JPS60239334A - Manufacture of base material for optical fiber - Google Patents

Manufacture of base material for optical fiber

Info

Publication number
JPS60239334A
JPS60239334A JP9293184A JP9293184A JPS60239334A JP S60239334 A JPS60239334 A JP S60239334A JP 9293184 A JP9293184 A JP 9293184A JP 9293184 A JP9293184 A JP 9293184A JP S60239334 A JPS60239334 A JP S60239334A
Authority
JP
Japan
Prior art keywords
glass
pipe
quartz
base material
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9293184A
Other languages
Japanese (ja)
Other versions
JPS632900B2 (en
Inventor
Hiroo Kanamori
弘雄 金森
Gotaro Tanaka
豪太郎 田中
Naoki Yoshioka
直樹 吉岡
Futoshi Mizutani
太 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9293184A priority Critical patent/JPS60239334A/en
Publication of JPS60239334A publication Critical patent/JPS60239334A/en
Publication of JPS632900B2 publication Critical patent/JPS632900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Abstract

PURPOSE:To manufacture a transparent base material for an optical fiber having a specified refractive index distribution by putting a porous glass rod of pure quartz in a pipe of quartz-base glass contg. fluorine and by heating the pipe from the outside. CONSTITUTION:A starting member 1 is attached to a support rod 3 provided with a pulling device 2, quratz glass powder is deposited with oxyhydrogen burner 4, and while pulling up the member 1, a porous glass body 5 is grown in the axial direction. After pulling out the member 1, the resulting pipe-shaped porous glass body 5 is slowly lowered in a vessel 7, and is heated with a carbon resistance furnace 6 while feeding a gaseous SF6-He mixture to form a pipe 5 of glass contg. enough flourine. At this time, OH groups in the glass pipe are removed by feeding gaseous chlorine or the like. A porous quartz glass rod is put in the glass pipe 5 and heated from the outside. By the heating, the quartz glass rod is made transparent and united with the glass pipe 5 to manufacture a base material for an optical fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光フアイバ用母材の製造方法に関し、特にす
ぐれた光透過特性を持つ、コアが純粋石英ガラス、クラ
ッドが弗素と石英を成分とするガラスからなる光フアイ
バ用母材の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing an optical fiber base material, which has particularly excellent light transmission properties, in which the core is made of pure silica glass and the cladding is made of fluorine and quartz. The present invention relates to a method for manufacturing an optical fiber base material made of glass.

(従来の技術) 石英系光ファイバにおいて、コア部の屈折率をクラッド
部の屈折重工り高くするために、コア部に酸化ゲルマニ
ウムなどを含む石英ガラスを用いる場合と、コア部は純
粋石英°ガラスであり、クラッド部に、純粋石英工9屈
折率の低い石英と弗素などからなる石英ガラスを用いる
場合とがある。前者に比べ後者は、元が主に伝搬するコ
ア部が純粋石英からなることから光の透過率を低下させ
る要因の1つであるレイリー散乱の影響を小さくするこ
とができ、光の透過率に秀れた光ファイバを得ることが
できる。この場合、クラッド部の屈折率を下けるために
クラッド部が酸化ホウ素と石英からなるガラスを用いる
ことも考えられるが酸化ホウ素は光通信にしばしば用い
られる波長帯に近い1.5μm付近に吸収帯を持つため
、光の透過率を良くするには使用波長帯近辺で吸収帯を
持たないフッ素と石英からなるガラスをクラッドに用い
ることが望ましい。
(Prior art) In order to increase the refractive index of the core in a silica-based optical fiber by increasing the refractive index of the cladding, there are cases where the core is made of silica glass containing germanium oxide, and other cases where the core is made of pure silica glass. In some cases, the cladding part is made of pure quartz glass made of quartz having a low refractive index and fluorine. Compared to the former, the latter has a core made of pure quartz, through which the light propagates, and can reduce the influence of Rayleigh scattering, which is one of the factors that reduce light transmittance. Excellent optical fiber can be obtained. In this case, in order to lower the refractive index of the cladding part, it may be possible to use glass made of boron oxide and quartz for the cladding part, but boron oxide has an absorption band around 1.5 μm, which is close to the wavelength band often used for optical communications. Therefore, in order to improve the light transmittance, it is desirable to use glass made of fluorine and quartz, which does not have an absorption band near the wavelength band used, for the cladding.

