JP2011063457A - Synthetic quartz glass and method for producing the same - Google Patents
Synthetic quartz glass and method for producing the same Download PDFInfo
- Publication number
- JP2011063457A JP2011063457A JP2009213614A JP2009213614A JP2011063457A JP 2011063457 A JP2011063457 A JP 2011063457A JP 2009213614 A JP2009213614 A JP 2009213614A JP 2009213614 A JP2009213614 A JP 2009213614A JP 2011063457 A JP2011063457 A JP 2011063457A
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- band
- synthetic quartz
- hydrogen
- fluorescence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
- C03B2201/21—Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Glass Melting And Manufacturing (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
本発明は、UV光学系用の合成石英ガラス及び合成石英ガラスの製造方法に関する。 The present invention relates to a synthetic quartz glass for a UV optical system and a method for producing the synthetic quartz glass.
例えば、露光装置、レーザ加工装置、光洗浄装置等の各種装置において、照明系、投影系に多量の光学系部材が使用されている。特に、集積回路等の微細パターンを露光・転写するのに用いられるステッパと呼ばれる露光装置に用いられる光学系部材には、ステッパの光源の、i線(365nm)等からKrF(248nm)エキシマレーザやArF(193nm)エキシマレーザ等への短波長化が進められている。そのため、この光学系部材の材料には、紫外域の透過特性に優れる高純度の合成石英ガラスが用いられている。 For example, in various apparatuses such as an exposure apparatus, a laser processing apparatus, and a light cleaning apparatus, a large amount of optical system members are used for an illumination system and a projection system. In particular, an optical member used in an exposure apparatus called a stepper used to expose and transfer a fine pattern of an integrated circuit or the like includes a KrF (248 nm) excimer laser from an i-line (365 nm) or the like of a stepper light source. Shortening the wavelength to an ArF (193 nm) excimer laser or the like is underway. For this reason, a high-purity synthetic quartz glass that is excellent in transmission characteristics in the ultraviolet region is used as the material of this optical system member.
ところで、前述のエキシマレーザ光のような強力な光が光学系部材を透過する際に蛍光発光が生じることがある。この蛍光発光は、光吸収により励起される事象であるため、この蛍光の存在は、光学系部材内で光吸収が生じ、この光吸収の分、光学系部材の透過率が低下していることを示している。すなわち、この蛍光発光により、光学系部材内に欠陥があることがわかる。 By the way, when intense light such as the above-mentioned excimer laser light passes through the optical system member, fluorescent light emission may occur. Since this fluorescence emission is an event excited by light absorption, the presence of this fluorescence causes light absorption in the optical system member, and the transmittance of the optical system member is reduced by this light absorption. Is shown. That is, it can be seen from this fluorescence emission that there is a defect in the optical system member.
前述したような蛍光発光を抑圧するために、合成石英ガラスを水素雰囲気中で熱処理して合成石英ガラスに水素を含浸する方法が知られている(例えば、特許文献1参照)。 In order to suppress the fluorescence emission as described above, a method is known in which synthetic quartz glass is heat-treated in a hydrogen atmosphere and the synthetic quartz glass is impregnated with hydrogen (for example, see Patent Document 1).
ところで、本発明者らは、合成石材ガラスにおいて蛍光発光の強度が高い波長域を調べたところ、280nm及び390nm並びに650nmの波長域において、蛍光発光の強度が極めて大きいことがわかった。すなわち、280nm及び390nm並びに650nmの波長域における蛍光発光の強度を低減できれば、より優れた透過性能を備えた石英ガラスを得ることができ、欠陥のない光学系部材を製造することができる。 By the way, when the present inventors investigated the wavelength region where the fluorescence emission intensity is high in the synthetic stone glass, it was found that the fluorescence emission intensity was extremely high in the wavelength regions of 280 nm, 390 nm and 650 nm. That is, if the intensity of the fluorescence emission in the wavelength ranges of 280 nm, 390 nm, and 650 nm can be reduced, quartz glass having more excellent transmission performance can be obtained, and an optical member without defects can be manufactured.
しかしながら、水素処理した合成石英ガラスに対してエキシマレーザ光を透過させたときの蛍光発光の有無を調査したところ、650nmの波長域における蛍光発光の強度は低減するが、280nm及び390nmの波長域において蛍光発光の強度が低減されないことが確認された。すなわち、特許文献1のように水素処理された合成石英ガラスは、蛍光発光の強度が極めて高い波長域のうちの1つの波長域の蛍光発光のみが抑圧されたものであって、他の波長域での蛍光発光が生じるおそれがある。 However, when the presence or absence of fluorescence emission when excimer laser light was transmitted through the hydrogen-treated synthetic quartz glass was investigated, the intensity of fluorescence emission in the wavelength range of 650 nm was reduced, but in the wavelength range of 280 nm and 390 nm. It was confirmed that the intensity of the fluorescence emission was not reduced. That is, the synthetic quartz glass treated with hydrogen as in Patent Document 1 is one in which only the fluorescence emission in one wavelength region of the wavelength region where the intensity of the fluorescence emission is extremely high is suppressed, and the other wavelength region There is a possibility that fluorescence emission will occur.
