JPH06287022A - Synthetic quartz glass for optical use - Google Patents

Synthetic quartz glass for optical use

Info

Publication number
JPH06287022A
JPH06287022A JP9395193A JP9395193A JPH06287022A JP H06287022 A JPH06287022 A JP H06287022A JP 9395193 A JP9395193 A JP 9395193A JP 9395193 A JP9395193 A JP 9395193A JP H06287022 A JPH06287022 A JP H06287022A
Authority
JP
Japan
Prior art keywords
quartz glass
hydrogen
excimer laser
synthetic quartz
absorption band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9395193A
Other languages
Japanese (ja)
Other versions
JP3519426B2 (en
Inventor
Shin Kuzuu
生 伸 葛
Kenichi Kuno
野 健 一 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEKIEI GLASS KK
NIPPON SEKIEI YAMAGUCHI KK
YAMAGUCHI NIPPON SEKIEI KK
Original Assignee
NIPPON SEKIEI GLASS KK
NIPPON SEKIEI YAMAGUCHI KK
YAMAGUCHI NIPPON SEKIEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEKIEI GLASS KK, NIPPON SEKIEI YAMAGUCHI KK, YAMAGUCHI NIPPON SEKIEI KK filed Critical NIPPON SEKIEI GLASS KK
Priority to JP09395193A priority Critical patent/JP3519426B2/en
Publication of JPH06287022A publication Critical patent/JPH06287022A/en
Application granted granted Critical
Publication of JP3519426B2 publication Critical patent/JP3519426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives

Abstract

PURPOSE:To provide a stable synthetic quartz glass for optical use, free from the generation of absorption band at 220nm and the emission of red light of 650nm by the irradiation with excimer laser, forming no absorption band even by irradiating with KrF excimer laser and ArF excimer laser over a long period and keeping the transmittance to excimer laser light. CONSTITUTION:A synthetic quartz glass is produced by hydrolyzing silicon tetrachloride in an oxyhydrogen flame. In the above process, the oxygen/ hydrogen ratio in the oxyhydrogen flame is in excess of hydrogen based on the stoichiometrically necessary amount and the obtained quartz glass containing >=1,000ppm by weight of OH group in the glass is heat-treated in hydrogen at >=800 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合成石英ガラス、特
に、紫外領域、例えば、エキシマレーザーなどに使用さ
れる光学用部品、超LSI用フォトマスク基板、レチク
ル、及び超LSIステッパー用光学材料等に使用される
合成石英ガラス、その製造方法、並びに紫外線照射によ
る吸収帯、及び650nmの赤色発光を防止する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to synthetic quartz glass, in particular, optical parts used in the ultraviolet region, for example, excimer laser, photomask substrate for VLSI, reticle, and optical material for VLSI stepper. The present invention relates to a synthetic quartz glass used in, a method for producing the same, an absorption band by ultraviolet irradiation, and a method for preventing red emission at 650 nm.

【0002】[0002]

【従来の技術】近年エキシマレーザーを用いた超LSI
製造プロセスや、CVDプロセスなどが発展し、エキシ
マレーザー用光学材料に対する要求が特に高まってい
る。
2. Description of the Related Art Recently, a VLSI using an excimer laser
With the development of manufacturing processes and CVD processes, the demand for optical materials for excimer lasers is increasing.

【0003】エキシマレーザーは、希ガスとハロゲン、
あるいは、希ガス、ハロゲン単体を用いたガスレーザー
で、ガスの種類によりXeFエキシマレーザー(350
nm)、XeClエキシマレーザー(308nm)、Kr
Fエキシマレーザー(248nm)、KrClエキシマ
レーザー(220nm)、ArFエキシマレーザー(1
93nm)及びF2エキシマレーザー(157nm)など
がある。
Excimer lasers are rare gases and halogens,
Alternatively, a gas laser using a rare gas or a simple substance of halogen, and an XeF excimer laser (350
nm), XeCl excimer laser (308 nm), Kr
F excimer laser (248 nm), KrCl excimer laser (220 nm), ArF excimer laser (1
93 nm) and F 2 excimer laser (157 nm).

【0004】このうち、発振効率とガス寿命の点からX
eClエキシマレーザー、ArFエキシマレーザーや、Kr
Fエキシマレーザーが有利である。さらに、半導体素子
の製造工程や光CVDプロセスで用いられる光源として
は、ArFエキシマレーザーおよび、KrFエキシマレー
ザーが注目されている。
Of these, from the viewpoint of oscillation efficiency and gas life, X
eCl excimer laser, ArF excimer laser, Kr
F excimer lasers are preferred. Furthermore, ArF excimer lasers and KrF excimer lasers are attracting attention as light sources used in semiconductor device manufacturing processes and photo-CVD processes.

【0005】ArFエキシマレーザーや、KrFエキシマ
レーザーは、従来の水銀ランプなどの輝線を用いた光源
と比較すると、波長が短く、エネルギー密度がはるかに
高いため、ステッパーなどの石英ガラス製の光学部品に
対して損傷を与える可能性が大きい。事実、合成石英ガ
ラスにエキシマレーザーを照射したり、合成石英ガラス
フォトマスク基板にプラズマエッチングや、スパッタリ
ングを実施すると、吸収帯が形成され、その結果として
発光が発生したりするようになるという欠点を有してい
た。
The ArF excimer laser and the KrF excimer laser have a shorter wavelength and a much higher energy density than conventional light sources using a bright line such as a mercury lamp. Therefore, they are suitable for silica glass optical parts such as steppers. There is a high possibility of damage. In fact, when the synthetic quartz glass is irradiated with an excimer laser or the synthetic quartz glass photomask substrate is subjected to plasma etching or sputtering, an absorption band is formed, and as a result, light emission occurs. Had.

【0006】このような合成石英ガラスフォトマスク基
板がプラズマエッチングや、スパッタリングを受けて吸
収帯を形成するような石英ガラスを予め判別する方法と
して特開平1−189654号公報(合成石英ガラスの
検査方法)がある。これは、合成石英ガラスにエキシマ
レーザーを照射し、赤色の発光が生じるか否かによっ
て、有害な吸収帯が形成されるか否かを判別する方法で
ある。
As a method for preliminarily discriminating quartz glass in which such a synthetic quartz glass photomask substrate is subjected to plasma etching or sputtering to form an absorption band, Japanese Patent Laid-Open No. 189654/1989 (method for inspecting synthetic quartz glass) ). This is a method of irradiating a synthetic quartz glass with an excimer laser and determining whether or not a harmful absorption band is formed depending on whether or not red light emission occurs.

