JPH048381B2 - - Google Patents

Info

Publication number
JPH048381B2
JPH048381B2 JP61016678A JP1667886A JPH048381B2 JP H048381 B2 JPH048381 B2 JP H048381B2 JP 61016678 A JP61016678 A JP 61016678A JP 1667886 A JP1667886 A JP 1667886A JP H048381 B2 JPH048381 B2 JP H048381B2
Authority
JP
Japan
Prior art keywords
glass
refractive index
rod
optical fiber
silica glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61016678A
Other languages
Japanese (ja)
Other versions
JPS62176935A (en
Inventor
Akira Urano
Tsunehisa Kyodo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1667886A priority Critical patent/JPS62176935A/en
Publication of JPS62176935A publication Critical patent/JPS62176935A/en
Publication of JPH048381B2 publication Critical patent/JPH048381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は高開口数を有する光フアイバ用プリフ
オームを容易かつ安定して製造できる新規な方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a novel method for easily and stably manufacturing an optical fiber preform having a high numerical aperture.

<従来の技術> 従来より高開口数を有する光フアイバ用プリフ
オームの製造方法の一例として、二酸化ゲルマニ
ウムを高濃度にドープした石英系ガラスコアロツ
ドを、クラツドパイプ中に挿入した状態で、両者
を加熱溶融一体化する、所謂ロツド・イン・チユ
ーブ法が知られている。この場合、クラツドパイ
プとしては最も一般的には純粋石英ガラスが使用
されるが、弗素を添加した石英ガラスを用いるこ
とによつてより高開数の光フアイバ用プリフオー
ムを製造する場合もある。弗素を添加することに
よつて石英ガラスの屈折率は低下するため、これ
をクラツド材として用いることによつて高い開口
数が得やすい。
<Prior art> As an example of a conventional manufacturing method for an optical fiber preform with a high numerical aperture, a quartz-based glass core rod doped with germanium dioxide at a high concentration is inserted into a clad pipe, and the two are heated and melted into one body. The so-called rod-in-tube method is known. In this case, pure silica glass is most commonly used as the clad pipe, but fluorine-doped silica glass may be used to produce an optical fiber preform with a higher numerical aperture. Since the refractive index of quartz glass is lowered by adding fluorine, a high numerical aperture can be easily obtained by using it as a cladding material.

しかしながら、高濃度に二酸化ゲルマニウムを
ドープした石英ガラスをコアロツドとして用いる
場合の問題点として、プリフオーム中に気泡が残
留しやすく、この気泡を起点としてクラツクの発
生やプリフオームの破裂という現象が頻繁に発明
するということがあつた。また、二酸化ゲルマニ
ウムを大量にドープしたコア材と弗素を添加した
クラツド材を組み合わせることによつて、得られ
る光フアイバーの紫外域での伝送損失が増加する
傾向にある。
However, a problem when using quartz glass doped with germanium dioxide at a high concentration as a core rod is that air bubbles tend to remain in the preform, and these air bubbles often cause cracks and preform rupture. Something happened. Furthermore, by combining a core material doped with a large amount of germanium dioxide and a cladding material doped with fluorine, the transmission loss in the ultraviolet region of the resulting optical fiber tends to increase.

前者の原因は、二酸化ゲルマニウムの蒸気圧が
高いために、高温雰囲気中でコアロツド表面近傍
より揮散した二酸化ゲルマニウムがパイプ内面或
いはロツド表面の不整部分に入り込み、パイプと
ロツドの十分な一体化を阻害し気泡として残留す
ると考えられる。後者の原因は、クラツド中の弗
素が高温雰囲気下でコア中に拡散侵入し、ゲルマ
ニウムと反応することによつて誘起される欠陥に
よるものではないかと推測される。
The reason for the former is that germanium dioxide has a high vapor pressure, so germanium dioxide volatilizes from near the core rod surface in a high-temperature atmosphere and enters the inner surface of the pipe or irregularities on the rod surface, inhibiting sufficient integration of the pipe and rod. It is thought that it remains as bubbles. The latter cause is presumed to be due to defects induced by fluorine in the cladding diffusing into the core in a high-temperature atmosphere and reacting with germanium.