本発明は、このような問題に対処することを課題とするものである。すなわち、欠陥が少なく、より優れた透過性能を備えた合成石英ガラスの提供が本発明の目的である。さらに、合成石英ガラスの透過性能を向上させることができる合成石英ガラスの製造方法の提供が本発明の目的である。 An object of the present invention is to deal with such a problem. That is, it is an object of the present invention to provide a synthetic quartz glass with few defects and better transmission performance. Furthermore, it is an object of the present invention to provide a method for producing synthetic quartz glass that can improve the transmission performance of synthetic quartz glass.
前記目的を達成するため、本発明にかかる合成石英ガラスは、次の構成を少なくとも具備する。 In order to achieve the above object, a synthetic quartz glass according to the present invention has at least the following configuration.
すなわち、水素含浸処理前の合成石英ガラスは、280nm帯の蛍光ピークに相当する欠陥、及び390nm帯の蛍光ピークに相当する欠陥が抑圧されており、水素含浸処理により、280nm帯の蛍光ピークに相当する欠陥、及び390nm帯の蛍光ピークに相当する欠陥、650nm帯の蛍光ピークに相当する欠陥が抑圧されている合成石英ガラスである。 That is, the synthetic quartz glass before the hydrogen impregnation treatment has suppressed defects corresponding to the fluorescence peak in the 280 nm band and defects corresponding to the fluorescence peak in the 390 nm band, and corresponds to the fluorescence peak in the 280 nm band by the hydrogen impregnation treatment. And a defect corresponding to a fluorescence peak in the 390 nm band and a defect corresponding to a fluorescence peak in the 650 nm band are suppressed.
水素含浸処理前の合成石英ガラスは、KrFエキシマレーザを、20mJ/Pulse/cm2、100Hzで30分間照射したときの、280nm帯及び390nm帯の蛍光ピークの分光放射照度が5pW/cm3/nm以下である。 The synthetic quartz glass before hydrogen impregnation treatment has a spectral irradiance of 5 pW / cm 3 / nm for the fluorescence peaks in the 280 nm band and 390 nm band when irradiated with a KrF excimer laser at 20 mJ / Pulse / cm 2 and 100 Hz for 30 minutes. It is as follows.
水素含浸処理前の合成石英ガラスは、ArFエキシマレーザを、5mJ/Pulse/cm2、100Hzで30分間照射したときの、280nm帯及び390nm帯の蛍光ピークの分光放射照度が5pW/cm3/nm以下である。 Synthetic quartz glass before hydrogen impregnation treatment has a spectral irradiance of 5 pW / cm 3 / nm for fluorescence peaks in the 280 nm band and 390 nm band when irradiated with ArF excimer laser at 5 mJ / Pulse / cm 2 and 100 Hz for 30 minutes. It is as follows.
水素含浸処理後の合成石英ガラスは、水素含有量が3×1017分子/cm3以上である。 The synthetic quartz glass after the hydrogen impregnation treatment has a hydrogen content of 3 × 10 17 molecules / cm 3 or more.
前記目的を達成するため、本発明にかかる石英ガラスの製造方法は、次の工程を少なくとも具備する。 In order to achieve the above object, a method for producing quartz glass according to the present invention comprises at least the following steps.
すなわち、気相合成法により石英ガラス微粒子堆積体を生成する工程と、温度を上昇させながら前記石英ガラス微粒子体を焼結する焼結工程と、を有し、前記焼結工程において、前記石英ガラスが1100℃〜1350℃の雰囲気に曝される時間が180分以下である特徴とする製造方法である。 That is, the method includes a step of generating a quartz glass fine particle deposit by a vapor phase synthesis method, and a sintering step of sintering the quartz glass fine particle while increasing the temperature. In the sintering step, the quartz glass Is a production method characterized in that the time of exposure to an atmosphere of 1100 ° C. to 1350 ° C. is 180 minutes or less.
前記焼結工程において、前記石英ガラスが1100℃〜1350℃の雰囲気に曝される際の圧力が1Pa以上である。 In the sintering step, the pressure when the quartz glass is exposed to an atmosphere of 1100 ° C. to 1350 ° C. is 1 Pa or more.
前記製造方法で得られた合成石英ガラスを500℃以下の水素雰囲気での水素含浸処理工程が含まれる。 The synthetic quartz glass obtained by the manufacturing method includes a hydrogen impregnation treatment step in a hydrogen atmosphere at 500 ° C. or lower.
本実施形態の合成石英ガラスは、UV光学系に用いられる材料であり、例えば、露光装置、レーザ加工装置、光洗浄装置等の各種装置のUV光学系に用いられ、紫外域の透過特性に優れた高純度の合成石英ガラスである。 The synthetic quartz glass of the present embodiment is a material used for the UV optical system. For example, it is used for the UV optical system of various apparatuses such as an exposure apparatus, a laser processing apparatus, and an optical cleaning apparatus, and has excellent ultraviolet transmission characteristics. High purity synthetic quartz glass.