【0007】さらに、特開平1−201664号公報
(合成石英ガラスの改質方法)には、四塩化珪素を化学
量論的比率の酸水素火炎中で加水分解して得られた合成
石英ガラスを水素ガス雰囲気中で熱処理することによっ
て、赤色発光のない合成石英ガラスに改質できることが
開示されている。
Further, Japanese Patent Laid-Open No. 1-1201664 (method for modifying synthetic quartz glass) discloses a synthetic quartz glass obtained by hydrolyzing silicon tetrachloride in an oxyhydrogen flame in a stoichiometric ratio. It is disclosed that a synthetic quartz glass that does not emit red light can be modified by heat treatment in a hydrogen gas atmosphere.

【0008】また、特開平2−64645号公報(紫外
域用有水合成石英ガラス及びその製法)には、四塩化珪
素を酸水素火炎で加水分解する際、バーナーに供給する
酸水素火炎の水素ガスと酸素ガスの比(H2/O2)を化
学量論比より大きくする、すなわち、水素の量を化学量
論的必要量より過剰の還元雰囲気にすることにより、2
60nmの吸収帯の生成およびそれに伴う合成石英ガラス
の650nmの赤色発光を防止できることが開示されてい
る。さらに、この製法によって得られた合成石英ガラス
は、200nmでの透過率が低下するという欠点があり、
四塩化珪素に同伴ガスとして、合成石英ガラスの生成反
応に関与しない不活性ガスを使用することにより、前記
の欠点の無い合成石英ガラスが得られることが開示され
ている。
Further, in Japanese Patent Laid-Open No. 2-64645 (hydrous synthetic quartz glass for ultraviolet region and its manufacturing method), hydrogen of oxyhydrogen flame supplied to a burner when hydrolyzing silicon tetrachloride with oxyhydrogen flame is disclosed. The ratio of the gas to the oxygen gas (H 2 / O 2 ) is made larger than the stoichiometric ratio, that is, the amount of hydrogen is made to be in a reducing atmosphere in excess of the stoichiometrically required amount.
It is disclosed that the formation of an absorption band of 60 nm and the accompanying red emission of 650 nm of synthetic quartz glass can be prevented. Further, the synthetic quartz glass obtained by this production method has a drawback that the transmittance at 200 nm decreases.
It is disclosed that by using an inert gas that does not participate in the synthetic quartz glass formation reaction as an entrained gas in silicon tetrachloride, a synthetic quartz glass without the above-mentioned defects can be obtained.

【0009】このように、還元雰囲気下で合成した合成
石英ガラスは、KrFエキシマレーザーに対しては、耐
久性を有するが、より短波長のエキシマレーザーである
ArFエキシマレーザーを照射すると220nm付近に
ピークを有する吸収帯が生じ、エキシマレーザービーム
の透過率の低下をもたらすという欠点があった。
As described above, the synthetic silica glass synthesized in a reducing atmosphere has durability against a KrF excimer laser, but when irradiated with an ArF excimer laser which is an excimer laser having a shorter wavelength, a peak appears around 220 nm. However, there is a drawback in that an absorption band having γ is generated, and the transmittance of the excimer laser beam is reduced.

【0010】そこで、特開平4−21540号公報及び
特開平4−130031号公報に開示されるように、水
素過剰の酸水素火炎で合成した石英ガラスをさらに非還
元性の雰囲気で熱処理することにより吸収帯の生成を防
止することが開発された。
Therefore, as disclosed in JP-A-4-21540 and JP-A-4-130031, quartz glass synthesized by an oxyhydrogen flame with excess hydrogen is further heat-treated in a non-reducing atmosphere. It has been developed to prevent the formation of absorption bands.

【0011】合成石英ガラスの発光、吸収の理論的説明
は、未だ充分にはなされていないが、合成石英ガラスの
構造欠陥に起因し、荷電粒子線、電子線、X線、γ線、
そして、高い光子エネルギーを有する紫外線などによる
一光子吸収あるいは多光子吸収によって、色中心が生成
されるためと考えられている。
Although the theoretical explanation of light emission and absorption of synthetic quartz glass has not been sufficiently made, charged particle beam, electron beam, X-ray, γ-ray, due to structural defects of synthetic quartz glass,
It is considered that the color center is generated by one-photon absorption or multi-photon absorption by ultraviolet rays having high photon energy.

【0012】石英ガラスの吸収、発光という分光学的性
質は、現在のところ、次のように説明される。 a)酸素過剰 合成石英ガラスの製造において、酸水素火炎の酸素が過
剰な場合、すなわち、H2/O2<2となるような時は、
エキシマレーザーなどの照射によって、260nmの吸収
帯が生じ、それに伴って650nmの赤色発光帯が生成す
る。 b)水素過剰 逆に、酸水素火炎が水素過剰の場合(H2/O2>2)、
合成石英ガラス中に過剰の水素が残存し、ArFエキシ
マレーザーの照射によって220nmの吸収帯が生じ、そ
れに伴う280nmの発光帯が見られる。
The absorption and emission spectroscopic properties of quartz glass are currently explained as follows. a) Excess of oxygen In the production of synthetic quartz glass, when oxygen of the oxyhydrogen flame is excessive, that is, when H 2 / O 2 <2,
Irradiation with an excimer laser or the like causes an absorption band of 260 nm, which is accompanied by a red emission band of 650 nm. b) Excess of hydrogen Conversely, when the oxyhydrogen flame is in excess of hydrogen (H 2 / O 2 > 2),
Excess hydrogen remains in the synthetic quartz glass, an absorption band of 220 nm is generated by irradiation with an ArF excimer laser, and an emission band of 280 nm accompanying it is observed.

【0013】260nmの吸収帯の生成およびそれに伴う
650nmの赤色発光の原因として考えられることは、酸
素過剰の条件下で石英ガラスを合成したことによるパー
オキシリンケージの存在と石英ガラス中に溶存する酸素
分子の存在である。
It is considered that the production of the absorption band at 260 nm and the accompanying red emission at 650 nm are caused by the existence of peroxy linkage due to the synthesis of silica glass under the condition of excess oxygen and the oxygen dissolved in the silica glass. It is the existence of molecules.

【0014】パーオキシリンケージの存在の場合は、石
英ガラスに照射したX線や紫外線などの高い光子エネル
ギーを有する電磁波によってパーオキシリンケージが発
光中心の前駆体となり、
In the case of the presence of peroxy linkage, the peroxy linkage becomes a precursor of the luminescent center due to the electromagnetic waves having high photon energy such as X-rays and ultraviolet rays irradiated on the quartz glass,

【化1】 の反応によりパーオキシラジカルが発光中心となる。[Chemical 1] The peroxy radical becomes the luminescent center by the reaction.

【0015】一方、酸素分子が前駆体の場合は、酸素分
子がオゾンに変換され、発光中心(カラーセンター)に
なると考えられている。すなわち、以下の反応がおこな
われている。
On the other hand, when the oxygen molecule is a precursor, it is considered that the oxygen molecule is converted into ozone and becomes an emission center (color center). That is, the following reactions are performed.

