。得られた合成シ
リカガラスについて実施例1〜4と同様に各種性能を測
定し、表2に示した。
Comparative Example 1 A synthetic silica glass was prepared in the same manner as in Examples 1 to 4 except that the soot body was not immersed in the Zr and Al dope solution. Various performances of the obtained synthetic silica glass were measured in the same manner as in Examples 1 to 4 and shown in Table 2.

【0040】表2の結果から、比較例1の合成シリカガ
ラスのLi、Na、K、Fe、Cu及びNiの含有量は
実施例1〜4と同様であり、またClの含有量も30wt
ppm以下に抑えられかつOH基も260wtppmでいずれも
良好であるが、Zr及びAlがいずれも0.05wtppm
以下と本発明の規定外であった。
From the results in Table 2, the contents of Li, Na, K, Fe, Cu and Ni of the synthetic silica glass of Comparative Example 1 are the same as those of Examples 1 to 4, and the content of Cl is 30 wt.
It is suppressed to below ppm and the OH group is 260 wtppm, which is good, but both Zr and Al are 0.05 wtppm.
The following was outside the scope of the present invention.

【0041】このような不純物組成を有する比較例1の
合成シリカガラスのNaの拡散係数は、実施例1〜4に
比較して増大しており、粘性度もやや低下していた。ま
た、この合成シリカガラスの失透は著しく、かつNa汚
染量も増大していた。
The diffusion coefficient of Na in the synthetic silica glass of Comparative Example 1 having such an impurity composition was increased as compared with Examples 1 to 4, and the viscosity was also slightly lowered. Further, devitrification of this synthetic silica glass was remarkable, and the amount of Na contamination was also increased.

【0042】(比較例2)スート体をZr及びAlのド
ープ溶液に浸漬することなく、塩素雰囲気中で脱水化し
た以外は実施例1〜4と同様にして合成シリカガラスを
作成した。得られた合成シリカガラスについて実施例1
〜4と同様に各種性能を測定し、表2に示した。
(Comparative Example 2) A synthetic silica glass was prepared in the same manner as in Examples 1 to 4 except that the soot body was dehydrated in a chlorine atmosphere without immersing it in a Zr and Al dope solution. Example 1 of the obtained synthetic silica glass
Various performances were measured in the same manner as in Nos. 4 to 4, and shown in Table 2.

【0043】表2の結果から、比較例2の合成シリカガ
ラスのLi、Na、K、Fe、Cu及びNiの含有量は
実施例1〜4と同様であるが、Zr及びAlがいずれも
0.05wtppm以下と本発明の規定外である他に、Cl
含有量が1800wtppmと高く、OH基濃度が1wtppm以
下と低すぎるものであった。
From the results shown in Table 2, the contents of Li, Na, K, Fe, Cu and Ni of the synthetic silica glass of Comparative Example 2 are the same as those of Examples 1 to 4, but Zr and Al are both 0. In addition to 0.05 wtppm or less, which is outside the scope of the present invention, Cl
The content was as high as 1800 wtppm and the OH group concentration was 1 wtppm or less, which was too low.

【0044】このような不純物組成を有する比較例2の
合成シリカガラスのNaの拡散係数は実施例1と同等で
ありかつ粘性度はわずかに低下している程度であるが、
失透が著しい上にNa汚染量も増大していた。
Although the diffusion coefficient of Na in the synthetic silica glass of Comparative Example 2 having such an impurity composition is the same as that of Example 1 and the viscosity is slightly lowered,
The devitrification was remarkable and the amount of Na contamination was also increased.

【0045】(比較例3)Al濃度400wtppm及びZ
r濃度400wtppmのドープ溶液に浸漬した以外は、実
施例1〜4と同様にして合成シリカガラスを作成した。
得られた合成シリカガラスについて実施例1〜4と同様
に各種性能を測定し、表2に示した。
(Comparative Example 3) Al concentration of 400 wtppm and Z
Synthetic silica glass was prepared in the same manner as in Examples 1 to 4 except that the silica glass was immersed in a dope solution having an r concentration of 400 wtppm.
Various performances of the obtained synthetic silica glass were measured in the same manner as in Examples 1 to 4 and shown in Table 2.