ここでいうUV光学系とは、例えば、KrFエキシマレーザ(248nm)、ArFエキシマレーザ(193nm)、F2エキシマレーザ(157nm)、YAG−FHGレーザ(266nm)、Xe2エキシマランプ(172nm)、ArFエキシマランプ(193nm)等を主とする、波長300nm以下の光を発するレーザやランプを光源とする光学系である。 Examples of the UV optical system here include a KrF excimer laser (248 nm), an ArF excimer laser (193 nm), an F2 excimer laser (157 nm), a YAG-FHG laser (266 nm), a Xe2 excimer lamp (172 nm), and an ArF excimer lamp. This is an optical system that uses a laser or a lamp that emits light with a wavelength of 300 nm or less, mainly (193 nm) or the like as a light source.
前述した性能を有する合成石英ガラスは、SiCl4を用いたガラス微粒子を火炎中で加水分解するVAD(気相軸付け)法などを用いてなるガラス微粒子堆積体から製造される。例えば、A.ガラス微粒子堆積工程(VAD法など)、B.ガラス微粒子堆積体焼結工程、C.ガラス微粒子焼結体を円盤状に成形する工程、D.成形された合成石英ガラスを水素含浸処理する工程を備えた製造方法により製造される。 Synthetic quartz glass having the above-described performance is manufactured from a glass fine particle deposit using a VAD (vapor phase axis) method in which glass fine particles using SiCl 4 are hydrolyzed in a flame. For example, A.I. A glass fine particle deposition step (VAD method, etc.); Sintering step of glass fine particle deposit, D. forming a glass fine particle sintered body into a disk shape; It is manufactured by a manufacturing method including a step of impregnating a molded synthetic quartz glass with hydrogen.
また、前述の合成石英ガラスは、水素含浸処理前の、280nm帯の蛍光ピークに相当する欠陥、及び390nm帯の蛍光ピークに相当する欠陥が抑圧されており、水素含浸処理により、650nm帯の蛍光ピークに相当する欠陥が抑圧されているものである。 In addition, the above-described synthetic quartz glass has suppressed defects corresponding to the fluorescence peak in the 280 nm band and defects corresponding to the fluorescence peak in the 390 nm band before the hydrogen impregnation treatment. The defect corresponding to the peak is suppressed.
このような構成の合成石英ガラスによれば、蛍光発光の強度が極めて高い280nm帯の蛍光ピークに相当する欠陥、390nm帯の蛍光ピークに相当する欠陥、及び650nm帯の蛍光ピークに相当する欠陥が抑圧される。したがって、より優れた透過性能を備え、欠陥のない光学系部材を製造することができる。 According to the synthetic quartz glass having such a configuration, there are defects corresponding to a fluorescence peak in the 280 nm band, a defect corresponding to a fluorescence peak in the 390 nm band, and a defect corresponding to a fluorescence peak in the 650 nm band, where the intensity of fluorescence emission is extremely high. Be suppressed. Therefore, it is possible to manufacture an optical system member having better transmission performance and having no defects.
また、前述の合成石英ガラスは、水素含浸処理前における性能が、例えば、KrFエキシマレーザを、20mJ/Pulse/cm2、100Hzで30分間照射したときの、280nm帯及び390nm帯の蛍光ピークの分光放射照度が5pW/cm3/nm以下であることが好ましく、又はArFエキシマレーザを、5mJ/Pulse/cm2、100Hzで30分間照射したときの、280nm帯及び390nm帯の蛍光ピークの分光放射照度が5pW/cm3/nm以下であることが好ましい。 Further, the above-described synthetic quartz glass has the performance before hydrogen impregnation treatment, for example, the spectrum of fluorescence peaks in the 280 nm band and the 390 nm band when a KrF excimer laser is irradiated for 30 minutes at 20 mJ / Pulse / cm 2 and 100 Hz. The irradiance is preferably 5 pW / cm 3 / nm or less, or the spectral irradiance of fluorescence peaks in the 280 nm band and the 390 nm band when irradiated with ArF excimer laser at 5 mJ / Pulse / cm 2 and 100 Hz for 30 minutes. Is preferably 5 pW / cm 3 / nm or less.
また、前述の合成石英ガラスは、水素含浸処理後の水素含有量が3×1017分子/cm3以上であることが好ましい。 The synthetic quartz glass preferably has a hydrogen content of 3 × 10 17 molecules / cm 3 or more after the hydrogen impregnation treatment.
ここでいう水素含浸処理前の合成石英ガラスとは、前述の工程Bで得られるガラス微粒子焼結体、工程Cで得られる成形後のガラス体を意味し、これら合成石英ガラスのうち、どの合成石英ガラスに対しても水素含浸処理を行うことができる。 The synthetic quartz glass before the hydrogen impregnation treatment here means a glass fine particle sintered body obtained in the above-mentioned step B and a glass body after molding obtained in the step C, and any of these synthetic quartz glasses can be synthesized. Hydrogen impregnation treatment can also be performed on quartz glass.
次に、前述の合成石英ガラスの好ましい製造方法を説明する。 Next, a preferred method for producing the above-described synthetic quartz glass will be described.