【化2】 [Chemical 2]

【0016】この合成石英ガラスに水素熱処理を施す
と、 ≡Si−O−O−Si≡+H2→≡Si−OH+H−O
−Si≡ となり、あるいは、石英ガラス中の過剰の溶存酸素は水
素と結合して水となり発光中心が減少して発光は抑制さ
れる。この反応を(2)式で示す。 O2+2H2→2H2O (2)
When this synthetic quartz glass is heat-treated with hydrogen, ≡Si—O—O—Si≡ + H 2 → ≡Si—OH + H—O
-Si≡ is obtained, or excess dissolved oxygen in the quartz glass is combined with hydrogen to become water, and the number of emission centers is reduced to suppress emission. This reaction is shown by the formula (2). O 2 + 2H 2 → 2H 2 O (2)

【0017】しかし、この方法は、改質効果が継続的に
発揮できず、種々の影響因子によって改質効果が消滅す
ることがある。例えば、前記の方法で改質した合成石英
ガラスを大気中で熱処理すると、改質効果が消滅し、エ
キシマレーザーの照射や、スパッタリング、プラズマエ
ッチングなどを行うと、再び650nmの発光が発生する
ようになってしまう。
However, this method cannot continuously exert the modifying effect, and the modifying effect may disappear due to various influencing factors. For example, when the synthetic quartz glass modified by the above method is heat-treated in the atmosphere, the modifying effect disappears, and when irradiation with an excimer laser, sputtering, plasma etching or the like is performed, light emission of 650 nm is generated again. turn into.

【0018】また、特開平2−64645号公報に開示
された方法によって製造された合成石英ガラスでは、再
熱処理をおこなっても、エキシマレーザー照射時の26
0nmの吸収帯の生成および650nmの赤色発光帯は観測
されない。しかし、さらに詳細に検討すると、この方法
によって製造した合成石英ガラスにArFエキシマレー
ザーを照射すると、280nmに強い発光帯が生じ、22
0nmに吸収帯が生成されることが判明した。また、Ar
Fエキシマレーザーを照射し220nm吸収帯が生成する
に伴ってArFエキシマレーザー自身の透過率も低下す
る。
Further, in the synthetic quartz glass manufactured by the method disclosed in Japanese Patent Laid-Open No. 2-64645, even if the heat treatment is carried out again, it is 26 at the time of the excimer laser irradiation.
No generation of an absorption band of 0 nm and a red emission band of 650 nm are observed. However, upon further study, when a synthetic quartz glass produced by this method was irradiated with an ArF excimer laser, a strong emission band was generated at 280 nm.
It was found that an absorption band was generated at 0 nm. Also, Ar
The transmittance of the ArF excimer laser itself also decreases as the 220 nm absorption band is generated by irradiation with the F excimer laser.

【0019】また、KrFエキシマレーザー照射した場
合は、短時間の照射(略103ショット)では280nm
の発光帯、および220nmの吸収帯は生ぜず、KrFエ
キシマレーザー自身の透過率低下もみられない。しかし
ながら、長時間の照射(106ショット以上)を行うと
ArFエキシマレーザー照射時と同様280nmの発光帯
及び220nmの吸収帯が生じるようになる。
Further, when the KrF excimer laser is irradiated, it is 280 nm when irradiated for a short time (approximately 10 3 shots).
No emission band of 220 nm or absorption band of 220 nm is generated, and the transmittance of the KrF excimer laser itself is not decreased. However, when irradiation is performed for a long time (10 6 shots or more), an emission band of 280 nm and an absorption band of 220 nm are generated as in the case of ArF excimer laser irradiation.

【0020】従って、化学量論的必要量より水素過剰で
製造することが260nmの吸収帯の生成、およびそれに
伴う650nmの赤色発光防止のためには有効であるが、
ArFエキシマレーザーの照射およびKrFエキシマレ
ーザーの長時間の照射には適さない。
Therefore, although it is effective to produce an absorption band of 260 nm and to prevent red emission of 650 nm accompanying it, it is effective to produce hydrogen in excess of the stoichiometrically required amount.
IrF excimer laser irradiation and KrF excimer laser irradiation for a long time are not suitable.

【0021】220nmの吸収帯は ≡Si・構造を持っ
たE'センターと呼ばれている欠陥構造が原因であるこ
とが知られている(D.L.Griscom,セラミッ
ク協会学術論文誌、99巻923ページ参照。)。
It is known that the 220 nm absorption band is caused by a defect structure called an E'center having a ≡Si. Structure (DL Griscom, Journal of Ceramic Society, Volume 99). See page 923.).

【0022】E’センターの前駆体として ≡Si−H
が考えられる。還元雰囲気下で合成した石英ガラス中
では、次のような機構でE'センターが生成され(式
(3)参照)、さらに熱処理によるE'センターの生成
防止のメカニズムとして次のようなメカニズム(式
(4)参照)が提示される。(N.Kuzuu, Y.
Komatsu and M.Murahara,Ph
ysical Review B, Vol.44 p
p.9265−9270参照)
≡Si--H as the precursor of the E'center
Can be considered. In quartz glass synthesized in a reducing atmosphere, E'centers are generated by the following mechanism (see equation (3)), and the following mechanism (equation: (See (4)) is presented. (N. Kuzu, Y.
Komatsu and M.K. Murahara, Ph
yical Review B, Vol. 44 p
p. (See 9265-9270)

【化3】 [Chemical 3]

【化4】 [Chemical 4]

【0023】以上の機構により、≡Si−HH−O−S
i≡ の構造が合成石英ガラスから除去され、E'セン
ターの生成が抑止されるのである。このことは、合成石
英ガラスのArFエキシマレーザーの照射による650n
m、および280nmにおける発光帯の生成および260n
mと220nmの吸収帯の生成を抑止した光学特性を示す
合成石英ガラスとして、特開平4−21540号公報及
び特開平4−130031号でその技術的効果が示され
た。
By the above mechanism, ≡Si-HH-OS
The structure of i≡ is removed from the synthetic quartz glass, and the generation of E ′ centers is suppressed. This is due to the irradiation of synthetic quartz glass with an ArF excimer laser at 650n.
m, and the generation of the emission band at 280 nm and 260 n
As a synthetic quartz glass exhibiting optical characteristics in which the generation of absorption bands of m and 220 nm is suppressed, its technical effects have been shown in JP-A-4-21540 and JP-A-4-130031.