一方、光フアイバ用母材の製造方法の中で生産性に秀れ
経済的な方法として、火炎加水分解反応を用いて多孔質
ガラス体を合成する、MAD法或いはovpo 法など
が仰られている。このような火炎加水分解反応を用いて
多孔質ガラス体を合成する方法を用い、かつフッ素と石
英を生成分とするガラスを構成要素とする元ファイバ用
母材を製造する方法としては、特開昭55−67555
号公報に記載された↓う゛に、多孔質ガラス体を弗素を
含む雰囲気の中で加熱処理する方法がある。しかしなが
らこの方法では、多孔質ガラス体全領域に、フッ素がほ
ぼ均一に取り入れられる場合が多く、クラッドとコアの
間の屈折率差をつけることが難しい。
On the other hand, among the manufacturing methods for optical fiber base materials, the MAD method or ovpo method, which synthesizes a porous glass body using a flame hydrolysis reaction, is said to be a highly productive and economical method. . A method of synthesizing a porous glass body using such a flame hydrolysis reaction and producing a base material for a fiber whose constituent elements are glass containing fluorine and quartz is disclosed in Japanese Patent Application Laid-open No. Showa 55-67555
Another method described in the above publication is to heat-treat a porous glass body in an atmosphere containing fluorine. However, with this method, fluorine is often introduced almost uniformly into the entire region of the porous glass body, making it difficult to create a difference in refractive index between the cladding and the core.

また、特開昭55−15682号公報に記載されたよう
に、多孔質ガラス体を火炎加水分解反応を用いて形成す
る際に、原料にフッ素化合物を混合させ、フッ素を含む
多孔質ガラス体を形成し、しかるのちに、該多孔質ガラ
ス体を高温炉内で透明ガラス化するという方法もある。
Furthermore, as described in JP-A-55-15682, when a porous glass body is formed using a flame hydrolysis reaction, a fluorine compound is mixed with the raw material to form a porous glass body containing fluorine. There is also a method of forming a porous glass body and then converting the porous glass body into transparent vitrification in a high-temperature furnace.

しかしながら、この方法ではガラス中に存在するフッ素
の量を十分多くすることが難しく、フッ素によってつけ
られた屈折率差とじて高々0.2%位しかとれないので
、実用に耐えない。
However, with this method, it is difficult to sufficiently increase the amount of fluorine present in the glass, and the difference in refractive index caused by fluorine can only be about 0.2% at most, making it impractical.

(発明が解決しようとする問題点) 本発明の目的は、上記した従来法の問題点を解決し、ク
ラッド部に十分に弗素が含有され、かつ光通信用伝送路
として実用上問題のない程度に形成された屈折率分布を
有する光フアイバ用母材を、生産性に秀れた火炎加水分
解反応を用いて製造する方法を提供するところにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to solve the above-mentioned problems of the conventional method, and to ensure that the cladding portion contains sufficient fluorine and that there is no problem in practical use as a transmission line for optical communication. An object of the present invention is to provide a method for manufacturing an optical fiber base material having a refractive index distribution formed by using a highly productive flame hydrolysis reaction.