【0046】表2の結果から、比較例3の合成シリカガ
ラスのLi、Na、K、Fe、Cu、Ni、Cl及びO
H基の含有量は実施例1〜4と同様であるが、Zr及び
Alがいずれも100wtppmを超えて本発明の規定外で
あった。
From the results shown in Table 2, Li, Na, K, Fe, Cu, Ni, Cl and O of the synthetic silica glass of Comparative Example 3 were obtained.
The H group content was the same as in Examples 1 to 4, but both Zr and Al exceeded 100 wtppm, which was outside the scope of the present invention.

【0047】このような不純物組成を有する比較例3の
合成シリカガラスのNaの拡散係数は実施例1以下であ
りかつ粘性度はわずかに低下している程度であるが、失
透が著しい上にNa汚染量も増大していた。
The Na diffusion coefficient of the synthetic silica glass of Comparative Example 3 having such an impurity composition is less than that of Example 1 and the viscosity is slightly lowered, but the devitrification is remarkable and The amount of Na contamination was also increasing.

【0048】(比較例4)四塩化珪素を原料として酸水
素火炎加水分解法の直接法でZr及びAlのドープを行
うことなく合成シリカガラスを作成した。得られた合成
シリカガラスについて実施例1〜4と同様に各種性能を
測定し、表2に示した。
Comparative Example 4 A synthetic silica glass was prepared from silicon tetrachloride as a raw material by a direct method of oxyhydrogen flame hydrolysis without doping with Zr and Al. Various performances of the obtained synthetic silica glass were measured in the same manner as in Examples 1 to 4 and shown in Table 2.

【0049】表2の結果から、比較例4の合成シリカガ
ラスのLi、Na、K、Fe、Cu及びNiの含有量は
実施例1〜4と同様であり、またCl含有量も130と
良好であるが、Zr及びAlがいずれも0.05wtppm
以下と本発明の規定外である他に、OH基含有量も65
0wtppmと高いものであった。
From the results shown in Table 2, the contents of Li, Na, K, Fe, Cu and Ni of the synthetic silica glass of Comparative Example 4 are the same as those of Examples 1 to 4, and the Cl content is also good at 130. However, both Zr and Al are 0.05 wtppm
In addition to the following and outside the scope of the present invention, the OH group content is also 65
It was as high as 0 wtppm.

【0050】このような不純物組成を有する比較例4の
合成シリカガラスのNaの拡散係数は実施例1〜4に比
較して増大し、粘性度についても大幅に低下していた。
また、この合成シリカガラスの失透は著しく、かつNa
汚染量も増大していた。
The Na diffusion coefficient of the synthetic silica glass of Comparative Example 4 having such an impurity composition was increased as compared with Examples 1 to 4, and the viscosity was also significantly decreased.
Further, devitrification of this synthetic silica glass is remarkable, and Na
The amount of pollution was also increasing.

【0051】[0051]

【表2】 [Table 2]

【0052】(比較例5)天然石英を原料として酸水素
ベルヌイ法によりシリカガラス〔商品名:Heralu
x、信越石英(株)〕を作成した。得られたシリカガラ
スについて実施例1〜4と同様に各種性能を測定し、表
3に示した。
(Comparative Example 5) Silica glass [trade name: Heralu] made from natural quartz by the oxyhydrogen Bernoulli method
x, Shin-Etsu Quartz Co., Ltd.] was prepared. Various performances of the obtained silica glass were measured in the same manner as in Examples 1 to 4, and shown in Table 3.