これらの問題に対しての解決手段としてコアロ
ツドの外周に該コアロツドの外径1/60〜1/125の
厚みの純粋石英ガラス薄層を直接ガラス化法によ
り施す方法が提案されている。この方法によれ
ば、コアロツド表面近傍には事実上二酸化ゲルマ
ニウムがドープされているためにその揮散が発生
しにくいうえに、コアロツドとクラツドパイプを
一体化する際に、二酸化ゲルマニウムをドープし
たガラスと弗素を添加したガラスが直接接触しな
いため、紫外域での伝送損失の上昇を防止し、良
好な特性を有する高開口数の光フアイバを安定し
て製造することが可能である。
As a solution to these problems, a method has been proposed in which a thin layer of pure silica glass having a thickness of 1/60 to 1/125 of the outer diameter of the core rod is applied directly to the outer periphery of the core rod by vitrification. According to this method, since germanium dioxide is practically doped near the surface of the core rod, its volatilization is difficult to occur, and when the core rod and the clad pipe are integrated, glass doped with germanium dioxide and fluorine are Since the doped glass does not come into direct contact with each other, it is possible to prevent an increase in transmission loss in the ultraviolet region and to stably produce a high numerical aperture optical fiber with good characteristics.

<発明が解決しようとする問題点> 上述した如き方法は高開口数の光フアイバ製造
技術として非常に優れた方法であるが、コアロツ
ドの外周に純粋石英ガラス薄層を施した後に、該
コアロツドを所定の外径に延伸するなど、高温で
加工する際にその純粋石英ガラス薄層が高温のた
めに揮散してしまい必要な厚みが得られなくなる
という問題があつた。
<Problems to be Solved by the Invention> The method described above is a very excellent method for manufacturing high numerical aperture optical fibers, but after applying a thin layer of pure silica glass around the outer periphery of the core rod, When processing at high temperatures, such as when stretching to a predetermined outer diameter, the pure silica glass thin layer evaporates due to the high temperature, making it impossible to obtain the required thickness.

これに対し、揮散する分を見越して、あらかじ
め厚めに純粋石英ガラス薄層を施したり、あるい
はまずコラロツドを所定の外径に延伸してから、
純粋石英ガラス薄層を施す方法を試みたが、直接
ガラス化法で純粋石英ガラスを合成する際には非
常に高温を必要とするため長時間加工したり、細
径のコアロツドを加工するとコアロツドの変形が
大きくなり、その後のコアロツドとクラツドパイ
プの一体化が容易に行えなくなるという問題があ
つた。
To counter this, in anticipation of volatilization, a thin layer of pure silica glass is applied in advance, or the corrod is first stretched to a predetermined outer diameter.
We tried a method of applying a thin layer of pure silica glass, but since synthesis of pure silica glass by direct vitrification requires very high temperatures, it would be difficult to process the core rod for a long time or to process a small diameter core rod. There was a problem in that the deformation became large and the subsequent integration of the core rod and clad pipe could not be easily performed.

本発明はこのような問題点を解決し、高開口数
を有する光フアイバ用プリフオームを安定して製
造できる新規な方法を意図したものである。
The present invention aims at a novel method that can solve these problems and stably manufacture an optical fiber preform having a high numerical aperture.