(問題点を解決する手段) 本発明方法は、夫々別個に製造した、充分に弗素を含有
した石英を主成分としクラッド部に相当する方ラスバイ
ブと、石英を主成分としコア部に相当する多孔質ガラス
レッドとを組合せた後に、加熱透明化することで、従来
法の問題点を解決し、クラッドに充分弗素を含有し、コ
ア・クラッド間の屈折率差が満足できる大きさを有する
光フアイバ用母材を得るものである。
(Means for Solving the Problems) The method of the present invention consists of two separately manufactured quartz vibrators containing sufficient fluorine as a main component and corresponding to the cladding part, and a vibrator with a porous vibrator mainly composed of quartz corresponding to the core part. The problems of the conventional method were solved by heating and making the fiber transparent after combining it with high quality glass red, and the optical fiber was made with sufficient fluorine content in the cladding and a satisfactory refractive index difference between the core and cladding. This is to obtain the base material for use.

すなわち本発明は、石英を主成分とするガラスパイプ内
に石英を主成分とする多孔質ガラスレッドを挿入し、該
ガラスパイプを外部から加熱することに工9、該多孔質
ガラスレッドを透明化するとともに、該ガラスパイプと
該ガラスレッドとを一体化することを特徴とする光フア
イバ用母材の製造方法に関する。
That is, the present invention involves inserting a porous glass red whose main component is quartz into a glass pipe whose main component is quartz, heating the glass pipe from the outside, and making the porous glass red transparent. The present invention also relates to a method for manufacturing an optical fiber base material, characterized in that the glass pipe and the glass red are integrated.

また本発明は、上記においてガラスパイプが弗素と石英
からなり、多孔質レッドが純粋石英からなる光フアイバ
用母材の製造方法に関する。
The present invention also relates to a method for producing an optical fiber base material in which the glass pipe is made of fluorine and quartz and the porous red is made of pure quartz.

さらに本発明は、上記製造方法において、ガラスパイプ
と多孔質ガラスレッドの間隙に塩素を含むガスを流す光
フアイバ用母材の製造方法に関する。
Furthermore, the present invention relates to a method for manufacturing an optical fiber base material, in which a gas containing chlorine is passed through the gap between the glass pipe and the porous glass red in the above manufacturing method.

以下に具体的に説明する。This will be explained in detail below.

クラッド部に相当する石英を主成分としたガラスパイプ
内に、コア部に相当する石英を主成分とした多孔質ガラ
スレッドを挿入し、該ガラスパイプを外部から加熱する
とガラスパイプは収縮し始める。一方、該ガラスパイプ
内に挿入された多孔質ガラスレッドは透明ガラス化して
ゆく。さらに加熱を続けると多孔質ガラスレッドが透明
ガラス化するとともに透明化したガラスレッドとガラス
パイプは一体化し光フアイバ用母材とすることができる
A porous glass red whose main component is quartz, which corresponds to the core section, is inserted into a glass pipe whose main component is quartz, which corresponds to the cladding section, and when the glass pipe is heated from the outside, the glass pipe begins to shrink. Meanwhile, the porous glass red inserted into the glass pipe becomes transparent vitrified. If the heating is continued further, the porous glass red becomes transparent vitrified, and the transparent glass red and the glass pipe are integrated to form an optical fiber base material.

この時、十分に弗素を含んだ石英ガラスパイプと純粋石
英からなる多孔質ガラスレッドを用いることにより、ク
ラッド部が弗素と石英、コア部が純粋石英からなる光フ
アイバ用母材を作製することができる。
At this time, by using a quartz glass pipe containing sufficient fluorine and a porous glass red made of pure quartz, it is possible to create an optical fiber base material whose cladding part is made of fluorine and quartz and whose core part is made of pure quartz. can.

本発明方法における弗素を充分含有した石英を主成分と
するクラッド相当のガラスパイプの作製方法は例えば次
のように行う。第1図はパイプ状多孔質ガラス体の製造
装置の1実施態様を説明する図であって、回転引上装置
2に装着され、先端がパイプ状に加工された支持棒3の
端に、表面の滑らかな出発材1を装着しておく。
The method for producing a glass pipe equivalent to a cladding whose main component is quartz containing sufficient fluorine in the method of the present invention is carried out, for example, as follows. FIG. 1 is a diagram illustrating one embodiment of the apparatus for manufacturing a pipe-shaped porous glass body, in which a support rod 3, which is attached to a rotary pulling device 2 and whose tip is processed into a pipe shape, has a surface A smooth starting material 1 is attached.