【0053】表3の結果から、比較例5のシリカガラス
のAlは本発明の規定内であり、Cl及びOH基含有量
も良好であるが、Zrの含有量が低くまたLi、Na、
K、Fe、Cu及びNiの濃度はいずれも高すぎるもの
であった。
From the results of Table 3, Al of the silica glass of Comparative Example 5 is within the definition of the present invention, and the content of Cl and OH groups is good, but the content of Zr is low and Li, Na,
The concentrations of K, Fe, Cu and Ni were all too high.

【0054】このような不純物組成を有する比較例5の
シリカガラスのNaの拡散係数は実施例1〜4に比較し
て増大しており、粘性度もやや低下していた。また、こ
のシリカガラスの失透は若干認められる程度であった
が、Na汚染量は大幅に増大していた。
The Na diffusion coefficient of the silica glass of Comparative Example 5 having such an impurity composition was increased as compared with Examples 1 to 4, and the viscosity was also slightly decreased. Further, although devitrification of this silica glass was slightly recognized, the amount of Na contamination was significantly increased.

【0055】(比較例6)天然石英を原料として電気溶
融法によりシリカガラス〔商品名:Heralux−
E、信越石英(株)〕を作成した。得られたシリカガラ
スについて実施例1〜4と同様に各種性能を測定し、表
3に示した。
(Comparative Example 6) Silica glass [trade name: Heralux- using natural quartz as a raw material by an electric melting method]
E, Shin-Etsu Quartz Co., Ltd.] was prepared. Various performances of the obtained silica glass were measured in the same manner as in Examples 1 to 4, and shown in Table 3.

【0056】表3の結果から、比較例6のシリカガラス
のAlは本発明の規定内であり、Cl及びOH基含有量
も良好であるが、Zrの含有量が低く、またLi、N
a、K、Fe、Cu及びNiの濃度はいずれも高すぎる
ものであった。
From the results shown in Table 3, Al of the silica glass of Comparative Example 6 is within the definition of the present invention, the content of Cl and OH groups is good, but the content of Zr is low, and Li, N
The concentrations of a, K, Fe, Cu and Ni were all too high.

【0057】このような不純物組成を有する比較例6の
シリカガラスのNaの拡散係数は、実施例1〜4と比較
して増大していたが、粘性度の低下はなかった。また、
このシリカガラスの失透は若干認められる程度であった
が、Na汚染量は大幅に増大していた。
The diffusion coefficient of Na in the silica glass of Comparative Example 6 having such an impurity composition was increased as compared with Examples 1 to 4, but the viscosity was not reduced. Also,
Although devitrification of this silica glass was slightly observed, the amount of Na contamination was significantly increased.

【0058】(比較例7)純化処理したOH基含有量を
調整したシリカ粉であって、その粒径が10〜200μ
mの合成クリストバライト粉に粒径が0.1〜10μm
の範囲のZrO2100wtppm 及びAl2 3 100wtp
pm を配合して、V型混合器で均一に混合した後、該混
合物を加熱溶融してシリカガラスを作成した。得られた
シリカガラスについて実施例1〜4と同様に各種性能を
測定し、表3に示した。
Comparative Example 7 A silica powder having a purified OH group content and a particle size of 10 to 200 μm.
m synthetic cristobalite powder with a particle size of 0.1-10 μm
100 wtppm of ZrO 2 and 100 wtp of Al 2 O 3 in the range of
After pm was mixed and uniformly mixed in a V-type mixer, the mixture was heated and melted to prepare silica glass. Various performances of the obtained silica glass were measured in the same manner as in Examples 1 to 4, and shown in Table 3.

【0059】表3の結果から、比較例7のシリカガラス
のZr及びAlは本発明の規定内に収まっており、また
Cl及びOH基含有量も良好であるが、Li、Na、
K、Fe、Cu及びNiの濃度はいずれも高すぎるもの
であった。
From the results shown in Table 3, Zr and Al of the silica glass of Comparative Example 7 are within the specifications of the present invention, and the Cl and OH group contents are good, but Li, Na, and
The concentrations of K, Fe, Cu and Ni were all too high.