<問題点を解決するための手段> 本発明は高屈折率ガラスのコアロツドを低屈折
率ガラスのクラツドパイプ内に挿入し、該コアロ
ツドとクラツドパイプを同時に溶融し一体化して
光フアイバ用プリフオームを製造する方法におい
て、上記コアロツドは、純粋石英ガラスに対する
比屈折率差が1.5%以上に相当する量の二酸化ゲ
ルマニウムを含有する石英ガラスよりなる出発材
ロツドの外周に、該出発材ロツドの外径の1/30〜
1/125の厚みとなるよう、P2O5、B2O3、TiO2
うち少なくとも1種以上を含む石英ガラス層を施
したものであり、上記クラツドパイプは、純粋石
英ガラスに対する比屈折率差が−0.3%以下に相
当する量の弗素を添加した石英ガラスよりなる、
ことを特徴とする光フアイバ用プリフオームの製
造方法である。本発明の特に好ましい実施態様と
しては出発材ロツド最外周の上記ドーパントを含
有する石英ガラス薄層の比屈折率差が、使用する
コアロツド比屈折差に相当する値ないし使用する
クラツドパイプの比屈折率差に相当する値の範囲
にある上記方法が挙げられる。
<Means for Solving the Problems> The present invention provides a method of manufacturing an optical fiber preform by inserting a core rod made of high refractive index glass into a clad pipe made of low refractive index glass, and simultaneously melting and integrating the core rod and the clad pipe. In the above, the core rod is made of quartz glass containing germanium dioxide in an amount corresponding to a relative refractive index difference of 1.5% or more with respect to pure silica glass. ~
A silica glass layer containing at least one of P 2 O 5 , B 2 O 3 , and TiO 2 is applied so that the thickness is 1/125, and the above-mentioned clad pipe has a relative refractive index with respect to pure silica glass. Made of quartz glass doped with fluorine in an amount equivalent to a difference of -0.3% or less,
This is a method for manufacturing an optical fiber preform characterized by the following. In a particularly preferred embodiment of the present invention, the relative refractive index difference of the silica glass thin layer containing the dopant on the outermost periphery of the starting material rod is a value corresponding to the relative refractive index difference of the core rod used or the relative refractive index difference of the clad pipe used. The above-mentioned methods are mentioned in the range of values corresponding to .

本発明者らは、P2O5、B2O3、TiO2の3種類の
ドーパントを添加することによつて石英ガラス化
温度が低下することに着目し鋭意検討した結果、
上記3種類のドーパントのうち少くとも1種以上
をドープした石英ガラス薄層を出発材ロツド最外
周に形成することによつて、純SiO2層を形成す
るに比しより低温で行えるので、より長時間の直
接ガラス化加工によつてもコアロツドの変形を最
小限度に抑え、かつ、その後の延伸等の高温加工
によつて揮散される分をあらかじめ見越した被覆
厚みとなるよう形成することで、十分な被覆石英
ガラス層の厚みを確保でき、変形防止が可能なた
め、従来より厚い被覆加工が可能で、また、これ
により延伸加工も自由となり、加工の自由度が拡
がることを見出した。
The present inventors focused on the fact that the quartz vitrification temperature was lowered by adding three types of dopants, P 2 O 5 , B 2 O 3 , and TiO 2 , and as a result of intensive study,
By forming a thin layer of silica glass doped with at least one of the above three types of dopants on the outermost periphery of the starting material rod, it can be formed at a lower temperature than when forming two layers of pure SiO. By minimizing deformation of the core rod even during long-term direct vitrification processing, and forming the coating to a thickness that takes into account the amount that will be volatilized during subsequent high-temperature processing such as stretching, It has been found that since a sufficient thickness of the quartz glass layer can be ensured and deformation can be prevented, a thicker coating can be formed than before, and this also allows for free stretching, increasing the degree of freedom in processing.

また、被覆石英ガラス層を施したコアロツドを
用いることによつて、これを施さないロツドをコ
アロツドとした光フアイバ用プリフオームから得
られた光フアイバより紫外域での損失増加量の少
ない光フアイバが得られることも明らかになつ
た。
In addition, by using a core rod coated with a coated quartz glass layer, an optical fiber can be obtained with less increase in loss in the ultraviolet region than an optical fiber obtained from an optical fiber preform using a rod without this coating as the core rod. It also became clear that

尚、該被覆石英ガラス層の比屈折率差は、使用
するコアロツドと使用するクラツドパイプの比屈
折率差に相当する値の範囲内にあり、厚みはコア
ロツドの外径の1/30〜1/125であることが伝送特
性及び加工性の面から好ましい。
The relative refractive index difference of the covering quartz glass layer is within a value range corresponding to the relative refractive index difference between the core rod used and the clad pipe used, and the thickness is 1/30 to 1/125 of the outer diameter of the core rod. It is preferable from the viewpoint of transmission characteristics and processability.

<実施例> 以下に図面を参照して、本発明の実施例によ
り、本発明の効果を説明する。
<Example> The effects of the present invention will be described below with reference to the drawings.

実施例 第1図は本発明の実施態様を説明する図であり
同図中1は石英ガラスロツド、2は石英系ガラス
パイプを示し、本実施例ではガラスロツド1とし
て 二酸化ゲルマニウムを含有する比屈折率差
1.8%の石英系ガラスからなる出発材ロツドの外
周に、該出発材ロツドの1/45の厚みの、P2O5
ドープした、比屈折率差約0%の石英ガラス層を
施したものを用い、ガラスパイプ2としては、弗
素を添加することによつて比屈折率差−0.3%と
した石英ガラスパイプを用いた。また本実施例に
用いたガラスロツド1は外径32mmの上記出発材ロ
ツド外周に、高温プラズマ法により、P2O5をド
ープした石英ガラスを0.7mm厚(1/45)に合成し
た後、酸水素火炎で加熱しながら外径16mmまで延
伸することによつて得たものを用い、延伸加工の
前後でのその重量を比較することにより、ロツド
最外部の被覆石英ガラスの30重量%が失われてい
ると予想できたので厚みは1/64になる。また同図
中3はガラスロツド1とガラスパイプ2を加熱す
るためのバーナである。第1図に示すようにガラ
スロツド1をガラスパイプ2に挿入しバーナ3に
よつて加熱しながら矢印で示すようにガラスロツ
ド1とガラスパイプ2の同心軸を中心に一方向に
回転させ外周方向の温度分布を均一化させる。ま
たガラスロツド1とガラスパイプ2の間隙を減厚
し一体化し易い状態にしたうえで、バーナ3を一
体化させるガラスロツド1とガラスパイプ2の長
手方向に平行に移動させることによつてガラスロ
ツド1とガラスパイプ2の加熱溶融部分を移動さ
せながら該ガラスロツド1と該ガラスパイプ2を
全長にわたつて一体化させる。このようにして得
たプリフオームは気泡の残留がまつたく見られず
該プリフオームを加熱紡糸して得た光フアイバの
伝送損失は波長0.6μmにおいて12dB/Kmであつ
た。
Embodiment FIG. 1 is a diagram illustrating an embodiment of the present invention. In the figure, 1 indicates a quartz glass rod, and 2 indicates a quartz-based glass pipe. In this embodiment, the glass rod 1 is a glass rod with a relative refractive index containing germanium dioxide.
A silica glass layer doped with P 2 O 5 and having a relative refractive index difference of approximately 0% is applied around the outer periphery of a starting material rod made of 1.8% silica glass. As the glass pipe 2, a quartz glass pipe with a relative refractive index difference of −0.3% by adding fluorine was used. Furthermore, the glass rod 1 used in this example was made by synthesizing P 2 O 5 doped silica glass to a thickness of 0.7 mm (1/45) on the outer periphery of the starting material rod with an outer diameter of 32 mm using a high-temperature plasma method. Using a rod obtained by stretching it to an outer diameter of 16 mm while heating it with a hydrogen flame, it was found that 30% by weight of the coated quartz glass on the outermost part of the rod was lost by comparing its weight before and after stretching. I expected that the thickness would be 1/64. Further, numeral 3 in the figure is a burner for heating the glass rod 1 and the glass pipe 2. As shown in Fig. 1, the glass rod 1 is inserted into the glass pipe 2, heated by the burner 3, and rotated in one direction around the concentric axis of the glass rod 1 and the glass pipe 2 as shown by the arrow to increase the temperature in the outer circumferential direction. Equalize the distribution. In addition, the gap between the glass rod 1 and the glass pipe 2 is reduced in thickness to facilitate integration, and the burner 3 is moved parallel to the longitudinal direction of the glass rod 1 and the glass pipe 2 to be integrated. The glass rod 1 and the glass pipe 2 are integrated over the entire length while moving the heated and melted part of the pipe 2. The preform thus obtained had no residual bubbles, and the optical fiber obtained by heating and spinning the preform had a transmission loss of 12 dB/Km at a wavelength of 0.6 μm.

比較例 第1図の構成に従い、本比較例ではガラスロツ
ド1として、二酸化ゲルマニウムを含有する比屈
折率差1.8%の石英系ガラスからなる出発材ロツ
ドの外周に、該出発材ロツドの外径の1/125の厚
みの純粋石英ガラス薄層を施したものを用い、ガ
ラスパイプ2として、弗素を添加することによつ
て、その比屈折率差を−0.3%とした石英ガラス
パイプを用いた。出発材ロツドの外径、石英ガラ
ス薄層の合成条件、延伸条件は実施例1と同じに
行い、延伸後の外径16mmのガラスロツド1を得
た。
Comparative Example According to the structure shown in Fig. 1, in this Comparative Example, a glass rod 1 having a diameter equal to the outer diameter of the starting material rod is attached to the outer periphery of a starting material rod made of silica-based glass containing germanium dioxide and having a relative refractive index difference of 1.8%. A thin layer of pure silica glass having a thickness of /125 was applied, and as the glass pipe 2, a silica glass pipe with a relative refractive index difference of −0.3% by adding fluorine was used. The outer diameter of the starting material rod, the synthesis conditions for the silica glass thin layer, and the stretching conditions were the same as in Example 1, and a glass rod 1 having an outer diameter of 16 mm after stretching was obtained.

延伸加工の前後で、その重量を比較すると純粋
石英ガラス薄層の20%が延伸加工により失われて
いると予想された。以下実施例と概略同様な操作
によりガラスロツド1とガラスパイプ2を一体化
して得た光フアイバ用プリフオームには気泡の残
留が認められ自然冷却中に破裂した。
Comparing the weight before and after the stretching process, it was estimated that 20% of the pure silica glass thin layer was lost due to the stretching process. Thereafter, residual air bubbles were observed in the optical fiber preform obtained by integrating the glass rod 1 and the glass pipe 2 by operations roughly similar to those in the example, and the preform burst during natural cooling.

<発明の効果> 以上述べたように、本発明の方法は、高い開口
数を有する伝送特性の良好な光フアイバ用プリフ
オームを安定に製造する際の加工の自由度を広げ
ることが可能なためより効果的な加工方法を選択
することが可能になる。具体的には例えばガラス
ロツドの外周に石英ガラスを合成する場合、ター
ゲツトの外径が大きい程合成速度が速くなるので
生産性向上の面から非常に優れている。
<Effects of the Invention> As described above, the method of the present invention can expand the degree of freedom in processing when stably manufacturing an optical fiber preform with a high numerical aperture and good transmission characteristics. It becomes possible to select an effective processing method. Specifically, when synthesizing quartz glass around the outer periphery of a glass rod, for example, the larger the outer diameter of the target, the faster the synthesis speed, which is very advantageous in terms of productivity improvement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様の概略説明図であ
る。
FIG. 1 is a schematic explanatory diagram of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 高屈折率ガラスのコアロツドを低屈折率ガラ
スのクラツドパイプ内に挿入し、該コアロツドと
クラツドパイプを同時に溶融し一体化して光フア
イバ用プリフオームを製造する方法において、上
記コアロツドは、純粋石英ガラスに対する比屈折
率差が1.5%以上に相当する量の二酸化ゲルマニ
ウムを含有する石英ガラスよりなる出発材ロツド
の外周に、該出発材ロツドの外径の1/30〜1/125
の厚みとなるよう、P2O5、B2O3、TiO2のうち少
なくとも1種以上を含む石英ガラス層を施したも
のであり、上記クラツドパイプは、純粋石英ガラ
スに対する比屈折率差が−0.3%以下に相当する
量の弗素を添加した石英ガラスよりなる、ことを
特徴とする光フアイバ用プリフオームの製造方
法。 2 石英ガラス層は、その比屈折率差が、出発材
ロツドの比屈折率差に相当する値ないしクラツド
パイプの比屈折率差に相当する値の範囲内である
特許請求の範囲第1項記載の光フアイバ用プリフ
オームの製造方法。
[Scope of Claims] 1. A method for manufacturing an optical fiber preform by inserting a core rod of high refractive index glass into a clad pipe of low refractive index glass, and simultaneously melting and integrating the core rod and the clad pipe, the core rod comprising: 1/30 to 1/125 of the outer diameter of the starting material rod is placed on the outer periphery of a starting material rod made of silica glass containing germanium dioxide in an amount corresponding to a relative refractive index difference of 1.5% or more with respect to pure silica glass.
The clad pipe is coated with a silica glass layer containing at least one of P 2 O 5 , B 2 O 3 , and TiO 2 so as to have a thickness of A method for manufacturing an optical fiber preform, characterized in that it is made of quartz glass doped with fluorine in an amount equivalent to 0.3% or less. 2. The silica glass layer has a relative refractive index difference within the range of a value corresponding to the relative refractive index difference of the starting material rod to a value corresponding to the relative refractive index difference of the clad pipe. A method for manufacturing an optical fiber preform.
JP1667886A 1986-01-30 1986-01-30 Production of preform for optical fiber Granted JPS62176935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1667886A JPS62176935A (en) 1986-01-30 1986-01-30 Production of preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1667886A JPS62176935A (en) 1986-01-30 1986-01-30 Production of preform for optical fiber

Publications (2)

Publication Number Publication Date
JPS62176935A JPS62176935A (en) 1987-08-03
JPH048381B2 true JPH048381B2 (en) 1992-02-14

Family

ID=11922968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1667886A Granted JPS62176935A (en) 1986-01-30 1986-01-30 Production of preform for optical fiber

Country Status (1)

Country Link
JP (1) JPS62176935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134795B2 (en) 2000-09-28 2015-09-15 Immersion Corporation Directional tactile feedback for haptic feedback interface devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532716A (en) * 1978-08-25 1980-03-07 Nippon Telegr & Teleph Corp <Ntt> Production of single mode optical fiber
JPS60239334A (en) * 1984-05-11 1985-11-28 Sumitomo Electric Ind Ltd Manufacture of base material for optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532716A (en) * 1978-08-25 1980-03-07 Nippon Telegr & Teleph Corp <Ntt> Production of single mode optical fiber
JPS60239334A (en) * 1984-05-11 1985-11-28 Sumitomo Electric Ind Ltd Manufacture of base material for optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134795B2 (en) 2000-09-28 2015-09-15 Immersion Corporation Directional tactile feedback for haptic feedback interface devices

Also Published As

Publication number Publication date
JPS62176935A (en) 1987-08-03

Similar Documents

Publication Publication Date Title
US7469559B2 (en) Method for making low loss optical fiber
US4184860A (en) Process for the production of glass fiber light conductors
JPS6113203A (en) Single mode optical fiber
JP2959877B2 (en) Optical fiber manufacturing method
JPH0915464A (en) Single-mode optical transmission fiber and its manufacture
EP3040749B1 (en) Optical fiber having an alkali metal doped silica glass core
NO153050B (en) PROCEDURES FOR ESSENTIAL CONTINUOUS AA TO PROVIDE AN OPTICAL EXAMINATION SUBJECT AND AN OPTICAL EXAMINER
JPH044986B2 (en)
JP2004067459A (en) Optical fiber preform, its manufacturing method, and optical fiber obtained by drawing the preform
JPH04270132A (en) Production of glass matrix for optical fiber
JP2004505000A (en) Single mode optical fiber and method for manufacturing single mode optical fiber
JP2004536765A (en) Single-step laydown fabrication of dry fiber with complex fluorine doping profile
US20050284184A1 (en) Methods for optical fiber manufacture
JPS61191543A (en) Quartz base optical fiber
US5364429A (en) Method of manufacturing active optical fibers
JP2988524B2 (en) Optical fiber and method for manufacturing the same
JPS627130B2 (en)
JPH048381B2 (en)
KR100692652B1 (en) Optical fiber preform manufacturing method
WO2002049977A2 (en) Method of doping an optical fiber preform with fluorine
JP2005181414A (en) Method for manufacturing optical fiber
JPH048380B2 (en)
JPH0559052B2 (en)
JPS63288926A (en) Production of doped quartz optical fiber
JPH0948630A (en) Production of preform for optical fiber