該支棒5上から、通常のVAD法と同じように酸水素バ
ーナ−4により、ガラス微粒子を堆積させていき、該支
持棒3を回転させながら引上げていくことにより徐々に
、出発材上へもガラス微粒子を堆積させていく。このよ
うにして、出発材1の外周上に多孔質ガラス体5を軸方
向に成長させたのち出発材1を引き抜くことにより、パ
イプ状の多孔質ガラス体5を得ることができる。該パイ
プ状の多孔質ガラス体5を、弗素を含む雰囲気中で加熱
透明化することにより、弗素を充分に含むガラスパイプ
を得ることができる。たとえば第2図に示した装置にお
いて、雰囲気ガスとして”Fi 100 cc/分、H
e5z/分を送り込みつつ、支持棒3にとりつけたパイ
プ1 状の多孔質ガラス体5を下方に移動していき、カ
ーボン抵抗炉6の近傍の高温部(〜165゜℃)を通過
させていくことにより、屈折率の、低下値がα3%であ
る弗素を含むガラスパイプを得ることができる。
Fine glass particles are deposited on the support rod 5 using an oxyhydrogen burner 4 in the same way as in the normal VAD method, and gradually deposited onto the starting material by pulling up the support rod 3 while rotating it. glass particles are also deposited. In this way, by growing the porous glass body 5 in the axial direction on the outer periphery of the starting material 1 and then pulling out the starting material 1, a pipe-shaped porous glass body 5 can be obtained. By heating and making the pipe-shaped porous glass body 5 transparent in an atmosphere containing fluorine, a glass pipe containing sufficient fluorine can be obtained. For example, in the apparatus shown in Fig. 2, the atmosphere gas is "Fi 100 cc/min, H
While feeding e5z/min, the pipe 1-shaped porous glass body 5 attached to the support rod 3 is moved downward and passed through a high temperature area (~165°C) near the carbon resistance furnace 6. As a result, a glass pipe containing fluorine whose refractive index is reduced by α3% can be obtained.

ところで、石英系光フアイバ中にOH基が多量に含まれ
ると、伝搬する光の吸収損失が増加し、長距離の光通信
に支障をきたす。
By the way, when a large amount of OH groups are contained in a silica-based optical fiber, absorption loss of propagating light increases, which impedes long-distance optical communication.

そこで、光フアイバ母材中のOH基は十分に低減してお
くことが必要である。本発明により作製した光フアイバ
母材中にOH基が混入しないようにするためには、ガラ
スパイプを外部から加熱する際、ガラスパイプ内に脱水
作用のある塩素系のガス、たとえばCt鵞あるいは5o
cz。
Therefore, it is necessary to sufficiently reduce the OH groups in the optical fiber base material. In order to prevent OH groups from being mixed into the optical fiber base material produced according to the present invention, when heating the glass pipe from the outside, it is necessary to use a chlorine-based gas that has a dehydrating effect, such as Ct or 5O, in the glass pipe when heating it from the outside.
cz.

などを流すことが有効である。このようにすることによ
り、ガラスパイプ内の雰囲気中に含まれる水分に由来す
る、母材内のOH基を取り除くことができる。さらに、
多孔質ガラス゛ロッド中に含まれるOH基或いは水分も
取り除くことができる。
It is effective to run the following. By doing so, it is possible to remove OH groups in the base material that are derived from moisture contained in the atmosphere within the glass pipe. moreover,
OH groups or water contained in the porous glass rod can also be removed.

もちろん、使用する多孔質ガラスロンドに脱水処理を充
分節しておくこと、また、OH基含有量の十分に低いガ
ラスパイプを用いることにより、さらに、母材中のOH
基の低減が容易になることは言うまでもない。
Of course, by thoroughly dehydrating the porous glass iron used and by using a glass pipe with a sufficiently low OH group content, it is possible to
Needless to say, the number of groups can be reduced easily.

(発明の効果) 従来法ではすでに述べfc工うに、コアが純石英でクラ
ッドが弗素を含む石英を主成分とするもので、弗素によ
る充分な屈折率差を有し実用に耐える屈折率分布構造を
有するガラス母材の製造は不可能であったが、本発明方
法は、これを可能とし、クラッド部には十分に弗素が含
有され、かつ光通信用伝送路として実用上十分に使用で
きる屈折率分布構造を有し、かつ伝送損失特性もすぐれ
たガラス母材を、生産性に秀れる火炎加水分解反応を用
いて製造できる。
(Effect of the invention) In the conventional method, as already mentioned, the core is pure quartz and the cladding is mainly composed of quartz containing fluorine, and has a refractive index distribution structure with a sufficient refractive index difference due to fluorine to withstand practical use. However, the method of the present invention makes it possible to produce a glass base material having a refractive index in which the cladding part contains sufficient fluorine and can be used practically as a transmission line for optical communication. A glass base material having a rate distribution structure and excellent transmission loss characteristics can be manufactured using a highly productive flame hydrolysis reaction.

(実施例) 実施例1 フッ素を約1重量%含む石英ガラスパイプ(外径41■
、内径9■、長さ150.)中に、多孔質石英ガラスパ
イプ(カサ密度α55 f/err?、外径8tmφ、
長さ150 m )を挿入し、石英パイプを外部からカ
ーボン炉を用いて加熱一体化することにより、第6図に
示す工うな断面構造及び屈折率分布を持つ光フアイバ用
母材を得た。
(Example) Example 1 A quartz glass pipe containing approximately 1% by weight of fluorine (outer diameter: 41mm)
, inner diameter 9cm, length 150mm. ) inside the porous quartz glass pipe (bulk density α55 f/err?, outer diameter 8tmφ,
By inserting a quartz pipe with a length of 150 m) and heating and integrating the quartz pipe from the outside using a carbon furnace, an optical fiber base material having a cross-sectional structure and refractive index distribution as shown in FIG. 6 was obtained.

さらに本母材を延伸したのち市販の石英パイプ中に挿入
一体化し、シングルモード光ファイバ用母材を作製した
Furthermore, after stretching this base material, it was inserted into a commercially available quartz pipe and integrated to produce a base material for a single mode optical fiber.

尚、フッ素を約1重量%含む石英ガラスパイプは、パイ
プ状の多孔質石英ガラス体を作製したのち、これを1を
含む雰囲気下で焼結して得たものである。また、多孔質
石英ロンドは、VAD法にエフ作製したものである。
The quartz glass pipe containing about 1% by weight of fluorine is obtained by producing a pipe-shaped porous quartz glass body and then sintering it in an atmosphere containing fluorine. Further, the porous quartz rond was manufactured using the VAD method.

本母材を線引して得られた単長5 kmのシングルモー
ド光ファイバの伝送損失特性を第4図に示す。第4図で
はα95μm、1.24μm、1.39μm帯に各々、
OH基に由来する吸収損失が現れている。このOH基に
よる吸収は石英パイプと多孔質ガラスロンドを一体化す
る際、石英ガラスパイプ内の雰囲気中に存在した水分が
作製した母材内に混入したことによると考えられる。
Figure 4 shows the transmission loss characteristics of a 5 km long single mode optical fiber obtained by drawing this base material. In Fig. 4, α95μm, 1.24μm, and 1.39μm bands, respectively.
Absorption loss originating from OH groups appears. This absorption by OH groups is thought to be due to moisture present in the atmosphere inside the quartz glass pipe entering the prepared base material when the quartz pipe and the porous glass iron were integrated.

実施例2 実施例1の方法に於いて、さらに、石英ガラスバイプ内
に塩素ガス’150cc/分、ヘリウムガスを511分
の割合で供給しつつ石英ガラスと多孔質ガラスロンドの
一体化を行った。本方法によって得られたシングルモー
ド光ファイバの伝送損失特性を第5図に示す。OH基に
よる吸収は実用上問題のない程度に低減できている。
Example 2 In the method of Example 1, quartz glass and porous glass iron were further integrated while supplying chlorine gas at a rate of 150 cc/min and helium gas at a rate of 511 min into the quartz glass pipe. FIG. 5 shows the transmission loss characteristics of the single mode optical fiber obtained by this method. Absorption due to OH groups has been reduced to a level that poses no practical problem.

【図面の簡単な説明】[Brief explanation of drawings]

第1図二本発明方法に用いるパイプ状多孔質ガラス体の
製造装置の実施態様を説明す る図。 第2図二本発明方法にて用いる、パイプ状多孔質ガラス
体に弗素を添加し、かつ透明 ガラス化する装置の実施態様を説明す る図。 第6図:実施例1において得られた母材の屈折率分率 第4囚:実施例1において得られたファイバの伝送損失
特性 第5図:実施例2において得られたファイバの伝送損失
特性 第3図 第4図 箆5図 手続補正書 昭和60年1 月30 日 寺許庁長官 志賀 字数 1、事件の表示 昭和59年特許願第92931 号 2°発明0名称 光7アイパ用母材の製造方法3、補正
をする者 事件との関係 特許出願人 住 所 大阪市東区北浜5丁目15番地懺者川上哲部 4、代理人 f3− 所 東京都港区虎ノ門−丁目16番2号5、補
正命令の日付 自発補正 六へ補正により増加する発明の数 なしl補正の対象 (1) 明細書の「発明の詳細な説明」の欄(2) 図
 面 a補正の内容 (1)明細書第7頁第4行の「該支棒」なる記載を「該
支持棒」と訂正する。 (2)添付図面のうち第1図を別紙のとお)補正する。 第1図
FIG. 1 is a diagram illustrating an embodiment of an apparatus for manufacturing a pipe-shaped porous glass body used in the method of the present invention. FIG. 2 is a diagram illustrating an embodiment of an apparatus for adding fluorine to a pipe-shaped porous glass body and making it transparent vitrified, which is used in the method of the present invention. Figure 6: Refractive index fraction of the base material obtained in Example 1.4: Transmission loss characteristics of the fiber obtained in Example 1.Figure 5: Transmission loss characteristics of the fiber obtained in Example 2. Figure 3 Figure 4 Figure 5 Procedural amendment January 30, 1985 Director General of the Temple Office Shiga Number of characters 1, case description 1988 Patent Application No. 92931 2° Invention 0 Name Hikari 7 Base material for Aipa Manufacturing method 3, relationship with the case of the person making the amendment Patent applicant address 4, Tetsube Kawakami, 5-15 Kitahama, Higashi-ku, Osaka, Agent f3- Address: 16-2-5, Toranomon-chome, Minato-ku, Tokyo Date of amendment order Number of inventions to be increased by amendment to spontaneous amendment 6 None l Subject of amendment (1) “Detailed explanation of the invention” column of specification (2) Drawings Contents of amendment (1) Specification No. On page 7, line 4, the description "the support rod" is corrected to "the support rod." (2)Amend Figure 1 of the attached drawings (as attached). Figure 1

Claims (1)

【特許請求の範囲】 (11石英を主成分とするガラスパイプ内に石英を主成
分とする多孔質ガラスロッドを挿入し、該ガラスパイプ
を外部から加熱することにニジ、該多孔質ガラスロッド
を透明化するとともに、該ガラスパイプと該ガラスロッ
ドとを一体化することを特徴とする光フアイバ用母材の
製造方法。 (2) ガラスパイプが弗素と石英からなり、多孔質ガ
ラスロッドが純粋石英からなる特許請求範囲第(1)項
記載の光フアイバ用母材の製造方法。 (3) ガラスパイプと多孔質ガラスロッドの間隙に塩
素を含むガスを流す特許請求の範囲第il+項又は第(
2)項に記載される光フアイバ用母材の製造方法。
[Claims] (11) A porous glass rod mainly composed of quartz is inserted into a glass pipe mainly composed of quartz, and the porous glass rod is heated from the outside. A method for manufacturing an optical fiber base material, which is made transparent and is characterized by integrating the glass pipe and the glass rod. (2) The glass pipe is made of fluorine and quartz, and the porous glass rod is made of pure quartz. A method for manufacturing an optical fiber base material according to claim 1, which comprises: (3) a method of manufacturing a base material for optical fiber according to claim il+ or claim 2, which comprises flowing a gas containing chlorine into the gap between the glass pipe and the porous glass rod;
2) A method for manufacturing an optical fiber base material described in item 2).
JP9293184A 1984-05-11 1984-05-11 Manufacture of base material for optical fiber Granted JPS60239334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9293184A JPS60239334A (en) 1984-05-11 1984-05-11 Manufacture of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9293184A JPS60239334A (en) 1984-05-11 1984-05-11 Manufacture of base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS60239334A true JPS60239334A (en) 1985-11-28
JPS632900B2 JPS632900B2 (en) 1988-01-21

Family

ID=14068236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9293184A Granted JPS60239334A (en) 1984-05-11 1984-05-11 Manufacture of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS60239334A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176935A (en) * 1986-01-30 1987-08-03 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPS62176933A (en) * 1986-01-29 1987-08-03 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPH0193433A (en) * 1987-10-02 1989-04-12 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPH0193434A (en) * 1987-10-02 1989-04-12 Sumitomo Electric Ind Ltd Production of preform for optical fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914411A (en) * 1982-07-14 1984-01-25 Mitsubishi Electric Corp Numerical control unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914411A (en) * 1982-07-14 1984-01-25 Mitsubishi Electric Corp Numerical control unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176933A (en) * 1986-01-29 1987-08-03 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPH048380B2 (en) * 1986-01-29 1992-02-14 Sumitomo Electric Industries
JPS62176935A (en) * 1986-01-30 1987-08-03 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPH048381B2 (en) * 1986-01-30 1992-02-14 Sumitomo Electric Industries
JPH0193433A (en) * 1987-10-02 1989-04-12 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPH0193434A (en) * 1987-10-02 1989-04-12 Sumitomo Electric Ind Ltd Production of preform for optical fiber

Also Published As

Publication number Publication date
JPS632900B2 (en) 1988-01-21

Similar Documents

Publication Publication Date Title
KR900003449B1 (en) Dispersion-shift fiber and its production
US4675040A (en) Method for producing glass preform for single mode optical fiber
JPS61247633A (en) Production of glass base material for optical fiber
JPH0196039A (en) Production of optical fiber preform
KR890001125B1 (en) Optical fifer
JPH029727A (en) Production of optical fiber preform
US4880452A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPS60239334A (en) Manufacture of base material for optical fiber
US4875918A (en) Method of manufacturing fiber preform for single-mode fibers
JPH0477327A (en) Production of optical fiber
JPS6289B2 (en)
JPS63139028A (en) Production of optical fiber glass base material
JPH01111747A (en) Production of optical fiber preform
KR910000731B1 (en) Process for production of optical fiber
JPH0327491B2 (en)
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JPS6256093B2 (en)
JPS63222042A (en) Optical fiber preform and production thereof
JP3439258B2 (en) Method for producing glass preform for optical fiber
JPS63285128A (en) Production of optical fiber preform
JPH01242432A (en) Production of base material for optical fiber
JPH01160839A (en) Production of preform for optical fiber
JPH0733460A (en) Optical fiber preform and its production
JPH01203238A (en) Production of optical fiber preform
JPS60246233A (en) Manufacture of glass preform for optical fiber