【0060】このような不純物組成を有する比較例7の
シリカガラスのNaの拡散係数は実施例1〜4と同等で
あり、粘性度の低下もなかったが、失透が著しく、また
Na汚染量も増大していた。このシリカガラスの顕微鏡
写真(倍率50倍)をとったところ、図2に示したよう
に粒状構造を有する表面形状を呈していることがわかっ
た。
The diffusion coefficient of Na in the silica glass of Comparative Example 7 having such an impurity composition was the same as that of Examples 1 to 4, and the viscosity was not lowered, but the devitrification was remarkable and the amount of Na contamination was large. Was also increasing. When a micrograph (magnification of 50) of this silica glass was taken, it was found that the silica glass had a surface shape having a granular structure as shown in FIG.

【0061】[0061]

【表3】 [Table 3]

【0062】上記実施例1〜4及び比較例1〜7につい
ての各評価項目は以下の方法によってそれぞれ測定また
は評価した。
The evaluation items of Examples 1 to 4 and Comparative Examples 1 to 7 were measured or evaluated by the following methods.

【0063】(1)不純物分析:原子吸光分光法 (2)OH基濃度測定:赤外線吸光分光法〔D.M.Dodd,
D.B.Fraser;Journal ofApplied Physics,Vol.37,p.3911
(1966)〕
(1) Impurity analysis: atomic absorption spectroscopy (2) OH group concentration measurement: infrared absorption spectroscopy [DM Dodd,
DBFraser; Journal of Applied Physics, Vol.37, p.3911
(1966))

【0064】(3)Na拡散係数の測定:寸法20×2
0×5mm、鏡面仕上げの測定対象ガラス試料を作成
し、その上に食塩水を塗り、100℃で乾燥し、次いで
大気中において1000℃で50時間加熱処理を行った
後、LMA法(Laser Micro Analysis法) により当該ガ
ラス試料表面から深さ方向におけるNa拡散濃度分布を
測定し、フィックの法則により拡散係数を求める。
(3) Measurement of Na diffusion coefficient: size 20 × 2
A glass sample to be measured having a mirror finish of 0 × 5 mm was prepared, and a saline solution was applied onto the glass sample, dried at 100 ° C., and then heat-treated at 1000 ° C. for 50 hours in the atmosphere, and then subjected to the LMA method (Laser Micro Analysis method) is used to measure the Na diffusion concentration distribution in the depth direction from the surface of the glass sample, and the diffusion coefficient is determined according to Fick's law.

【0065】(4)粘度測定:ビームベンディング法
(小林啓二、横田良助;窯業協会誌、第76巻、第7
号、1968年、第218〜223頁)
(4) Viscosity measurement: beam bending method (Keiji Kobayashi, Ryosuke Yokota; Journal of Ceramic Industry, Vol. 76, No. 7)
(No. 1968, 218-223)

【0066】(5)耐失透性:測定対象ガラス試料を高
温大気炉中にて1300℃で100時間熱処理を施し、
熱処理後の試料の失透の程度を目視により評価する。目
視判定の評価は次の通りである。 ◎:失透が非常に少ないことを示す。 :失透が若干認められたことを示す。 ×:失透が著しいことを示す。
(5) Devitrification resistance: A glass sample to be measured was heat-treated at 1300 ° C. for 100 hours in a high temperature atmospheric furnace,
The degree of devitrification of the sample after the heat treatment is visually evaluated. The evaluation of visual judgment is as follows. ⊚: Devitrification is extremely small. : Indicates that some devitrification was observed. X: Devitrification is remarkable.

【0067】(6)ガラス試料のNa汚染量:測定対象
ガラス試料(ガラス板)(厚さ10mm)を高温大気炉
の底部に設置し、当該ガラス板の中央部に標準シリカガ
ラス試料〔商品名 Heralux−LA、信越石英
(株)〕を配置し、1100℃で1000時間熱処理を
施し、熱処理後、標準シリカガラス試料を回収し、Na
汚染量測定を行った。
(6) Na contamination amount of glass sample: A glass sample (glass plate) (thickness: 10 mm) to be measured was installed at the bottom of a high temperature atmospheric furnace, and a standard silica glass sample [trade name] was placed at the center of the glass plate. [Heralux-LA, Shin-Etsu Quartz Co., Ltd.], and heat-treated at 1100 ° C. for 1000 hours. After the heat-treatment, a standard silica glass sample was collected and
The amount of contamination was measured.

【0068】[0068]

【発明の効果】以上述べたごとく、本発明の耐熱性合成
シリカガラスは、半導体材料の熱処理や紫外線用光学材
料の熱処理における不純物金属元素、特に、Na、K、
Liの遮蔽性に優れ、失透がない上に粒状構造を有する
ことなくかつ均一で滑らかな表面形状を有しており、上
記熱処理に使用する治具に好適に用いられるという効果
を奏する。また、本発明方法によれば、上記した優れた
性能を有する合成シリカガラスを効率良く製造できると
いう効果が達成される。
As described above, the heat-resistant synthetic silica glass of the present invention can be used for the impurity metal elements, especially Na, K, in the heat treatment of the semiconductor material and the heat treatment of the optical material for ultraviolet rays.
It has an excellent Li shielding property, has no devitrification, has no granular structure, and has a uniform and smooth surface shape, and has an effect of being suitably used for a jig used for the heat treatment. Further, according to the method of the present invention, the effect that the synthetic silica glass having the above-mentioned excellent performance can be efficiently produced is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例3において作成された合成シリカガラス
の表面形状を示す顕微鏡写真である。
FIG. 1 is a micrograph showing a surface shape of a synthetic silica glass prepared in Example 3.

【図2】比較例7において作成されたシリカガラスの表
面形状を示す顕微鏡写真である。
FIG. 2 is a micrograph showing the surface shape of silica glass prepared in Comparative Example 7.

フロントページの続き (56)参考文献 特開 平10−17334(JP,A) 特開 平10−7434(JP,A) 特開 平5−294660(JP,A) 特開 平3−252320(JP,A) 特開 平7−196326(JP,A) 特開 平3−137012(JP,A) 特開 平3−83833(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 20/00 C03B 8/04 C03C 3/06 Continuation of the front page (56) Reference JP 10-17334 (JP, A) JP 10-7434 (JP, A) JP 5-294660 (JP, A) JP 3-252320 (JP , A) JP-A-7-196326 (JP, A) JP-A-3-137012 (JP, A) JP-A-3-83833 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB) Name) C03B 20/00 C03B 8/04 C03C 3/06

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 OH基含有量が10〜300wtppmの高
純度合成シリカガラスにジルコニウム1〜100wtppm
及びアルミニウム1〜100wtppm を粒状構造を生成す
ることなく均一にドープせしめてなることを特徴とする
不純物金属遮蔽用耐熱性合成シリカガラス。
1. A high-purity synthetic silica glass having an OH group content of 10 to 300 wtppm and zirconium of 1 to 100 wtppm.
And heat-resistant synthetic silica glass for shielding impurity metals, characterized by being uniformly doped with 1 to 100 wtppm of aluminum without forming a granular structure.
【請求項2】 前記ジルコニウムを10〜50wtppm 及
び前記アルミニウムを10〜50wtppm ドープするよう
にしたことを特徴とする請求項1記載の不純物金属遮蔽
用耐熱性合成シリカガラス。
2. The heat resistant synthetic silica glass for shielding impurity metals according to claim 1, wherein said zirconium is doped in an amount of 10 to 50 wtppm and said aluminum is doped in an amount of 10 to 50 wtppm.
【請求項3】 珪素化合物原料から火炎加水分解法のス
ート再溶融法によって製造されることを特徴とする請求
項1又は2に記載の不純物金属遮蔽用耐熱性合成シリカ
ガラス。
3. The heat-resistant synthetic silica glass for shielding an impurity metal according to claim 1, which is produced from a silicon compound raw material by a soot remelting method of a flame hydrolysis method.
【請求項4】 前記ジルコニウム及びアルミニウムがジ
ルコニウムイオン及びアルミニウムイオンを含む溶液を
用いて均一にドープされることを特徴とする請求項1〜
3のいずれか1項記載の不純物金属遮蔽用耐熱性合成シ
リカガラス。
4. The zirconium and aluminum are uniformly doped with a solution containing zirconium ions and aluminum ions.
The heat-resistant synthetic silica glass for shielding impurity metals according to any one of 3 above.
【請求項5】 Cl基が1000wtppm 以下であること
を特徴とする請求項1〜4のいずれか1項記載の不純物
金属遮蔽用耐熱性合成シリカガラス。
5. The heat resistant synthetic silica glass for shielding an impurity metal according to claim 1, wherein the Cl group is 1000 wtppm or less.
【請求項6】 Li、Na及びKの含有量がそれぞれ5
0wtppb 以下でありかつFe、Ni及びCuの含有量が
それぞれ10wtppb 以下であることを特徴とする請求項
1〜5のいずれか1項記載の不純物金属遮蔽用耐熱性合
成シリカガラス。
6. The contents of Li, Na and K are each 5
The heat-resistant synthetic silica glass for shielding an impurity metal according to any one of claims 1 to 5, wherein the content of Fe, Ni and Cu is 10 wtppb or less, respectively.
【請求項7】 1000℃におけるNaの拡散係数が1
×10-10cm2/sec 以下であることを特徴とする請求項
1〜6のいずれか1項記載の不純物金属遮蔽用耐熱性合
成シリカガラス。
7. The diffusion coefficient of Na at 1000 ° C. is 1.
The heat-resistant synthetic silica glass for shielding impurity metals according to any one of claims 1 to 6, which has a density of x10 -10 cm 2 / sec or less.
【請求項8】 1280℃における粘性度が1011.6
アズ以上であることを特徴とする請求項1〜7のいずれ
か1項記載の不純物金属遮蔽用耐熱性合成シリカガラ
ス。
8. The heat-resistant synthetic silica glass for shielding an impurity metal according to claim 1, which has a viscosity of 10 11.6 poise or more at 1280 ° C.
【請求項9】(a)珪素化合物原料を用いて火炎加水分
解法によって非晶質シリカ母材即ちスート体を製造する
工程、(b)このスート体をジルコニウム化合物及びア
ルミニウム化合物の溶液に浸漬することによってこのス
ート体にジルコニウム及びアルミニウムを均一にドープ
せしめる工程、(c)このジルコニウム及びアルミニウ
ムが均一にドープされたスート体を乾燥させる工程、
(d)この乾燥したスート体を減圧雰囲気下で透明ガラ
ス化する工程、とからなることを特徴とする請求項1〜
8のいずれか1項記載の不純物金属遮蔽用耐熱性合成シ
リカガラスの製造方法。
9. (a) A step of producing an amorphous silica base material, that is, a soot body by a flame hydrolysis method using a silicon compound raw material, and (b) immersing the soot body in a solution of a zirconium compound and an aluminum compound. Thereby uniformly doping the soot body with zirconium and aluminum, (c) drying the soot body uniformly doped with zirconium and aluminum,
(D) a step of vitrifying the dried soot body under a reduced pressure atmosphere.
9. The method for producing a heat-resistant synthetic silica glass for shielding an impurity metal according to any one of 8 above.
JP12672898A 1998-04-21 1998-04-21 Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same Expired - Fee Related JP3393063B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12672898A JP3393063B2 (en) 1998-04-21 1998-04-21 Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same
DE1999118001 DE19918001C2 (en) 1998-04-21 1999-04-21 Heat-resistant, synthetic quartz glass and manufacturing process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12672898A JP3393063B2 (en) 1998-04-21 1998-04-21 Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11302026A JPH11302026A (en) 1999-11-02
JP3393063B2 true JP3393063B2 (en) 2003-04-07

Family

ID=14942413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12672898A Expired - Fee Related JP3393063B2 (en) 1998-04-21 1998-04-21 Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same

Country Status (2)

Country Link
JP (1) JP3393063B2 (en)
DE (1) DE19918001C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154090A (en) * 2007-12-26 2009-07-16 Shinetsu Quartz Prod Co Ltd Silica glass for photocatalyst, and method of preparing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19956570B4 (en) * 1999-11-24 2005-03-24 Heraeus Tenevo Ag Process for the production of a quartz glass body
EP1261761B1 (en) * 2000-02-07 2006-05-17 Tokyo Electron Limited Quartz member for semiconductor manufacturing equipment and method for metal analysis in quartz member
US6887576B2 (en) * 2000-08-23 2005-05-03 Herseus Quarzglas GmbH & Co. KG Quartz glass body having improved resistance against plasma corrosion, and method for production thereof
JP4744003B2 (en) * 2001-06-01 2011-08-10 東ソー株式会社 Quartz glass having uniform dispersibility of zirconium, method for producing the same, member and apparatus using the same
US6672111B2 (en) 2001-12-21 2004-01-06 Corning Incorporated Method and apparatus for adding metals to fused silica
JP4316589B2 (en) 2006-06-16 2009-08-19 東京電波株式会社 Artificial quartz member, method for manufacturing the same, and optical element using the same
JP2009046328A (en) * 2007-08-15 2009-03-05 Shinetsu Quartz Prod Co Ltd Silica glass for photocatalyst and its production method
JP5406439B2 (en) * 2007-08-23 2014-02-05 信越石英株式会社 Chemical-resistant silica glass and method for producing chemical-resistant silica glass
US8841664B2 (en) 2011-03-04 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE102016110429A1 (en) 2016-06-06 2017-12-07 Infineon Technologies Ag Energy filter for processing a power semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544933B2 (en) * 1987-07-11 1996-10-16 新興化学工業株式会社 Method for producing adhesive tape for electrical insulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154090A (en) * 2007-12-26 2009-07-16 Shinetsu Quartz Prod Co Ltd Silica glass for photocatalyst, and method of preparing the same

Also Published As

Publication number Publication date
DE19918001A1 (en) 1999-10-28
DE19918001C2 (en) 2001-10-04
JPH11302026A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
KR101378748B1 (en) Fused quartz glass and process for producing the same
US3804608A (en) Method for making glass ceramic materials
US5236483A (en) Method of preparing silica glass
US5250096A (en) Sol-gel method of making multicomponent glass
EP0293064B1 (en) Sol-gel method for making ultra-low expansion glass
JP5118007B2 (en) Silica container and method for producing the same
JP3393063B2 (en) Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same
JP5167073B2 (en) Silica container and method for producing the same
JP2005194118A (en) Silica glass
KR970005142B1 (en) Fabrication of semiconductor devices using phosphosilicate glasses
EP3224213B1 (en) Doped silica-titania glass having low expansivity and methods of making the same
JPH11310423A (en) Synthetic quartz glass and its production
US5876473A (en) Method of producing cristobalite containing silica glass
JP3268049B2 (en) Quartz glass material and its manufacturing method
JPS63236723A (en) Quartz glass products for semiconductor industry
JP2000191329A (en) Production of optical quartz glass for excimer laser
JP2000143258A (en) PRODUCTION OF SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER LITHOGRAPHY
JP2777858B2 (en) Silica glass tube for heat treatment of semiconductor and method for producing the same
JP2931742B2 (en) Opal glass ceramic and method for producing the same
JP4329130B2 (en) High purity alumina silica zirconia fiber and fireproof insulation
JPH1017334A (en) Impurity metal isolating silica glass and its production
JP3371399B2 (en) Cristobalite crystalline phase-containing silica glass and method for producing the same
JP5452938B2 (en) Silica container and method for producing the same
JPH107434A (en) Composite silica glass and its production
JP2878916B2 (en) Silica glass member for semiconductor heat treatment and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021226

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140124

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees