JPH05279049A - Production of synthetic quartz glass - Google Patents

Production of synthetic quartz glass

Info

Publication number
JPH05279049A
JPH05279049A JP7398792A JP7398792A JPH05279049A JP H05279049 A JPH05279049 A JP H05279049A JP 7398792 A JP7398792 A JP 7398792A JP 7398792 A JP7398792 A JP 7398792A JP H05279049 A JPH05279049 A JP H05279049A
Authority
JP
Japan
Prior art keywords
quartz glass
base material
temp
temperature
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7398792A
Other languages
Japanese (ja)
Inventor
Shigetoshi Hayashi
茂利 林
Tadahisa Arahori
忠久 荒堀
Kazuhiro Minagawa
和弘 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7398792A priority Critical patent/JPH05279049A/en
Publication of JPH05279049A publication Critical patent/JPH05279049A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/24Doped silica-based glasses doped with non-metals other than boron or fluorine doped with nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/24Doped silica-based glasses containing non-metals other than boron or halide containing nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Abstract

PURPOSE:To obtain quartz glass having excellent heat resistance by heat treating a porous body comprising vitreous SiO2 fine particles in an ammonia- contg. atmosphere and sintering in a specified temp. range at a specified temp. rising rate. CONSTITUTION:A gas phase synthesized quartz glass base body which is a porous body having about 12m<2>/g specific surface area is heat treated at about 1000 deg.C for 0.5-4 hours in an atmosphere containing about 80vol.% ammonia to obtain a porous body (nitrogen-doped base body) having the max. 5.2wt.% N. Then this body is sintered under reduced pressure (about 10Torr) at <=100 deg.C/h temp. rising rate in >1200C temp. range. In this process, before the pores of the base material are closed, decomposed gas (e.g. N2, H2) can be released to the outside of the base body so that the base material doped with high concn. N can easily be made dense. Thereby, the obtd. synthetic quartz glass has 0.15wt.% N content and >1100 deg.C strain point (max. temp. of heat resistance).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造プロセスで
用いられるプロセスチューブ、ライナーチューブ、ウェ
ハーボートなどの高純度耐熱材料や、多結晶シリコンを
用いた薄膜トランジスタの石英ガラス基板の素材として
用いられる、耐熱性を強化した合成石英ガラスの製造方
法に関するものである。
FIELD OF THE INVENTION The present invention is used as a high-purity heat-resistant material such as a process tube, a liner tube, and a wafer boat used in a semiconductor manufacturing process, and a material for a quartz glass substrate of a thin film transistor using polycrystalline silicon. The present invention relates to a method for manufacturing synthetic quartz glass having enhanced heat resistance.

【0002】[0002]

【従来の技術】高純度の素材や治工具の使用を要求され
るLSIなどの半導体製造プロセスにおいては、シリコ
ンウェハーの熱処理時に使用される炉心管(プロセスチ
ューブ、ライナーチューブ)やウェハーボート、あるい
はその他の治工具として、主に高純度石英ガラス製品が
用いられている。石英ガラスは、純度の高いものが比較
的容易に入手でき、1000℃程度の熱処理温度では変質あ
るいは変形しない、などの特徴を有している。ところ
が、例えば、LSIを1200℃程度の温度域で熱処理する
工程では、石英ガラスの粘性変形が問題となるため使用
することができず、高純度の炭化珪素質耐熱材料の適用
が試みられている。
2. Description of the Related Art In a semiconductor manufacturing process such as LSI which requires the use of high-purity materials and jigs, a furnace core tube (process tube, liner tube) or wafer boat used for heat treatment of a silicon wafer, or other High-purity quartz glass products are mainly used as jigs and tools. Quartz glass, which has a high degree of purity, is relatively easy to obtain, and is characterized by not being altered or deformed at a heat treatment temperature of about 1000 ° C. However, for example, in the step of heat-treating LSI in a temperature range of about 1200 ° C., viscous deformation of quartz glass poses a problem and therefore cannot be used, and application of a high-purity silicon carbide heat-resistant material has been attempted. .

【0003】しかし、近年、LSIの集積度が大きくな
るとともに、炭化珪素質耐熱材料を用いた炉心管やウェ
ハー支持部材が含有する微量の不純物によるシリコンウ
ェハーの汚染が問題化しており、炭化珪素質耐熱材料に
対する一層の高純度化の要求とともに、石英ガラスに対
する高耐熱化の要求も強くなっている。
However, in recent years, as the degree of integration of LSIs has increased, contamination of silicon wafers due to trace impurities contained in a furnace core tube using a silicon carbide-based heat resistant material and a wafer support member has become a problem. Along with the demand for higher purity of heat-resistant materials, the demand for higher heat resistance of quartz glass is also increasing.

【0004】石英ガラスに対する上記の要求に対して、
特開昭63−236722号公報では、高耐熱性を付与するとと
もに不純物の侵入を阻止することを目的として、石英ガ
ラス材の表面層にクリストバライト化を誘起する核とし
ての不純物元素を導入し、石英ガラス材の表面をクリス
トバライト層で被覆する方法が提案されている。この方
法で得られる石英ガラス材は、その表面に形成されるク
リストバライト結晶層の耐熱性が石英ガラスのそれより
も高いために、材料全体の耐熱性が向上するが、使用期
間が長期にわたると、クリストバライト層の領域が拡大
して脆くなり、ダストの発生原因となったり、材料にク
ラックが生じるなど、熱による変形以外の問題が発生す
る。
In response to the above requirements for quartz glass,
In JP-A-63-236722, for the purpose of imparting high heat resistance and preventing the invasion of impurities, an impurity element as a nucleus for inducing cristobalite formation is introduced into the surface layer of the quartz glass material, and quartz is used. A method of coating the surface of a glass material with a cristobalite layer has been proposed. Quartz glass material obtained by this method, because the heat resistance of the cristobalite crystal layer formed on the surface is higher than that of quartz glass, the heat resistance of the entire material improves, but when the period of use is long, The region of the cristobalite layer expands and becomes brittle, which causes problems such as generation of dust and cracks in the material, and causes problems other than thermal deformation.

【0005】一方、石英ガラス材の耐熱性を本質的に改
善する方法としては、材料に窒素原子(N)を導入(ド
ープ)してSi−O結合よりも強固なSi−N結合を形成さ
せる方法が知られている。この方法は、VAD(Vapor-p
hase Axial Deposition)法、OVD(Outside Vapor Dep
osition)法、MCVD(Modified Chemical Vapor Depos
ition)法などを用い、気相合成によりガラス質の二酸化
珪素(SiO2)からなる多孔体を形成し、この多孔体を加
熱炉に入れてアンモニア(NH3) を含む雰囲気中で、焼結
による緻密化が起こらない温度域(1200℃以下)で加熱
処理した後、高温に加熱して焼結し、緻密な窒素ドープ
石英ガラス材を得る方法である。しかしながら、この方
法によって耐熱温度の指標となる歪点(材料の粘性係数
が1014.5poise となる温度、以下、耐熱温度ともいう)
を1100℃を超える温度まで高めるのに必要な窒素(N)
をドープしようとすると、焼結時に NH3の分解生成物で
ある窒素ガス(N2)あるいは水素ガス(H2)の発生に起
因するガラスの発泡現象が起こり、石英ガラス中に高濃
度に窒素をドープした緻密な石英ガラスを得ることがで
きない。
On the other hand, as a method for essentially improving the heat resistance of a quartz glass material, a nitrogen atom (N) is introduced (doped) into the material to form a stronger Si-N bond than the Si-O bond. The method is known. This method uses VAD (Vapor-p
hase Axial Deposition) method, OVD (Outside Vapor Dep)
osition) method, MCVD (Modified Chemical Vapor Depos
ition) method, etc. to form a glassy porous body of silicon dioxide (SiO 2 ) by gas phase synthesis, place this porous body in a heating furnace and sinter in an atmosphere containing ammonia (NH 3 ). This is a method of obtaining a dense nitrogen-doped quartz glass material by performing heat treatment in a temperature range (1200 ° C. or less) where densification does not occur, and then heating to a high temperature and sintering. However, with this method, the strain point that serves as an index of the heat resistant temperature (the temperature at which the viscosity coefficient of the material becomes 10 14.5 poise, hereinafter also called the heat resistant temperature)
(N) necessary to raise the temperature to over 1100 ° C
However, when sintering is attempted, a glass foaming phenomenon occurs due to the generation of nitrogen gas (N 2 ) or hydrogen gas (H 2 ) which is a decomposition product of NH 3 during sintering, and the nitrogen gas is highly concentrated in the quartz glass. It is not possible to obtain a dense quartz glass doped with.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
の窒素ドープ石英ガラス材を得る際におけるガラスの発
泡の問題を解決し、ガラス中に高濃度のNを含有する、
従来よりも耐熱性に優れる合成石英ガラスの製造方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problem of glass foaming in obtaining the above nitrogen-doped quartz glass material and to contain a high concentration of N in the glass.
An object of the present invention is to provide a method for producing synthetic quartz glass, which has better heat resistance than conventional ones.

【0007】[0007]

【課題を解決するための手段】気相合成による超高純度
の合成石英ガラスの製造方法は、MCVD法、OVD
法、VAD法などのスート法と総称される技術を適用す
る方法で、光ファイバーの製造などを目的として開発さ
れ、実用化されている。気相合成により得られる石英ガ
ラスの多孔体(以下、石英ガラス母材という)は、四塩
化珪素などの珪素塩化物を気化し、火炎などの酸化雰囲
気中で加水分解反応〔下記 (1)式〕または酸化反応〔下
記 (2)式〕を行わせ、生成したガラス質のSiO2の微粒子
を堆積させ、これを焼き固めることにより製造される。
[Problems to be Solved by the Invention] A method for producing ultra-high-purity synthetic quartz glass by vapor phase synthesis includes MCVD method and OVD method.
Method, which is a method applying a technique generally called soot method such as VAD method, has been developed and put into practical use for the purpose of manufacturing an optical fiber. A porous quartz glass body (hereinafter referred to as a quartz glass base material) obtained by vapor phase synthesis is a hydrolysis reaction in the oxidizing atmosphere such as a flame by vaporizing silicon chloride such as silicon tetrachloride [the following (1) formula ] Or an oxidation reaction [Equation (2) below] is carried out to deposit the glassy SiO 2 fine particles that have been produced, and this is baked and solidified.

【0008】 SiCl4 +2H2O → SiO2 +4HCl ・・・(1) SiCl4 + O2 → SiO2 +2Cl2 ・・・(2) このようにして製造される気相合成石英ガラス母材は微
粒子を堆積させる段階で塩化水素(HCl) 、塩素(Cl2) な
どのハロゲン系のガスと分離されるため、ハロゲン系の
ガスによる合成用の金属製容器の腐食により生成する金
属のハロゲン化物が石英ガラス母材中に不純物として混
入するのを防止することができ、極めて高純度なガラス
質のSiO2の多孔体を得ることができる。
SiCl 4 + 2H 2 O → SiO 2 + 4HCl (1) SiCl 4 + O 2 → SiO 2 + 2Cl 2 (2) The vapor-phase synthetic quartz glass base material produced in this manner is fine particles. Since it is separated from halogen-based gases such as hydrogen chloride (HCl) and chlorine (Cl 2 ) during the deposition step, the metal halide produced by the corrosion of the metal container for synthesis by the halogen-based gas is quartz. It is possible to prevent impurities from being mixed into the glass base material, and it is possible to obtain an extremely high-purity vitreous porous body of SiO 2 .

【0009】この石英ガラス母材はおよそ12m2/g程度の
比表面積を有する多孔体で、ガスの透過、浸透が可能で
あり、母材を構成するSiO2微粒子の表面に種々の気体分
子を固定することができる。
This quartz glass base material is a porous material having a specific surface area of about 12 m 2 / g, which allows gas permeation and permeation, and various gas molecules are formed on the surface of the SiO 2 fine particles constituting the base material. Can be fixed.

【0010】石英ガラスの耐熱性を向上させるためにド
ープする成分(ドーパント)としては、Nが有効である
ことが知られている。Nを石英ガラス母材にドープする
には、主としてN2およびアンモニア(NH3) が用いられて
いるが、 NH3はN2よりも母材に固定され易く、Nを高濃
度にドープするのに適している。 NH3は石英ガラス母材
と下記 (3)式のように反応し、固定される。
It is known that N is effective as a component (dopant) to be doped in order to improve the heat resistance of quartz glass. N 2 and ammonia (NH 3 ) are mainly used to dope N into the quartz glass base material, but NH 3 is more easily fixed to the base material than N 2 and N is doped at a high concentration. Suitable for NH 3 reacts with the quartz glass base material as shown in equation (3) below and is fixed.

【0011】 Si−OH +NH3 → Si−NH2 +H2O ・・・(3) この窒素ドープ母材の焼結開始温度は、何もドープして
いない合成石英ガラス母材よりも 100℃程度高く、およ
そ1300℃程度であることが知られている。
Si-OH + NH 3 → Si-NH 2 + H 2 O (3) The sintering start temperature of this nitrogen-doped base material is about 100 ° C. higher than that of the undoped synthetic quartz glass base material. It is known to be high, about 1300 ° C.

【0012】ただし、窒素ドープ母材を焼結する過程
で、固定されたNの約半分がN2あるいはH2として脱離
し、このN2あるいはH2が焼結過程で形成される閉気孔内
にとどまり、熱膨張して前記の発泡現象を引き起こし、
母材の緻密化を阻害する。
However, in the process of sintering the nitrogen-doped base material, about half of the fixed N is desorbed as N 2 or H 2 , and this N 2 or H 2 is formed in the closed pores formed in the sintering process. Staying in place, causing thermal expansion to cause the foaming phenomenon,
Prevents densification of the base material.

【0013】本発明者らは、窒素ドープ母材からのNの
離脱と、それに伴うN2やH2の生成が1200℃以上で特に激
しく生ずることを考慮し、焼結の際に、この温度から緻
密化するために必要な焼結最高温度までの間における昇
温速度を 100℃/hr 以下にすれば、母材の細孔が閉気孔
化する前に上記分解ガスを母材の外に逃がすことが可能
となり、高濃度にNをドープした母材を容易に緻密化で
きることを見出した。
The inventors of the present invention consider that the release of N from the nitrogen-doped base material and the accompanying generation of N 2 and H 2 occur particularly strongly at 1200 ° C. or higher. If the temperature rising rate from the maximum temperature to the maximum sintering temperature required for densification is set to 100 ° C / hr or less, the above-mentioned decomposition gas is discharged outside the base metal before the base metal pores are closed. It has been found that it becomes possible to escape, and the base material doped with a high concentration of N can be easily densified.

【0014】上記の知見に基づく本発明の要旨は、「気
相合成により得られるガラス質のSiO2微粒子からなる多
孔体を、アンモニアを含む雰囲気中で加熱処理し、次い
で、1200℃以上の温度域における昇温速度を 100℃/hr
以下として焼結し、石英ガラス中のN含有量を0.15wt%
以上とすることを特徴とする合成石英ガラスの製造方
法」にある。
The gist of the present invention based on the above findings is that "a porous body composed of glassy SiO 2 fine particles obtained by vapor phase synthesis is heat-treated in an atmosphere containing ammonia, and then heated to a temperature of 1200 ° C. or higher. Temperature rising rate in the region is 100 ℃ / hr
Sintered as follows, the N content in the quartz glass is 0.15 wt%
The above is the method for producing synthetic quartz glass ".

【0015】前記の合成石英ガラスとは、MCVD法、
OVD法、VAD法などを適用して気相合成により得ら
れる石英ガラスである。
The synthetic quartz glass mentioned above means the MCVD method,
It is a quartz glass obtained by vapor phase synthesis by applying the OVD method, the VAD method, or the like.

【0016】[0016]

【作用】以下に、本発明で規定する諸条件について説明
する。
The various conditions specified in the present invention will be described below.

【0017】本発明の合成石英ガラスの製造方法におい
て、ガラス中のN含有量を0.15wt%以上としたのは1100
℃を超える歪点、すなわち耐熱温度を有する石英ガラス
を得るためである。
In the method for producing synthetic quartz glass according to the present invention, the N content in the glass is set to 0.15 wt% or more is 1100.
This is to obtain a quartz glass having a strain point of higher than 0 ° C, that is, a heat resistant temperature.

【0018】図1はNをドープした合成石英ガラス中の
N濃度と耐熱温度(歪点)の関係を示すグラフである
が、合成石英ガラスの耐熱温度(歪点)はガラス中のN
濃度の増大に伴って直線的に上昇する。この図から、11
00℃を超える耐熱温度を有する石英ガラスを得るために
は、0.15wt%程度のNをドープすればよく、1200℃を超
える耐熱温度とするためには 1.5wt%程度のNのドーピ
ングが必要であることがわかる。
FIG. 1 is a graph showing the relationship between the N concentration in N-doped synthetic quartz glass and the heat resistance temperature (strain point). The heat resistance temperature (strain point) of synthetic quartz glass is N in the glass.
It increases linearly with increasing concentration. From this figure, 11
In order to obtain quartz glass having a heat resistant temperature of more than 00 ° C, it is sufficient to dope with about 0.15wt% of N, and in order to obtain a heat resistant temperature of more than 1200 ° C, doping of about 1.5wt% of N is necessary. I know there is.

【0019】合成石英ガラス中にNをドープするには、
気相合成により得られる石英ガラス母材に、 NH3を含む
雰囲気中で加熱処理を施せばよい。
To dope N into synthetic quartz glass,
The quartz glass base material obtained by vapor phase synthesis may be heat-treated in an atmosphere containing NH 3 .

【0020】気相合成には、前記のように、MCVD
法、OVD法、VAD法などを適用することができる。
また、加熱処理も公知の方法で行えばよく、後述の実施
例に示すように、加熱処理時間を調節することにより石
英ガラス母材へのNドープ量を広範囲でコントロールす
ることができる。
For vapor phase synthesis, as described above, MCVD is performed.
Method, OVD method, VAD method or the like can be applied.
Further, the heat treatment may be carried out by a known method, and the amount of N-doping into the quartz glass base material can be controlled in a wide range by adjusting the heat treatment time, as shown in Examples described later.

【0021】NH3 を作用させてガラス質のSiO2微粒子の
表面にNを固定した窒素ドープ石英ガラス母材を1300℃
以上の温度域に加熱すれば、焼結が進行し、緻密な石英
ガラスが得られる。
A nitrogen-doped quartz glass base material in which N is fixed on the surface of glassy SiO 2 particles by acting NH 3 at 1300 ° C.
If heated to the above temperature range, sintering proceeds and dense quartz glass is obtained.

【0022】しかし、図2に示すように、窒素ドープ石
英ガラス母材を1290℃以上に加熱すると、膨張が生じて
緻密化しない。これは、加熱の過程で下記 (4)〜(6) 式
などの反応によりガス(N2あるいはH2O )が発生し、一
方、母材の少なくとも表層部は焼結が進行して気孔が閉
じられた状態になるので、前記の発泡現象が起こること
によるものと推測される。
However, as shown in FIG. 2, when the nitrogen-doped quartz glass base material is heated to 1290 ° C. or higher, it expands and does not become densified. This is because gas (N 2 or H 2 O) is generated during the heating process due to reactions such as the following equations (4) to (6), while at least the surface layer of the base metal undergoes sintering to form pores. Since it is in a closed state, it is presumed that the above-mentioned foaming phenomenon occurs.

【0023】 Si3N4 +3SiO2 → 6SiO +2N2 ・・・
(4)
Si 3 N 4 + 3SiO 2 → 6SiO + 2N 2 ...
(4)

【0024】[0024]

【数1】 [Equation 1]

【0025】[0025]

【数2】 [Equation 2]

【0026】この場合、高温域での昇温速度を十分遅く
すれば、焼結に伴い気孔が閉塞する閉気孔化速度が非常
に遅くなるため、閉気孔化が完了する前に (4)〜(6) 式
等の反応により生じるガスが母材外へ放散する時間を確
保できる。ガスの放散を母材の緻密化による細孔の閉塞
より早く完了させるためには、昇温速度を 100℃/hr以
下とすることが必要である。また、図2の線膨張速度が
負となる領域では緻密化が進行していることを示すが、
1200℃程度では窒素ドープ母材の閉気孔化速度、すなわ
ち、緻密化速度は極めて小さい。従って、焼結の際の昇
温速度を、1200℃以上の温度域で 100℃/hr 以下とし
た。
In this case, if the rate of temperature rise in the high temperature range is made sufficiently slow, the rate of closed porosity at which pores are clogged due to sintering becomes very slow, so that (4)- It is possible to secure the time required for the gas generated by the reaction of equation (6) to diffuse outside the base material. In order to complete the gas diffusion earlier than the blockage of pores due to the densification of the base material, it is necessary to set the heating rate to 100 ° C / hr or less. Further, although it is shown that the densification is progressing in the region where the linear expansion velocity is negative in FIG.
At about 1200 ° C, the rate of closed porosity of the nitrogen-doped base material, that is, the rate of densification, is extremely low. Therefore, the rate of temperature increase during sintering is set to 100 ° C / hr or lower in the temperature range of 1200 ° C or higher.

【0027】上記の方法により、 NH3を含有する雰囲気
中での加熱処理によって高濃度に窒素を含有させた石英
ガラス母材でも容易に緻密化でき、高濃度の窒素を含有
する合成石英ガラスを得ることができる。
According to the above method, a quartz glass base material containing a high concentration of nitrogen can be easily densified by heat treatment in an atmosphere containing NH 3, and a synthetic quartz glass containing a high concentration of nitrogen can be obtained. Obtainable.

【0028】[0028]

【実施例】VAD法により気相合成した嵩密度が約0.3g
/cm3、比表面積が約12m2/g、平均粒径が約 0.2μmの石
英ガラス母材を、 NH3 80vol%(残部:N2) の雰囲気中
において、1000℃で処理時間を 0.5〜4時間として加熱
処理したところ、図3に示すように、最大 5.2wt%のN
を含む多孔体(窒素ドープ母材)が得られた。
Example: The bulk density obtained by vapor phase synthesis by the VAD method is about 0.3 g.
/ cm 3 , specific surface area of about 12 m 2 / g, average particle size of about 0.2 μm, silica glass base material in NH 3 80 vol% (balance: N 2 ) atmosphere at 1000 ℃, treatment time 0.5 ~ After heat treatment for 4 hours, as shown in Fig. 3, the maximum N content was 5.2wt%.
A porous material (nitrogen-doped base material) containing was obtained.

【0029】これらの多孔体のうち、N含有量が 1.9wt
%の多孔体を減圧下(約10-3Torr)で最高温度を1100〜
1600℃の範囲で変えて焼結し、緻密化の可否を調べた。
なお、緻密化の判定は5mm厚の試料についての透光性の
有無を目視観察することにより行った。緻密化していれ
ば透光性はなく、緻密化していなけば透光性を有する。
Of these porous materials, the N content is 1.9 wt.
% Porous body under reduced pressure (about 10 -3 Torr) and maximum temperature of 1100 ~
Whether or not densification was performed was examined by changing the sintering temperature in the range of 1600 ° C.
The densification was determined by visually observing the presence or absence of translucency of the 5 mm thick sample. If it is densified, it has no translucency, and if it is not densified, it has translucency.

【0030】結果を表1に示す。表中の○印は緻密化し
ていることを、×印は緻密化していないことを表す。こ
の結果から明らかなように、焼結工程の最高温度が1100
℃あるいは1200℃の場合は24時間保持しても緻密化しな
かったが、焼結最高温度を1300℃、1450℃あるいは1600
℃とした場合(1200℃以上の温度域での昇温速度:50℃
/hr )は、緻密なガラスが得られた。
The results are shown in Table 1. In the table, ◯ indicates that the material is densified, and x indicates that the material is not densified. As is clear from this result, the maximum temperature in the sintering process is 1100.
In the case of ℃ or 1200 ℃, it did not densify even if kept for 24 hours, but the maximum sintering temperature was 1300 ℃, 1450 ℃ or 1600 ℃.
When set to ℃ (temperature rising rate in the temperature range of 1200 ℃ or higher: 50 ℃
/ hr), a dense glass was obtained.

【0031】また、焼結最高温度を1450℃の一定とし、
1200℃以上の温度域における昇温速度を 150℃/hr ある
いは 120℃/hr とした場合は、緻密化せず、 100℃/hr
あるいは50℃/hr のときは緻密な石英ガラスが得られ
た。
The maximum sintering temperature is fixed at 1450 ° C.,
When the heating rate in the temperature range of 1200 ° C or higher is 150 ° C / hr or 120 ° C / hr, it is not densified and 100 ° C / hr
Alternatively, a dense quartz glass was obtained at 50 ° C / hr.

【0032】上記の各条件下で得られた石英ガラスのう
ち、緻密な石英ガラスの歪点はいずれも1150℃程度で、
従来の石英ガラスよりも高い耐熱性を示した。また、不
純物金属元素(Al、Fe、Ti、Ca、Mg、Cu、P、B、Na、
KおよびLi)の濃度は1ppm以下で極めて純度の高いも
のであった。
Of the quartz glasses obtained under the above respective conditions, the strain points of dense quartz glass are all about 1150 ° C.,
It has higher heat resistance than conventional quartz glass. In addition, impurity metal elements (Al, Fe, Ti, Ca, Mg, Cu, P, B, Na,
The concentrations of K and Li) were 1 ppm or less, and the purity was extremely high.

【0033】前記の多孔体のうち、Nを 3.1wt%含む多
孔体(窒素ドープ母材)を、同じく減圧下で最高温度を
1500℃とし、1200℃以上の温度域での昇温速度を50℃/h
r として焼結したところ、緻密な石英ガラスが得られ、
その歪点は1200℃を超えていた。
Among the above-mentioned porous materials, the maximum temperature of a porous material (nitrogen-doped base material) containing 3.1 wt% of N was also increased under reduced pressure.
1500 ℃, heating rate in the temperature range of 1200 ℃ or more 50 ℃ / h
When sintered as r, dense quartz glass was obtained,
The strain point was over 1200 ° C.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明方法によれば、高濃度のNを含有
する合成石英ガラスを得ることができる。この合成石英
ガラスは耐熱性が従来のものよりも優れ、半導体製造プ
ロセスで用いられるプロセスチューブやウェハーボート
などの高純度耐熱材料、あるいは、多結晶シリコンを用
いた薄膜トランジスタの石英ガラス基板の素材として好
適である。
According to the method of the present invention, a synthetic quartz glass containing a high concentration of N can be obtained. This synthetic quartz glass has higher heat resistance than conventional ones, and is suitable as a high-purity heat-resistant material such as process tubes and wafer boats used in semiconductor manufacturing processes, or as a material for quartz glass substrates of thin film transistors using polycrystalline silicon. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】Nを含む合成石英ガラス中のN濃度と耐熱温度
(歪点)の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the N concentration in synthetic quartz glass containing N and the heat resistance temperature (strain point).

【図2】Nをドープした石英ガラス母材についての熱処
理温度と線膨張係数の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the heat treatment temperature and the coefficient of linear expansion of a N-doped quartz glass base material.

【図3】石英ガラス母材を NH3を含む雰囲気中で加熱処
理したときの処理時間と母材中のN濃度の関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between the treatment time and the N concentration in the base material when the silica glass base material is heat-treated in an atmosphere containing NH 3 .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】気相合成により得られるガラス質のSiO2
粒子からなる多孔体を、アンモニアを含む雰囲気中で加
熱処理し、次いで、1200℃以上の温度域における昇温速
度を100℃/hr 以下として焼結し、石英ガラス中のN含
有量を0.15wt%以上とすることを特徴とする合成石英ガ
ラスの製造方法。
1. A porous body composed of glassy SiO 2 fine particles obtained by vapor phase synthesis is heat-treated in an atmosphere containing ammonia, and then the temperature rising rate in a temperature range of 1200 ° C. or higher is 100 ° C./hr. A method for producing synthetic quartz glass, which comprises sintering as described below to make the N content in the quartz glass 0.15 wt% or more.
JP7398792A 1992-03-30 1992-03-30 Production of synthetic quartz glass Pending JPH05279049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7398792A JPH05279049A (en) 1992-03-30 1992-03-30 Production of synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7398792A JPH05279049A (en) 1992-03-30 1992-03-30 Production of synthetic quartz glass

Publications (1)

Publication Number Publication Date
JPH05279049A true JPH05279049A (en) 1993-10-26

Family

ID=13533975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7398792A Pending JPH05279049A (en) 1992-03-30 1992-03-30 Production of synthetic quartz glass

Country Status (1)

Country Link
JP (1) JPH05279049A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770584A1 (en) * 1994-04-28 1997-05-02 Heraeus Quarzglas GmbH Method for producing heat-resistant synthetic quartz glass
EP1580170A1 (en) * 2002-11-29 2005-09-28 Shin-Etsu Quartz Products Co., Ltd. Method for producing synthetic quartz glass and synthetic quartz glass article
WO2006104178A1 (en) * 2005-03-29 2006-10-05 Asahi Glass Company, Limited Quartz-type glass and process for its production
WO2024004546A1 (en) * 2022-06-29 2024-01-04 住友電気工業株式会社 Glass material and optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770584A1 (en) * 1994-04-28 1997-05-02 Heraeus Quarzglas GmbH Method for producing heat-resistant synthetic quartz glass
US5766291A (en) * 1994-04-28 1998-06-16 Heraeus Quarzglas Gmbh Method for producing heat-resistant synthetic quartz glass
EP1580170A1 (en) * 2002-11-29 2005-09-28 Shin-Etsu Quartz Products Co., Ltd. Method for producing synthetic quartz glass and synthetic quartz glass article
EP1580170A4 (en) * 2002-11-29 2011-12-28 Shinetsu Quartz Prod Method for producing synthetic quartz glass and synthetic quartz glass article
WO2006104178A1 (en) * 2005-03-29 2006-10-05 Asahi Glass Company, Limited Quartz-type glass and process for its production
WO2024004546A1 (en) * 2022-06-29 2024-01-04 住友電気工業株式会社 Glass material and optical fiber

Similar Documents

Publication Publication Date Title
CN102099304B (en) Method for producing quartz glass doped with nitrogen and quartz glass grains suitable for carrying out the method
JP4639274B2 (en) Method and apparatus for producing glass ingots from synthetic silica
TWI393689B (en) Component of quartz glass for use in semiconductor manufacture and method for producing the same
JPH02170974A (en) Low temperature cvd of silicon oxide film
US20060137400A1 (en) Process for treating synthetic silica powder and synthetic silica powder treated thereof
KR20130094283A (en) High purity synthetic silica and items such as semiconductor jigs manufactured therefrom
JP3578357B2 (en) Method for producing heat-resistant synthetic quartz glass
US7975507B2 (en) Process for producing synthetic quartz glass and synthetic quartz glass for optical member
US5380511A (en) Process for producing silicon carbide-base complex
JPH05279049A (en) Production of synthetic quartz glass
JPH11310423A (en) Synthetic quartz glass and its production
US6915664B2 (en) Method of manufacturing a fluorine-doped silica powder
US6326325B1 (en) Method for fabricating silicon oxynitride
JP3574577B2 (en) High viscosity synthetic quartz glass and method for producing the same
JP3698372B2 (en) CVD-SiC coated member
JPH10114532A (en) Production of jig for heat-treating quartz-glass semiconductor
JP3187510B2 (en) Method of manufacturing member for heat treatment of semiconductor wafer
WO2022065474A1 (en) Method for producing fluorine-containing silica glass
US6763683B2 (en) Method for pure, fused oxide
JP2007238419A (en) Opaque sintered compact
WO2001017919A1 (en) Pure fused silica, furnace and method
JPH0710571A (en) Production of synthetic quartz glass member
JP2677293B2 (en) Manufacturing method of preform for optical fiber
AU731687C (en) Method for fabricating silicon oxynitride
AU731687B2 (en) Method for fabricating silicon oxynitride