【0024】これは、石英ガラスの合成方法において、
溶存する酸素分子(O2)濃度が1×1017個/cm3以下と
なるように酸水素火炎の酸素と水素の比が化学量論的必
要量より過剰の水素の存在下で合成し、さらに、≡Si
−H H−O−Si≡で示される構造が、1×1018
/cm3以下となるようにこの合成石英ガラスを非還元性
の雰囲気中、または、真空中において、200〜120
0℃で熱処理するものである。
This is because in the method of synthesizing quartz glass,
Synthesized in the presence of hydrogen in which the ratio of oxygen to hydrogen in the oxyhydrogen flame is more than the stoichiometrically required amount so that the dissolved oxygen molecule (O 2 ) concentration is 1 × 10 17 pieces / cm 3 or less, Furthermore, ≡Si
The synthetic quartz glass is controlled to have a structure represented by —H H—O—Si≡ of 1 × 10 18 pieces / cm 3 or less in a non-reducing atmosphere or in a vacuum of 200 to 120.
Heat treatment is performed at 0 ° C.

【0025】[0025]

【発明が解決しようとする課題】以上の述べた方法によ
り、ArFエキシマレーザー照射したときであっても吸
収帯の生成しない材料が得られるが、その後、改質効果
には、ロット間でのバラツキがあり、改質効果が不完全
な場合もあることが明らかになった。すなわち、このよ
うにして製造した石英ガラスにおいても、製造条件下の
バラツキにより程度の違いはあるが、エキシマレーザー
の長時間照射により、吸収帯が生成する場合があり、従
来法では、全ての使用条件下において安定してエキシマ
レーザー用光学材料を得ることができなかった。
According to the method described above, a material that does not generate an absorption band even when irradiated with ArF excimer laser can be obtained, but thereafter, the modification effect has a lot-to-lot variation. Therefore, it was revealed that the reforming effect may be incomplete in some cases. That is, even in the quartz glass manufactured in this manner, although there are some differences due to variations in the manufacturing conditions, absorption bands may be formed by long-time irradiation of excimer laser, and in conventional methods, all Under the conditions, an optical material for excimer laser could not be obtained stably.

【0026】この原因を調べたところOH含量を高くす
ることにより、吸収の生成を防止できることが明らかに
なったが、OH含量を高くすると、酸素が過剰の雰囲気
で合成した場合ほど赤色発光は強くはないが高いエネル
ギー密度のエキシマレーザーを照射すると650nmに
赤色発光が生じ、安定してエキシマレーザー用光学材を
得ることができない欠点があることが判った。
When the cause of this was investigated, it was revealed that the absorption generation can be prevented by increasing the OH content. However, when the OH content is increased, the red light emission becomes stronger as compared with the case of synthesizing in an atmosphere containing excess oxygen. However, it was found that when an excimer laser having a high energy density is irradiated, red light emission is generated at 650 nm, and it is not possible to stably obtain an excimer laser optical material.

【0027】本発明は、このような問題を解決し長時間
エキシマレーザを照射しても、220nm及び260n
mの吸収帯の生成がなく、かつ、650nmに赤色発光
の生じない安定したエキシマレーザー用光学材料を得る
ことを目的とするものである。
The present invention solves such a problem, and even if the excimer laser is irradiated for a long time, 220 nm and 260 n are emitted.
It is an object of the present invention to obtain a stable optical material for an excimer laser that does not generate an absorption band of m and does not emit red light at 650 nm.

【0028】[0028]

【課題を解決するための手段】そこで、本発明者らは、
上記課題を解決するため鋭意研究を重ねた結果、四塩化
珪素を酸水素火炎中で加水分解することにより直接堆積
ガラス化する石英ガラスの合成方法において、酸水素火
炎の酸素と水素の比が化学量論的必要量より過剰の水素
の存在下で合成し、ガラス中のOH基を重量濃度で10
00ppm以上含有する石英ガラスを用い、さらに水素
ガス中で熱処理すれば、吸収帯の生成がなく、赤色発光
も生じない合成石英ガラスが得られるとの知見を得て本
発明を完成した。
Therefore, the present inventors have
As a result of earnest studies to solve the above problems, in the method of synthesizing silica glass in which silicon tetrachloride is directly deposited and vitrified by hydrolyzing silicon tetrachloride in an oxyhydrogen flame, the ratio of oxygen to hydrogen in the oxyhydrogen flame is chemical. Synthesized in the presence of hydrogen in excess of the stoichiometrically required amount, the OH groups in the glass were adjusted to 10% by weight.
The present invention was completed based on the finding that a synthetic quartz glass that does not generate an absorption band and does not emit red light can be obtained by using quartz glass containing at least 00 ppm and further heat treating it in hydrogen gas.

【0029】[0029]

【作用】四塩化珪素を酸水素火炎中で加水分解する石英
ガラスの合成方法において、酸水素火炎の酸素の量を化
学量論的必要量よりも過剰にすると、赤色発光が生ずる
ことは前述したとうりである。石英ガラス中には、Si
−O−Siの結合角が構造の乱れのために平衡値(約1
43度)から大きくずれた結合が多く存在している。こ
のため、合成時の酸水素火炎の水素の量を化学量論的必
要量よりも過剰にすると、水素分子が石英ガラス網目中
を拡散しうるため、これらの歪んだ結合と水素が式
(5)で示す反応が進行し、 ≡Si−H H−O−S
i≡ 構造が生成される。 ≡Si−O−Si≡ + H2――→ ≡Si−HH−O−Si≡ (5)
In the method for synthesizing quartz glass in which silicon tetrachloride is hydrolyzed in an oxyhydrogen flame, red luminescence occurs when the amount of oxygen in the oxyhydrogen flame exceeds the stoichiometrically required amount. It is Tori. Si in the quartz glass
The bond angle of -O-Si is an equilibrium value (about 1) due to structural disorder.
There are many couplings that are significantly deviated from (43 degrees). Therefore, if the amount of hydrogen in the oxyhydrogen flame at the time of synthesis is made to exceed the stoichiometrically required amount, hydrogen molecules can diffuse in the quartz glass network. ), The reaction proceeds, and ≡Si—H H—O—S
An i≡ structure is generated. ≡Si-O-Si≡ + H 2 ―― → ≡Si-HH-O-Si≡ (5)

【0030】この構造を有する合成石英ガラスにエキシ
マレーザーを照射すると前記の式(3)の反応で、E'
センター(≡Si・)が生成される。この前駆体である
≡Si−HH−O−Si≡ 構造を除去するためには、
特開平4−21540号、特開平4−130031号に
示すごとく、適当な雰囲気中で熱処理することにより前
駆体の除去が可能となる。
When a synthetic quartz glass having this structure is irradiated with an excimer laser, E'can be obtained by the reaction of the above formula (3).
A center (≡Si ·) is generated. In order to remove the ≡Si—HH—O—Si≡ structure which is the precursor,
As shown in JP-A-4-21540 and JP-A-4-130031, the precursor can be removed by heat treatment in an appropriate atmosphere.

【0031】ところが、もともとの石英ガラスの結合構
造が歪んでいるため、熱処理による前駆体の除去は不完
全であり、また、歪んだSi−O−Si結合も式(6)
に示すように、E'センターの前駆体と成りえるもので
ある。
However, since the original bond structure of quartz glass is distorted, the removal of the precursor by heat treatment is incomplete, and the distorted Si--O--Si bond is also expressed by the formula (6).
As shown in (3), it can be a precursor of the E'center.