A:ガラス微粒子堆積体製造工程
SiCl4を火炎中で加水分解してガラス微粒子堆積体を製造するVAD(気相軸付け)法などを用いる。すなわち、ガラス微粒子原料をバーナ等の火炎噴射手段に供給し、この火炎噴射手段が噴出する火炎中でガラス微粒子を生成させ、生成したガラス微粒子を、出発棒に対して堆積させて、ガラス微粒子堆積体を製造する。
A: Glass particulate deposit manufacturing process A VAD (vapor phase axis) method or the like is used to hydrolyze SiCl 4 in a flame to produce a glass particulate deposit. That is, the glass fine particle raw material is supplied to a flame injection means such as a burner, glass fine particles are generated in the flame ejected by the flame injection means, and the generated glass fine particles are deposited on the starting rod to deposit the glass fine particles. Manufacture the body.
B:ガラス微粒子堆積体焼結工程
工程Aで得られたガラス微粒子堆積体を焼結炉に挿入し、この焼結炉内の温度を上昇させながら焼結することにより、透明なガラス微粒子焼結体を得る。この工程では、ガラス微粒子堆積体の挿入後に焼却炉を加熱して徐々に温度を上昇させ、およそ1550℃を最高温度とする雰囲気で所定時間加熱して焼結処理する。このとき、ガラス微粒子堆積体が上昇する温度内において1100℃〜1350℃の雰囲気に曝される時間を180分以下とすることが好ましく、また、1100℃〜1350℃の雰囲気に曝される際の圧力を1Pa以上とすることが好ましい。
B: Glass particulate deposit body sintering step Transparent glass particulate sintering is performed by inserting the glass particulate deposit body obtained in step A into a sintering furnace and sintering while increasing the temperature in the sintering furnace. Get the body. In this step, after the glass fine particle deposit is inserted, the incinerator is heated to gradually increase the temperature, and is heated for a predetermined time in an atmosphere having a maximum temperature of about 1550 ° C. for sintering treatment. At this time, it is preferable that the time of exposure to the atmosphere of 1100 ° C. to 1350 ° C. within the temperature at which the glass particulate deposit rises is 180 minutes or less, and the time of exposure to the atmosphere of 1100 ° C. to 1350 ° C. The pressure is preferably 1 Pa or more.
なお、ガラス微粒子堆積体が1100℃〜1350℃の雰囲気に曝される時間は、180分以下であれば何分でもよい。また、1100℃〜1350℃の雰囲気に曝される際の圧力の上限は、500Pa程度である。 The time for which the glass particulate deposit is exposed to the atmosphere of 1100 ° C. to 1350 ° C. may be any number of minutes as long as it is 180 minutes or less. Moreover, the upper limit of the pressure at the time of exposing to 1100 degreeC-1350 degreeC atmosphere is about 500 Pa.
この工程Bにより、280nm帯の蛍光ピークに相当する欠陥、390nm帯の蛍光ピークに相当する欠陥を抑圧する。 By this step B, defects corresponding to the fluorescence peak in the 280 nm band and defects corresponding to the fluorescence peak in the 390 nm band are suppressed.
前述した280nm帯の蛍光ピークに相当する欠陥、390nm帯の蛍光ピークに相当する欠陥の原因は、酸素欠乏欠陥であると考えられる。この酸素欠乏欠陥は、焼結が進む前のガラス微粒子堆積体状態で高温雰囲気に曝される時間が長いほど、酸素の抜ける量が多くなるため増えることになる。また、この酸素欠乏欠陥は、高温雰囲気に曝される際の圧力が低い(真空度が高い)ほど、酸素の抜ける量が多くなるため増えることになる。したがって、ガラス微粒子堆積体状態で高温雰囲気に曝される時間を180分以下に制限し、圧力を1Paに制限することにより、280nm帯の蛍光ピークに相当する欠陥、390nm帯の蛍光ピークに相当する欠陥を抑圧することができる。 It is considered that the defect corresponding to the fluorescence peak in the 280 nm band described above is caused by the oxygen deficiency defect. This oxygen deficiency defect increases because the amount of oxygen released increases as the time of exposure to a high-temperature atmosphere in the glass fine particle deposited state before sintering proceeds increases. Further, the oxygen deficiency defect increases because the amount of oxygen released increases as the pressure when exposed to a high temperature atmosphere is lower (the degree of vacuum is higher). Therefore, by limiting the exposure time to a high temperature atmosphere in the glass fine particle deposit state to 180 minutes or less and limiting the pressure to 1 Pa, it corresponds to a defect corresponding to a fluorescence peak in the 280 nm band and a fluorescence peak in the 390 nm band. Defects can be suppressed.
C:ガラス微粒子焼結体を円盤状に成形する工程
工程Bで得られたガラス微粒子焼結体を研削・切断して円盤状の合成石英ガラスを製造する。
C: Step of forming glass fine particle sintered body into disk shape The glass fine particle sintered body obtained in step B is ground and cut to produce a disk-shaped synthetic quartz glass.
D:水素含浸処理工程
工程Cで得られた合成石英ガラスに水素を含浸して合成石英ガラスを得る。この工程では、500℃以下の水素雰囲気で水素含浸処理を行うことが好ましい。この工程の水素含浸処理は、工程Bで得られるガラス微粒子焼結体の状態で行ってもよい。
D: Hydrogen impregnation treatment step The synthetic quartz glass obtained in step C is impregnated with hydrogen to obtain synthetic quartz glass. In this step, it is preferable to perform a hydrogen impregnation treatment in a hydrogen atmosphere at 500 ° C. or lower. You may perform the hydrogen impregnation process of this process in the state of the glass fine particle sintered compact obtained at the process B. FIG.
水素含浸処理後の水素含有量は、3×1017分子/cm3以上であれば、650nm蛍光欠陥をほぼ完全に除去できる。この水素含浸量の合成石英ガラスを得るための水素雰囲気中の温度は、石英ガラス材の融点未満の温度であり、しかも、水素の防爆ができるとともに、製造設備の簡素化ができ、かつ水素を石英ガラス内に効率的に浸透させることができる温度が好ましい。具体的な温度としては、500℃以下で下限が150℃程度である。 If the hydrogen content after the hydrogen impregnation treatment is 3 × 10 17 molecules / cm 3 or more, the 650 nm fluorescent defect can be almost completely removed. The temperature in the hydrogen atmosphere for obtaining this amount of impregnated synthetic quartz glass is a temperature below the melting point of the quartz glass material, in addition to being able to explode hydrogen, simplifying the production facility, and A temperature that allows efficient penetration into quartz glass is preferred. The specific temperature is 500 ° C. or lower and the lower limit is about 150 ° C.
この工程Dにより、650nm帯の蛍光ピークに相当する欠陥を抑圧する。 By this step D, defects corresponding to the fluorescence peak in the 650 nm band are suppressed.
前述した製造方法によれば、蛍光発光の強度が極めて高い280nm帯の蛍光ピークに相当する欠陥、390nm帯の蛍光ピークに相当する欠陥、及び650nm帯の蛍光ピークに相当する欠陥が抑圧された合成石英ガラスを製造することができる。したがって、より優れた透過性能を備え、欠陥の少ない光学系部材を製造することができる合成石英ガラスを製造することができる。 According to the manufacturing method described above, a defect corresponding to a fluorescence peak in the 280 nm band with extremely high fluorescence emission intensity, a defect corresponding to a fluorescence peak in the 390 nm band, and a defect corresponding to a fluorescence peak in the 650 nm band are suppressed. Quartz glass can be produced. Therefore, it is possible to manufacture a synthetic quartz glass that has an excellent transmission performance and can manufacture an optical member with few defects.
以下、実施例を挙げて本発明を具体的に説明する。本実施例では、下記の焼結条件1〜3で製造したガラス微粒子焼結体(工程B)を用いて成形した水素含浸前の合成石英ガラス(工程C)、及びこの合成石英ガラスに対する水素含浸処理を下記の水素含浸処理条件で行った水素含浸後の合成石英ガラス(工程D)を実施例とし、下記の焼結条件4として製造したガラス微粒子焼結体(工程B)を用いて成形した水素含浸前の合成石英ガラス(工程C)、及びこの合成石英ガラスに対する水素含浸処理を下記の条件で行った水素含浸後の合成石英ガラス(工程D)を比較例とする。また、各例ともに、工程Bの焼結条件が異なる以外は、工程A〜工程Dの製造方法で合成石英ガラスを製造した。なお、本実施例は本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically described with reference to examples. In this example, synthetic quartz glass before hydrogen impregnation (step C) formed using a glass fine particle sintered body (step B) produced under the following sintering conditions 1 to 3, and hydrogen impregnation for this synthetic quartz glass The synthetic quartz glass after hydrogen impregnation performed under the following hydrogen impregnation treatment conditions (step D) was used as an example, and the glass fine particle sintered body (step B) produced as the following sintering condition 4 was molded. Synthetic quartz glass before hydrogen impregnation (step C) and synthetic quartz glass after hydrogen impregnation (step D) obtained by performing hydrogen impregnation treatment on the synthetic quartz glass under the following conditions are used as comparative examples. Moreover, synthetic quartz glass was manufactured with the manufacturing method of the process A-the process D except that the sintering conditions of the process B differed in each example. In addition, a present Example does not limit the scope of the present invention.
<焼結条件>
焼結条件1(実施例1):工程Bにおける1100℃〜1350℃の雰囲気に曝される時間を150分、1100℃〜1350℃の雰囲気に曝される際の圧力を10Paで焼結する。
焼結条件2(実施例2):工程Bにおける1100℃〜1350℃の雰囲気に曝される時間を180分、1100℃〜1350℃の雰囲気に曝される際の圧力を10Paで焼結する。
焼結条件3(実施例3):工程Bにおける1100℃〜1350℃の雰囲気に曝される時間を150分、1100℃〜1350℃の雰囲気に曝される際の圧力を1Paで焼結する。
焼結条件4(比較例):工程Bにおける1100℃〜1350℃の雰囲気に曝される時間を600分、1100℃〜1350℃の雰囲気に曝される際の圧力を5Paで焼結する。
本実施例では、工程Cにおいて製造される水素含浸前の合成石英ガラスの厚みを10mmとする。
<Sintering conditions>
Sintering condition 1 (Example 1): The time for exposure to the atmosphere of 1100 ° C. to 1350 ° C. in step B is 150 minutes, and the pressure when exposed to the atmosphere of 1100 ° C. to 1350 ° C. is sintered at 10 Pa.
Sintering condition 2 (Example 2): The time of exposure to the atmosphere of 1100 ° C. to 1350 ° C. in Step B is 180 minutes, and the pressure when exposed to the atmosphere of 1100 ° C. to 1350 ° C. is sintered at 10 Pa.
Sintering condition 3 (Example 3): The exposure time in the atmosphere of 1100 ° C. to 1350 ° C. in step B is 150 minutes, and the pressure when exposed to the atmosphere of 1100 ° C. to 1350 ° C. is sintered at 1 Pa.
Sintering condition 4 (comparative example): The time when exposed to the atmosphere of 1100 ° C. to 1350 ° C. in step B is 600 minutes, and the pressure when exposed to the atmosphere of 1100 ° C. to 1350 ° C. is sintered at 5 Pa.
In this example, the thickness of the synthetic quartz glass before impregnation with hydrogen produced in Step C is 10 mm.
<水素含浸処理条件>
実施例及び比較例ともに、工程Cで製造された水素含浸前の合成石英ガラスを、水素雰囲気温度300℃、水素雰囲気圧7Pa、処理時間240分で水素含浸処理する。
<Hydrogen impregnation treatment conditions>
In both the examples and comparative examples, the synthetic quartz glass before hydrogen impregnation produced in step C is subjected to hydrogen impregnation at a hydrogen atmosphere temperature of 300 ° C., a hydrogen atmosphere pressure of 7 Pa, and a treatment time of 240 minutes.
<比較方法>
比較方法1:水素含浸前の実施例及び比較例の合成石英ガラスに対してKrFエキシマレーザ光を照射し、280nm帯、390nm帯、650nm帯の蛍光発光を確認する(表1参照)。
比較方法2:水素含浸後の実施例及び比較例の合成石英ガラスに対してKrFエキシマレーザ光を照射し、280nm帯、390nm帯、650nm帯の蛍光発光を確認する。また、この実施例及び比較例の合成石英ガラスの透過率及び透過率の経時劣化の有無を調べた(表2参照)。
<Comparison method>
Comparative method 1: KrF excimer laser light is irradiated on the synthetic quartz glass of the example before hydrogen impregnation and the comparative example, and fluorescence emission in the 280 nm band, 390 nm band, and 650 nm band is confirmed (see Table 1).
Comparative method 2: KrF excimer laser light is irradiated on the synthetic silica glass of the examples and comparative examples after hydrogen impregnation, and fluorescence emission in the 280 nm band, 390 nm band, and 650 nm band is confirmed. Further, the transmittance of the synthetic quartz glass of this example and the comparative example and the presence or absence of deterioration with time were examined (see Table 2).
なお、KrFエキシマレーザ光の照射条件は、比較方法1、2ともに、20mJ/Pulse/cm2、100Hzで30分間である。また、蛍光発光の有無は、この照射条件で照射したときに、280nm帯、390nm帯、650nm帯の蛍光ピークの分光放射照度が5pW/cm3/nm以下である場合に「蛍光発光無」とし、5pW/cm3/nmを超える場合に「蛍光発光有」とする。 The irradiation conditions of the KrF excimer laser light are 20 mJ / Pulse / cm 2 and 100 Hz for 30 minutes in both comparative methods 1 and 2. In addition, the presence or absence of fluorescence emission is defined as “no fluorescence emission” when the spectral irradiance of fluorescence peaks in the 280 nm band, 390 nm band, and 650 nm band is 5 pW / cm 3 / nm or less when irradiated under these irradiation conditions. If it exceeds 5 pW / cm 3 / nm, “fluorescent emission is present”.
<実施例と比較例との対比>
表1に示すように、水素含浸前の合成石英ガラスにおいて、比較例では、すべての波長域において蛍光発光が認められたのに対し、実施例では、650nm帯を除く波長域において蛍光発光がないことが確認された。
<Contrast between Example and Comparative Example>
As shown in Table 1, in the synthetic quartz glass before hydrogen impregnation, in the comparative example, fluorescence emission was observed in all the wavelength ranges, whereas in the example, there was no fluorescence emission in the wavelength ranges other than the 650 nm band. It was confirmed.
<実施例と比較例との対比>
表2に示すように、水素含浸後の合成石英ガラスにおいて、比較例では、650nm帯を除く波長域において蛍光発光があることが認められたのに対して、実施例1〜3では、すべての波長域において蛍光発光がないことが確認された。さらに、実施例では、比較例に比べて透過率が高い上に、比較例において生じている経時劣化もないことが確認された。
<Contrast between Example and Comparative Example>
As shown in Table 2, in the synthetic quartz glass after hydrogen impregnation, in the comparative example, it was recognized that there was fluorescence emission in a wavelength range other than the 650 nm band, whereas in Examples 1 to 3, It was confirmed that there was no fluorescence emission in the wavelength range. Further, in the examples, it was confirmed that the transmittance was higher than that of the comparative example and that there was no deterioration with time in the comparative example.
以上の結果から、比較例のように焼結条件4の工程Bを経て、前述の水素含浸処理条件による工程Dの処理を施す製造方法では、650nm帯でしか蛍光発光を抑圧できないが、実施例のように焼結条件1〜3を用いた工程Bを経て、前述の水素含浸処理条件による工程Dの処理を施す製造方法は、すべての波長域において蛍光発光を抑圧できることが証明された。 From the above results, in the manufacturing method in which the process D in the above-described hydrogen impregnation process condition is performed through the process B in the sintering condition 4 as in the comparative example, the fluorescence emission can be suppressed only in the 650 nm band. As described above, it has been proved that the manufacturing method in which the process D in the above-described hydrogen impregnation process condition is performed through the process B using the sintering conditions 1 to 3 can suppress the fluorescence emission in all wavelength ranges.
すなわち、280nm帯及び390nm帯の蛍光発光の抑圧に関しては、工程Bにおいて焼結条件1〜3の工程を用いることが効果的であることが証明された。しかも、この焼結条件1〜3を含む工程Bで焼結したガラス微粒子焼結体からなる合成石英ガラスに前述の水素含浸処理条件による工程Dの処理を施すことにより、650nm帯の蛍光発光を含むすべての蛍光発光が抑圧され、その上、高い透過率を有し、経時劣化もない合成石英ガラスとなることが証明された。 In other words, it was proved that it is effective to use the process of sintering conditions 1 to 3 in the process B for suppressing the fluorescence emission in the 280 nm band and the 390 nm band. Moreover, by subjecting the synthetic quartz glass composed of the sintered glass particles sintered in the process B including the sintering conditions 1 to 3 to the process D in the above-described hydrogen impregnation process conditions, fluorescence emission in the 650 nm band is obtained. It was proved that all the fluorescent light emission contained was suppressed, and that the synthetic quartz glass had high transmittance and no deterioration with time.
したがって、本発明の製造方法の1例である焼結条件1〜3を用いた工程Bによれば、280nm帯及び390nm帯の蛍光発光が抑圧された合成石英ガラスを製造することができる。さらに、本発明の製造方法の1例である水素含浸処理条件による工程Dの処理を施せば、すべての蛍光発光が抑圧され、良好な透過率及び経時劣化のない合成石英ガラスを製造することができる。よって、欠陥が少なく、良好な透過性能を長期間にわたって保持できる光学系部材を製造することができる合成石英ガラス及びその製造方法を提供することができる。 Therefore, according to the process B using the sintering conditions 1 to 3, which is an example of the production method of the present invention, a synthetic quartz glass in which fluorescence emission in the 280 nm band and the 390 nm band is suppressed can be produced. Furthermore, if the treatment of step D under the hydrogen impregnation treatment conditions, which is an example of the production method of the present invention, is performed, it is possible to produce a synthetic quartz glass in which all the fluorescence emission is suppressed and good transmittance and no deterioration with time are produced. it can. Therefore, it is possible to provide a synthetic quartz glass capable of producing an optical member that has few defects and can maintain good transmission performance over a long period of time, and a method for producing the same.
なお、前述の実施例においては、照射する光としてKrFエキシマレーザ(248nm)を例示したが、本実施例の製造方法により製造された合成石英ガラスは、このKrFエキシマレーザ以外にも、ArFエキシマレーザ(193nm)、F2エキシマレーザ(157nm)、YAG−FHGレーザ(266nm)、Xe2エキシマランプ(172nm)、ArFエキシマランプ(193nm)等の光に対しても、同等の効果を得ることができる。 In the above-described embodiment, the KrF excimer laser (248 nm) is exemplified as the irradiation light. However, the synthetic quartz glass manufactured by the manufacturing method of the present embodiment is not limited to this KrF excimer laser, but an ArF excimer laser. (193 nm), F2 excimer laser (157 nm), YAG-FHG laser (266 nm), Xe2 excimer lamp (172 nm), ArF excimer lamp (193 nm), and the like can obtain the same effect.
Claims (7)
水素含浸処理により、280nm帯の蛍光ピークに相当する欠陥、及び390nm帯の蛍光ピークに相当する欠陥、650nm帯の蛍光ピークに相当する欠陥が抑圧されている、
合成石英ガラス。 The synthetic quartz glass before the hydrogen impregnation treatment has suppressed defects corresponding to the fluorescence peak in the 280 nm band and defects corresponding to the fluorescence peak in the 390 nm band,
By the hydrogen impregnation treatment, defects corresponding to the fluorescence peak in the 280 nm band, defects corresponding to the fluorescence peak in the 390 nm band, and defects corresponding to the fluorescence peak in the 650 nm band are suppressed.
Synthetic quartz glass.
請求項1記載の合成石英ガラス。 The synthetic quartz glass before hydrogen impregnation treatment has a spectral irradiance of 5 pW / cm 3 / nm for the fluorescence peaks in the 280 nm band and 390 nm band when irradiated with a KrF excimer laser at 20 mJ / Pulse / cm 2 and 100 Hz for 30 minutes. Is
The synthetic quartz glass according to claim 1.
請求項1記載の合成石英ガラス。 Synthetic quartz glass before hydrogen impregnation treatment has a spectral irradiance of 5 pW / cm 3 / nm for fluorescence peaks in the 280 nm band and 390 nm band when irradiated with ArF excimer laser at 5 mJ / Pulse / cm 2 and 100 Hz for 30 minutes. Is
The synthetic quartz glass according to claim 1.
請求項1〜3いずれか記載の合成石英ガラス。 The hydrogen content is 3 × 10 17 molecules / cm 3 or more,
The synthetic quartz glass according to any one of claims 1 to 3.
気相合成法により石英ガラス微粒子堆積体を生成する工程と、
温度を上昇させながら前記石英ガラス堆積体を焼結する焼結工程と、を有し、
前記焼結工程において、前記石英ガラスが1100℃〜1350℃の雰囲気に曝される時間が180分以下である、
ことを特徴とする合成石英ガラスの製造方法。 A method for producing a synthetic quartz glass according to any one of claims 1 to 4,
Producing a quartz glass fine particle deposit by vapor phase synthesis;
A sintering step of sintering the quartz glass deposit while raising the temperature,
In the sintering step, the time during which the quartz glass is exposed to an atmosphere of 1100 ° C. to 1350 ° C. is 180 minutes or less,
A method for producing synthetic quartz glass.
ことを特徴とする請求項5記載の合成石英ガラスの製造方法。 In the sintering step, the pressure when the quartz glass is exposed to an atmosphere of 1100 ° C. to 1350 ° C. is 1 Pa or more.
The method for producing synthetic quartz glass according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009213614A JP2011063457A (en) | 2009-09-15 | 2009-09-15 | Synthetic quartz glass and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009213614A JP2011063457A (en) | 2009-09-15 | 2009-09-15 | Synthetic quartz glass and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011063457A true JP2011063457A (en) | 2011-03-31 |
Family
ID=43950103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009213614A Pending JP2011063457A (en) | 2009-09-15 | 2009-09-15 | Synthetic quartz glass and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011063457A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03109223A (en) * | 1989-09-22 | 1991-05-09 | Asahi Glass Co Ltd | Quartz glass and production thereof |
JPH0421540A (en) * | 1990-05-14 | 1992-01-24 | Nippon Sekiei Glass Kk | Synthetic silica glass and production thereof |
JPH06183752A (en) * | 1992-12-17 | 1994-07-05 | Nippon Sekiei Glass Kk | Synthetic silica glass and its production |
JPH06227827A (en) * | 1992-02-07 | 1994-08-16 | Asahi Glass Co Ltd | Transparent silica glass and its production |
JP2001342027A (en) * | 2000-05-29 | 2001-12-11 | Toshiba Ceramics Co Ltd | Method of manufacturing quartz glass |
-
2009
- 2009-09-15 JP JP2009213614A patent/JP2011063457A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03109223A (en) * | 1989-09-22 | 1991-05-09 | Asahi Glass Co Ltd | Quartz glass and production thereof |
JPH0421540A (en) * | 1990-05-14 | 1992-01-24 | Nippon Sekiei Glass Kk | Synthetic silica glass and production thereof |
JPH06227827A (en) * | 1992-02-07 | 1994-08-16 | Asahi Glass Co Ltd | Transparent silica glass and its production |
JPH06183752A (en) * | 1992-12-17 | 1994-07-05 | Nippon Sekiei Glass Kk | Synthetic silica glass and its production |
JP2001342027A (en) * | 2000-05-29 | 2001-12-11 | Toshiba Ceramics Co Ltd | Method of manufacturing quartz glass |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07215731A (en) | High purity quartz glass for ultraviolet lamp and its production | |
JPH09124337A (en) | Production of optical material of quartz glass for ultraviolet laser | |
JP2003081654A (en) | Synthetic quartz glass, and production method therefor | |
JP2005067913A (en) | Synthetic quartz glass and manufacturing method therefor | |
JP4170719B2 (en) | Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member | |
JP2011063457A (en) | Synthetic quartz glass and method for producing the same | |
JPH07277744A (en) | Production of synthetic silica glass | |
JP2000086259A (en) | Optical material for vacuum ultraviolet ray | |
TWI236460B (en) | Fused silica containing aluminum | |
JPH0421540A (en) | Synthetic silica glass and production thereof | |
EP2145863A1 (en) | Copper-containing silica glass, process for producing the same, and xenon flash lamp using the copper-containing silica glass | |
JP2835540B2 (en) | Method of manufacturing quartz glass member for excimer laser | |
JP4447246B2 (en) | Method for producing quartz glass | |
JP4459608B2 (en) | Method for producing synthetic quartz glass member | |
JP2012001415A (en) | Method for manufacturing quartz glass | |
JPH06287022A (en) | Synthetic quartz glass for optical use | |
JP3875287B2 (en) | Synthetic quartz glass for optics and manufacturing method | |
JP4352863B2 (en) | How to remove fluorite dust | |
JPH11240728A (en) | Production of synthetic quartz glass optical member | |
US6502426B2 (en) | Oxygen doping of silicon oxyfluoride glass | |
JPH1160264A (en) | Large-sized synthetic silica glass plate material for high-power vacuum ultraviolet radiation and its production | |
JP2007063128A (en) | Method for manufacturing synthetic quartz glass for optical use | |
JPH06234545A (en) | Synthetic quartz glass for light transmission | |
JP2001342027A (en) | Method of manufacturing quartz glass | |
JP2011073953A (en) | Method for production of synthetic quartz glass, and synthetic quartz glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120913 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140513 |