【化5】 [Chemical 5]

【0032】このように、酸水素火炎を水素過剰として
も石英ガラス中に ≡Si−H H−O−Si≡ 構造を生成させないためには、歪んだ結合を少なくする
ことが有効である。
As described above, in order to prevent the formation of the ≡Si—H H—O—Si≡ structure in the quartz glass even if the oxyhydrogen flame is excessively hydrogenated, it is effective to reduce the distorted bonds.

【0033】これは、石英ガラス中の Si−OH の
濃度を高くすることによって達成できる。Si−OHの
濃度が高いと、石英ガラスをある温度に保ったとき準平
衡に近づく時間を短縮でき、このため石英ガラス中の
Si−O−Si 結合角の緩和が促進され、結果として
歪んだ結合の分布割合を少なくすることができ、ガラス
作成時における前駆体の生成が防止される。また、たと
え合成時に前駆体が生成したとしても歪んだ結合を少な
くすることにより、熱処理においても周辺の構造の緩和
も容易になり前駆体が容易に除去される。
This can be achieved by increasing the concentration of Si-OH in the quartz glass. When the concentration of Si-OH is high, the time to approach quasi-equilibrium when the quartz glass is kept at a certain temperature can be shortened, and therefore, in the quartz glass,
The relaxation of the Si—O—Si bond angle is promoted, and as a result, the distribution ratio of the distorted bond can be reduced, and the generation of the precursor during the glass production is prevented. Further, even if the precursor is generated during the synthesis, by reducing the distorted bonds, it becomes easy to relax the surrounding structure even in the heat treatment, and the precursor is easily removed.

【0034】すなわち、石英ガラス中のOH基を濃度を
上げ、Si−OHの濃度を高くすることによって石英ガ
ラス中のこの歪んだ結合の濃度が減少し、歪んだ構造に
基づくE'センターの生成が防止されるので、エキシマ
レーザーを石英ガラスに照射しても、吸収帯の生成が無
く、エキシマレーザーに対する透過率の低下が生じない
安定した光学用合成石英ガラスを得ることができるので
ある。
That is, by increasing the concentration of OH groups and increasing the concentration of Si-OH in the quartz glass, the concentration of this distorted bond in the quartz glass is decreased, and the E'center based on the distorted structure is generated. Therefore, even if the quartz glass is irradiated with an excimer laser, no stable absorption band is generated and a stable synthetic quartz glass for optical use in which the transmittance of the excimer laser does not decrease can be obtained.

【0035】しかし、OH含量を高くすると、酸素が過
剰の雰囲気で合成した場合ほど赤色発光は強くはないが
高いエネルギー密度のエキシマレーザーを照射すると赤
色発光が生じ、安定してエキシマレーザー用光学材を得
ることができない場合がある。このことは以下のように
説明できる。
However, when the OH content is increased, red emission is not as strong as when synthesized in an atmosphere with excess oxygen, but red emission occurs when irradiated with an excimer laser having a high energy density, and a stable optical material for excimer laser is obtained. May not be able to get. This can be explained as follows.

【0036】KrFおよびArFエキシマレーザーを照
射したときに生じる220nm吸収帯の強度のOH基濃
度依存性を調べたところ、OH基濃度が 1000pp
mのものに対して吸収帯が生成しないことがわかった。
しかしながら、OH基濃度が高くなると赤色発光が生じ
易くなる。赤色発光のメカニズムについては前述した通
り諸説がある(D.L.Griscom,セラミックス
協会学術論文誌,99巻,p.923参照)。すなわ
ち、非架橋酸素欠陥(≡Si−O・)によるもの、ガラ
ス中に溶存した酸素によるものなどの説があるが、何れ
の説に於いても、ガラス中に存在する化学量論的に過剰
な酸素が関連している。
When the dependence of the intensity of the 220 nm absorption band generated upon irradiation with the KrF and ArF excimer lasers on the OH group concentration was investigated, the OH group concentration was 1000 pp.
It was found that no absorption band was generated for m.
However, when the OH group concentration increases, red light emission is likely to occur. As described above, there are various theories regarding the mechanism of red light emission (see DL Griscom, Journal of the Ceramic Society of Japan, vol. 99, p. 923). That is, there is a theory that non-crosslinking oxygen defects (≡Si-O.) Are caused and oxygen dissolved in the glass is used. Oxygen is involved.

【0037】また、OH濃度と赤色発光強度の関係は、
つぎのようなメカニズムによるものと考えることにより
説明される。OH基濃度が高くなると ≡Si−OH
HO−Si≡のように、Si−OH構造が対になる確率
が高くなる。そこで、ガラス製造時には、かなりの時間
高温にさらされているため、次のような反応が進行する
ものと考えられる。
The relationship between the OH concentration and the red emission intensity is
It is explained by thinking that it is due to the following mechanism. When the OH group concentration increases, ≡Si-OH
Like HO-Si≡, there is a high probability that Si-OH structures will pair. Therefore, it is considered that the following reaction proceeds because the glass is exposed to high temperature for a considerable period of time.

【0038】 ≡Si−OH HO−Si≡ −−−→ ≡Si−O−O−Si≡ +H2 (7)≡Si—OH HO-Si≡ −−− → ≡Si—O—O—Si≡ + H 2 (7)

【0039】ここで、Si−O−O−Si構造はパーオ
キシリンケージとよばれ、非架橋酸素説に基づくなら
ば、これから、エキシマレーザーの照射により非架橋酸
素が生じ、赤色発光する。
Here, the Si-O-O-Si structure is called a peroxy linkage, and if it is based on the theory of non-bridging oxygen, then non-bridging oxygen is generated by irradiation of excimer laser, and red light is emitted.

【0040】[0040]

【化6】 [Chemical 6]

【0041】また、パーオキシリンケージからガラス生
成後冷却時につぎのようなメカニズムにより溶存酸素が
生成し、それが赤色発光の原因になることも考えられ
る。 ≡Si−O−O−Si≡ −−−→ ≡Si−O−Si≡+(1/2)O2 (9)
It is also considered that dissolved oxygen is generated by the following mechanism at the time of cooling after the glass is generated from the peroxy linkage and causes the red light emission. ≡Si-O-O-Si≡ ---- → ≡Si-O-Si≡ + (1/2) O 2 (9)

【0042】このほかに、Si−OH対から水素が取れ
ず、次のように脱水縮合が生じることも考える。 ≡Si−OH HO−Si≡ −−−→ ≡Si−O−Si≡ +H2O (10)
In addition to this, it is also considered that hydrogen cannot be taken out from the Si--OH pair and dehydration condensation occurs as follows. ≡Si-OH HO-Si≡ --- → ≡Si-O-Si≡ + H 2 O (10)

【0043】右辺のH2O分子は、ガラス網目中を拡散
しにくいため、その大部分はガラス網目構造中に閉じ込
められる。このようにして生成したH2O分子も以下の
ようなメカニズムにより赤色発光の前駆体となりうる
(N.Kuzuu,Y.Komatsu and M.
Murahara,Physical Review
B,volume 45,pp.2050−2054
(1992))。
Since the H 2 O molecules on the right side hardly diffuse in the glass network, most of them are confined in the glass network structure. The H 2 O molecule thus generated can also be a precursor of red light emission by the following mechanism (N. Kuzuu, Y. Komatsu and M.
Murahara, Physical Review
B, volume 45, pp. 2050-2054
(1992)).

【0044】(10)式の反応によって生成したH2Oの
近傍に、たまたまSi−OH基が存在すると、互いに水
素結合によってくっつき、この水素結合した構造は電子
の非局在化によって、
If Si-OH groups happen to be present in the vicinity of H 2 O produced by the reaction of the equation (10), they stick to each other by hydrogen bonds, and this hydrogen-bonded structure is delocalized by electrons.

【化7】 の構造の組替えがおこる。ここで…は水素結合を表す。
2はガラス網目中を拡散できるが、O2は拡散しにくい
ため取り残される。この残存O2分子が赤色発光の前駆
体となる。
[Chemical 7] The structure of will be rearranged. Here ... represents a hydrogen bond.
H 2 can diffuse in the glass network, but O 2 is difficult to diffuse and is left behind. The remaining O 2 molecules serve as a precursor for red light emission.

【0045】ここで、水素拡散後、O2分子とともに≡
Si−H構造が残存する。これは、(3)式に示すよう
に、E’中心の前駆体となりうる。しかしながら、エキ
シマレーザー照射時には、O2分子も光分解するため、
次のように非架橋酸素欠陥ができる。 ≡Si・ +O −−−→ ≡Si−O・ (12)
Here, after hydrogen diffusion, together with O 2 molecules, ≡
The Si-H structure remains. This can be a precursor for the E ′ center, as shown in equation (3). However, when the excimer laser is irradiated, O 2 molecules are also photodegraded,
Non-crosslinked oxygen defects are created as follows. ≡Si ・ + O −−− → ≡Si−O ・ (12)

【0046】そのため、220nmの吸収帯は生成しな
い。しかし、酸素過剰の雰囲気で合成し赤色発光が極め
て強い石英ガラスにおいては、溶存オゾン分子により2
60nmに吸収帯が生成し、同時に、≡Si−O・によ
る極めて弱い吸収帯が625nm付近に観測される
(N.Kuzuu,Y.Komatsu and M.
Murahara,Physical Review
B,volume 45,pp.2050−2054
(1992))。
Therefore, the 220 nm absorption band is not generated. However, in quartz glass that is synthesized in an atmosphere of excess oxygen and emits extremely strong red light, it is
An absorption band is generated at 60 nm, and at the same time, an extremely weak absorption band due to ≡Si—O. Is observed at around 625 nm (N. Kuzu, Y. Komatsu and M.
Murahara, Physical Review
B, volume 45, pp. 2050-2054
(1992)).

【0047】しかしながら、これを水素過剰の雰囲気で
合成した場合、赤色発光が観測されても、比較的弱く、
260nmおよび625nmの吸収帯は観測されない。
OH基濃度と赤色発光の関係は何れにしても、赤色発光
が生じるには、ガラス生成過程でSi−OH対からの水
素の脱離が関係しており、このため、赤色発光を防止す
るために、水素中で熱処理することにより再び生成した
前駆体を安定化することが有効となる。
However, when this was synthesized in an atmosphere of excess hydrogen, red emission was observed, but it was relatively weak,
No absorption bands at 260 nm and 625 nm are observed.
Regardless of the relationship between the OH group concentration and red light emission, in order for red light emission to occur, desorption of hydrogen from the Si-OH pair is involved in the glass formation process. Therefore, in order to prevent red light emission. In addition, it is effective to stabilize the regenerated precursor by heat treatment in hydrogen.

【0048】本発明者らは、四塩化珪素を化学量論的比
率の酸水素火炎中で加水分解して得られた合成石英ガラ
スを水素ガス雰囲気中で熱処理することによって、赤色
発光のない合成石英ガラスに改質することを特開平1−
201664号ですでに開示した。しかし、水素熱処理
したガラスを大気中でアニールすると再び赤色発光が生
じる。
The inventors of the present invention performed a synthetic quartz glass obtained by hydrolyzing silicon tetrachloride in an oxyhydrogen flame in a stoichiometric ratio by heat treatment in a hydrogen gas atmosphere to produce a synthetic product without red emission. To modify to quartz glass
It has already been disclosed in 201664. However, red light emission occurs again when the glass that has been heat-treated with hydrogen is annealed in the atmosphere.

【0049】これは、これらの対象とする石英ガラスが
もともと酸素過剰の雰囲気で合成され、大過剰の酸素分
子が溶存していると考えられるからである。そこで、水
素熱処理を行うとガラス中に多量のH2O分子が生成
し、これをアニールすると(11)式の逆反応により再
び酸素が生成するものと考えられる。
This is because it is considered that these target quartz glasses were originally synthesized in an oxygen-excess atmosphere, and a large excess of oxygen molecules was dissolved. Therefore, it is considered that a large amount of H 2 O molecules are generated in the glass when the hydrogen heat treatment is performed, and when this is annealed, oxygen is again generated by the reverse reaction of the equation (11).

【0050】そこで、シリカガラスを水素過剰の条件で
合成したものを用いれば、赤色発光強度は酸素過剰の条
件下で合成したシリカガラスに比べて格段に弱くなり、
260nmの吸収帯も観測されなくなる。本発明は、そ
れをさらに水素ガス雰囲気中で熱処理するものである。
Therefore, if silica glass synthesized under the condition of excess hydrogen is used, the red emission intensity becomes much weaker than that of silica glass synthesized under the condition of excess oxygen,
The 260 nm absorption band is no longer observed. The present invention further heat-treats it in a hydrogen gas atmosphere.

【0051】このとき、水素熱処理により(4)式の逆
反応が生じ吸収帯の生成が促進されることが懸念される
が、ガラス網目構造中に溶存している水素は、Si−O
−Siの結合角が平衡値(143°)から大きくずれた
もののみと反応し、熱効果により、逆に(4)式の反応
が進行し、220nmの吸収帯の生成を抑止するととも
に赤色発光が抑止される。
At this time, it is feared that the hydrogen heat treatment causes the reverse reaction of the formula (4) to promote the generation of the absorption band. However, the hydrogen dissolved in the glass network structure is Si--O.
-Si reacts only with those whose bond angle largely deviates from the equilibrium value (143 °), and due to the thermal effect, the reaction of the formula (4) proceeds conversely, suppressing the production of the absorption band of 220 nm and emitting red light. Is suppressed.

【0052】水素熱処理の条件は、800℃以上が好ま
しいが、900℃以上になると短時間処理が可能にな
る。
The condition of the hydrogen heat treatment is preferably 800 ° C. or higher, but if it is 900 ° C. or higher, a short time treatment becomes possible.

【0053】[0053]

【効果】水素過剰の雰囲気で合成し、かつOH濃度が約
1000ppm以上含有した合成石英ガラスを使用する
ことにより、エキシマレーザー照射により生じる220
nmの吸収帯の生成を防止することができ、また、水素
熱処理することにより、220nmの吸収帯の防止効果
を高め、かつ、260nmの吸収帯に起因する650n
mの赤色の発光が生じない石英ガラスを得ることがで
き、KrFエキシマレーザーおよびArFエキシマレー
ザーを長時間照射しても石英ガラスに吸収帯の生成が無
く、エキシマレーザーに対する透過率の低下が生じない
安定した光学用合成石英ガラスを得ることができる。
[Effect] 220 produced by excimer laser irradiation by using synthetic quartz glass synthesized in an atmosphere of excess hydrogen and having an OH concentration of about 1000 ppm or more.
It is possible to prevent the generation of the absorption band of nm, and the hydrogen heat treatment enhances the effect of preventing the absorption band of 220 nm, and the absorption band of 650 n caused by the absorption band of 260 nm.
It is possible to obtain quartz glass that does not emit red light of m, and even if the KrF excimer laser and ArF excimer laser are irradiated for a long time, no absorption band is generated in the quartz glass, and the transmittance to the excimer laser does not decrease. A stable synthetic quartz glass for optics can be obtained.

【0054】[0054]

【実施例】【Example】

実施例1 四塩化珪素(SiCl4)を酸素と水素の割合を化学量
論的必要量より過剰の水素の酸水素火炎中で加水分解し
て石英ガラスを合成した。このとき、石英ガラスの合成
時に不活性ガスを含むバーナーの反応条件および排ガス
の排気条件を調整することによって表1のA〜Gに示す
各種のOH基濃度の合成石英ガラスを作成した。
Example 1 Quartz glass was synthesized by hydrolyzing silicon tetrachloride (SiCl 4 ) in an oxyhydrogen flame of hydrogen in which the ratio of oxygen and hydrogen was more than stoichiometrically required. At this time, synthetic quartz glass having various OH group concentrations shown in Tables A to G was prepared by adjusting reaction conditions of a burner containing an inert gas and exhaust gas exhaust conditions during the synthesis of the quartz glass.

【0055】得られた合成石英ガラスの試料から略10
mm×10mm×30mmの試験片をそれぞれ3組切り
出し、厚さが10mmとなるようにし2面を鏡面研磨し
た。このうち一方のサンプルを水素ガス中900℃で5
時間熱処理し、次いで、水素ガス中で熱処理しなかった
サンプルと共に、ArFエキシマレーザー100mJ/
cm2のエネルギー密度で104ショット照射前後の吸収
スペクトルを測定し、220nmに於ける誘起吸収係数
を求めた。続いて、KrFエキシマレーザーを25Hz
で照射したときの赤色発光が認められる最低のエネルギ
ー密度を調べた。それらの結果を表1に示す。なお、赤
色発光の有無は室内点灯状態で行った。
From the obtained sample of synthetic quartz glass, about 10
Three sets of test pieces each having a size of 10 mm × 10 mm × 30 mm were cut out, and the two surfaces were mirror-polished so that the thickness became 10 mm. One of these samples was placed in hydrogen gas at 900 ° C for 5
ArF excimer laser 100mJ / with sample that was not heat treated in hydrogen gas
The absorption spectrum before and after irradiation with 10 4 shots was measured at an energy density of cm 2 , and the induced absorption coefficient at 220 nm was obtained. Then, use a KrF excimer laser at 25 Hz.
The lowest energy density at which red light emission was observed when irradiated with was examined. The results are shown in Table 1. The presence / absence of red light emission was performed in the indoor lighting state.

【0056】[0056]

【表1】 表1より、水素中で熱処理前後の220nm吸収帯の生
成を比較すると、水素熱処理後の方が弱くなっている。
これは、水素はSi−O−Siの結合角が平衡値(14
3°)から大きくずれたもののみと反応し、熱効果によ
り、(4)式の反応が進行したことを示すものである。
また、水素熱処理の効果は、OH濃度が約1000pp
m以上のものに対してより顕著に現れることがわかる。
[Table 1] From Table 1, when the production of the 220 nm absorption band before and after heat treatment in hydrogen is compared, it is weaker after hydrogen heat treatment.
This is because hydrogen has an equilibrium value (14) for the Si-O-Si bond angle.
It shows that only a large deviation from 3 °) is reacted, and the reaction of the formula (4) proceeds due to the thermal effect.
The effect of hydrogen heat treatment is that the OH concentration is about 1000 pp.
It can be seen that it appears more prominently for those with m or more.

【0057】また、OH濃度が高くなると、より低いエ
ネルギー密度で赤色発光が生成するようになるが、これ
を水素中で熱処理すると、1J/cm2でも赤色発光の
生成が見られなくなる。比較のため、水素処理に代えて
He中で熱処理したものを用いたところ、いずれのサン
プルも赤色発光の抑制効果が認められなかった。
When the OH concentration increases, red luminescence is generated at a lower energy density, but when this is heat-treated in hydrogen, the red luminescence is not observed even at 1 J / cm 2 . For comparison, when heat-treated in He was used instead of hydrogen treatment, no effect of suppressing red emission was observed in any of the samples.

【0058】実施例2 実施例1におけるOH濃度1050ppm(サンプル
D)及び1200ppm(サンプルE)の石英ガラスの
ブロックから略10mm×10mm×30mmの試験片
をそれぞれ7個切り出し、厚さが10mmとなるように
し2面を鏡面研磨した。得られたサンプルを表2に示す
条件で水素雰囲気中で熱処理した後、実施例1に準じて
ArFエキシマレーザー照射による220nmの吸収強
度及びKrFエキシマレーザーを照射したときの赤色発
光の生じるエネルギー密度を測定した。その結果を表2
に示す。
Example 2 Seven test pieces of approximately 10 mm x 10 mm x 30 mm were cut out from each block of quartz glass having OH concentrations of 1050 ppm (sample D) and 1200 ppm (sample E) in Example 1 to obtain a thickness of 10 mm. In this way, two surfaces were mirror-polished. After the obtained sample was heat-treated in a hydrogen atmosphere under the conditions shown in Table 2, the absorption intensity at 220 nm by ArF excimer laser irradiation and the energy density at which red light emission occurred when irradiated with KrF excimer laser were measured according to Example 1. It was measured. The results are shown in Table 2.
Shown in.

【表2】 表2より、水素処理を行なったものに著しい改質効果が
あることがわかる。
[Table 2] It can be seen from Table 2 that the hydrogen-treated product has a remarkable reforming effect.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 四塩化珪素を酸水素火炎中で加水分解し
た合成石英ガラスにおいて、酸水素火炎の酸素と水素の
比が化学量論的必要量より過剰の水素の存在下で合成
し、かつ、OH基を重量濃度で1000ppm以上含有
したものを水素中で熱処理してなる光学用合成石英ガラ
ス。
1. Synthetic quartz glass obtained by hydrolyzing silicon tetrachloride in an oxyhydrogen flame was synthesized in the presence of hydrogen in which the ratio of oxygen to hydrogen in the oxyhydrogen flame is in excess of the stoichiometrically required amount, and , A synthetic quartz glass for optics, which is obtained by heat-treating a glass containing OH groups in a weight concentration of 1000 ppm or more in hydrogen.
【請求項2】 四塩化珪素を酸水素火炎中で加水分解し
た合成石英ガラスにおいて、酸水素火炎の酸素と水素の
比が化学量論的必要量より過剰の水素の存在下で合成
し、ガラス中のOH基を重量濃度で1000ppm以上
含有する石英ガラスを用い、さらに水素中800℃以上
の温度で熱処理することを特徴とする光学用合成石英ガ
ラスの製造法。
2. A synthetic quartz glass obtained by hydrolyzing silicon tetrachloride in an oxyhydrogen flame, which is synthesized in the presence of hydrogen in which the ratio of oxygen to hydrogen in the oxyhydrogen flame is in excess of the stoichiometrically required amount. A method for producing an optical synthetic quartz glass, characterized by using quartz glass containing 1000 ppm or more by weight of OH groups therein, and further heat-treating in hydrogen at a temperature of 800 ° C. or more.
【請求項3】 石英ガラス中のOH基の重量濃度を10
00ppm以上とし、酸水素火炎の酸素と水素の比が化
学量論的必要量より過剰の水素の存在下で合成し、さら
に水素ガス中800℃以上で熱処理することによって、
紫外線照射による吸収帯、及び650nmの赤色発光を
防止する方法。
3. The weight concentration of OH groups in quartz glass is 10
By synthesizing in the presence of hydrogen in excess of stoichiometrically necessary amount of oxygen and hydrogen in the oxyhydrogen flame to more than 00 ppm, and further heat treating in hydrogen gas at 800 ° C. or more,
A method for preventing absorption band due to ultraviolet irradiation and red emission at 650 nm.
【請求項4】 紫外線がエキシマレーザーである請求項
3記載の吸収帯、及び650nmの赤色発光を防止する
方法。
4. The absorption band according to claim 3, wherein the ultraviolet light is an excimer laser, and the method for preventing red emission at 650 nm.
【請求項5】 エキシマレーザーがArFエキシマレー
ザーおよび/又はKrFエキシマレーザーである請求項
4記載の吸収帯、及び650nmの赤色発光を防止する
方法。
5. The absorption band according to claim 4, wherein the excimer laser is an ArF excimer laser and / or a KrF excimer laser, and a method for preventing red emission at 650 nm.
JP09395193A 1993-03-30 1993-03-30 Stabilization method of synthetic quartz glass for optics Expired - Fee Related JP3519426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09395193A JP3519426B2 (en) 1993-03-30 1993-03-30 Stabilization method of synthetic quartz glass for optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09395193A JP3519426B2 (en) 1993-03-30 1993-03-30 Stabilization method of synthetic quartz glass for optics

Publications (2)

Publication Number Publication Date
JPH06287022A true JPH06287022A (en) 1994-10-11
JP3519426B2 JP3519426B2 (en) 2004-04-12

Family

ID=14096747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09395193A Expired - Fee Related JP3519426B2 (en) 1993-03-30 1993-03-30 Stabilization method of synthetic quartz glass for optics

Country Status (1)

Country Link
JP (1) JP3519426B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747327A1 (en) * 1995-06-07 1996-12-11 Corning Incorporated Method of thermally treating and consolidating silica preforms for reducing laser-induced optical damage in silica
WO1999024869A1 (en) * 1997-11-11 1999-05-20 Nikon Corporation Photomask, aberration correcting plate, exposure device and method of producing microdevice
US6499315B1 (en) 1997-04-08 2002-12-31 Shin-Etsu Quartz Products Co., Ltd Production method for making an optical member for excimer laser using synthetic quartz glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747327A1 (en) * 1995-06-07 1996-12-11 Corning Incorporated Method of thermally treating and consolidating silica preforms for reducing laser-induced optical damage in silica
JPH092835A (en) * 1995-06-07 1997-01-07 Corning Inc Production of nonporous body of high-purity fused silica glass
US5735921A (en) * 1995-06-07 1998-04-07 Corning Incorporated Method of reducing laser-induced optical damage in silica
US6499315B1 (en) 1997-04-08 2002-12-31 Shin-Etsu Quartz Products Co., Ltd Production method for making an optical member for excimer laser using synthetic quartz glass
WO1999024869A1 (en) * 1997-11-11 1999-05-20 Nikon Corporation Photomask, aberration correcting plate, exposure device and method of producing microdevice
US6653024B1 (en) 1997-11-11 2003-11-25 Nikon Corporation Photomask, aberration correction plate, exposure apparatus, and process of production of microdevice

Also Published As

Publication number Publication date
JP3519426B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
US6451719B1 (en) Silica glass optical material for excimer laser and excimer lamp, and method for producing the same
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2005179088A (en) Synthetic quartz glass for optical member and method of manufacturing the same
JP2007532459A (en) Quartz glass element for UV radiation source, its manufacturing method and method for determining suitability of quartz glass element
JP2764207B2 (en) Water-soluble synthetic quartz glass for ultraviolet region and method for producing the same
JP2005067913A (en) Synthetic quartz glass and manufacturing method therefor
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP3519426B2 (en) Stabilization method of synthetic quartz glass for optics
JP3303918B2 (en) Synthetic quartz glass and its manufacturing method
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
JP3702904B2 (en) Method for producing synthetic quartz glass
JPH06166528A (en) Production of ultraviolet-laser resistant optical member
JPH0867530A (en) Optical glass for ultraviolet light
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP3303919B2 (en) Synthetic quartz glass and its manufacturing method
JP2000086259A (en) Optical material for vacuum ultraviolet ray
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP3368932B2 (en) Transparent quartz glass and its manufacturing method
JP3259460B2 (en) Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member
JP3875287B2 (en) Synthetic quartz glass for optics and manufacturing method
JPH06199531A (en) Synthetic quartz glass for optics
JP3834114B2 (en) Test method of optical material for excimer laser

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040129

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees