JPH0193433A - Production of preform for optical fiber - Google Patents

Production of preform for optical fiber

Info

Publication number
JPH0193433A
JPH0193433A JP24808887A JP24808887A JPH0193433A JP H0193433 A JPH0193433 A JP H0193433A JP 24808887 A JP24808887 A JP 24808887A JP 24808887 A JP24808887 A JP 24808887A JP H0193433 A JPH0193433 A JP H0193433A
Authority
JP
Japan
Prior art keywords
core
pipe
flame
diameter
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24808887A
Other languages
Japanese (ja)
Other versions
JP2645709B2 (en
Inventor
Gotaro Tanaka
豪太郎 田中
Akira Urano
章 浦野
Hiroshi Suganuma
寛 菅沼
Hiroo Kanamori
弘雄 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62248088A priority Critical patent/JP2645709B2/en
Publication of JPH0193433A publication Critical patent/JPH0193433A/en
Application granted granted Critical
Publication of JP2645709B2 publication Critical patent/JP2645709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Abstract

PURPOSE:To obtain preform for optical fiber having small transmission loss, by inserting a rod for core comprising SiO2 glass into a hallow part of a specific pipe for clad and heating the pipe using hydrogen-containing flame as a heating source. CONSTITUTION:In production of perform for optical fiber by inserting a rod for core comprising SiO2 glass into a pipe for clad having difference in specific refractive index >=0.5 smaller than that of the SiO2 glass and heating to fuse and to integrate both the rod and the pipe, a fluorine-containing SiO2 glass pipe having <=50mm outer diameter is used as the pipe for the clad, hydrogen- containing flame is used as a heating source in heating and the core diameter A and the clad diameter B after fusing and integration are made to satisfy conditions of A>=2mm, B/A>=6 and 1/2(B-A)>=7mm. H2/O2 flame or hydrocarbon/O2 flame such as natural gas/O2 flame, methane/O2 and propane/O2 are preferable as the hydrogen-containing flame with respect to supply of easy flame with strong heating power.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は元ファイバ用母材の製造方法に関し詳しくはシ
ングルモードファイバ、特に1.55μm波長帯で零分
散となる分散シフト型シングルモードファイバ用母材の
製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for manufacturing a base material for an original fiber, and more particularly to a method for manufacturing a base material for a fiber, particularly for a single-mode fiber, particularly a dispersion-shifted single-mode fiber that has zero dispersion in the 1.55 μm wavelength band. The present invention relates to a method for manufacturing a base material.

〔従来の技術〕[Conventional technology]

従来の元ファイバ製造技術の一つに、第2図に示すよう
にコア用ガラスロッド4全クラツド用ガラスパイプ5の
中空部に挿入した状態で、これを加熱により溶着一体化
(コラップスと称する)して、コア/クラッドからなる
構成体7を作製し、該構成体7を高温炉を用いて線引き
し元ファイバとする方法がオシ、ロッドインチューブ法
として知られている。
As shown in Fig. 2, one of the conventional original fiber manufacturing techniques is to insert the glass rod 4 for the core into the hollow part of the glass pipe 5 for the entire cladding, and then weld them together by heating (referred to as collapse). A method of producing a core/clad structure 7 and drawing the structure 7 as a source fiber using a high-temperature furnace is known as the rod-in-tube method.

近年、分散シフト型等のシングルモードファイバの開発
が進んでいるが、この樵のファイバは、コアとクラッド
の屈折率差が大きく、コア径が小さく、シかもクラツド
径/コア径(比)が大きいという構造が要求される。
In recent years, the development of single-mode fibers such as dispersion-shifted fibers has progressed, but this fiber has a large refractive index difference between the core and cladding, a small core diameter, and a large cladding diameter/core diameter (ratio). A large structure is required.

前記したロッドインチューブ法によシ、コア径が小さく
、クラツド径/コア径比の大きなシングルモードファイ
バ母材を作製するには、コラップス1での操作を繰返す
或は第5図に示すようにコア/クラッドからなる構成体
7の外周に、更にバーナ9の火炎中に合成したガラス微
粒子(スー))10を地核してクラッド用スート体8を
形成する方法(例えば%願昭61−72455号公報)
等が知られている。
To produce a single mode fiber base material with a small core diameter and a large cladding diameter/core diameter ratio using the rod-in-tube method described above, repeat the operation in Collapse 1 or as shown in Fig. 5. A method of forming a soot body 8 for cladding by further adding glass fine particles (sue) 10 synthesized in the flame of a burner 9 to the outer periphery of the core/cladding structure 7 (e.g. Publication No.)
etc. are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記した従来技術によってシングルモー
ドファイバ、特にファイバ断面の屈折率分布が第1図(
aJ又は(blに示す構造で、コア1が純粋石英(S1
0□)ガラスからなシ、クラッド2が7ツ累含有石英(
F−8102)  ガラスからなり、コアとクラッドの
比屈折率差が0.5%以上となる分散シフト型シングル
モードファイバを作製すると、伝送損失の小さなファイ
バが得られないという問題があった。
However, due to the above-mentioned conventional technology, the refractive index distribution of a single mode fiber, especially the cross section of the fiber, as shown in Figure 1 (
In the structure shown in aJ or (bl), core 1 is made of pure quartz (S1
0□) Made of glass, cladding 2 is made of quartz containing 7 elements (
F-8102) When a dispersion-shifted single mode fiber made of glass and having a relative refractive index difference of 0.5% or more between the core and the cladding is manufactured, there is a problem that a fiber with small transmission loss cannot be obtained.

本発明はシングルモードファイバ、特にコアシングルモ
ードファイバであって、伝送損失の小さなファイバを、
ロッドインチューブ法全利用した方法で製造することを
目的としてなされたものである。
The present invention is a single mode fiber, especially a core single mode fiber, and has a low transmission loss.
This was done with the aim of manufacturing by fully utilizing the rod-in-tube method.

〔問題点t−解決するための手段及び作用〕本発明は8
102  ガラスからなるコア用ロッドをその比屈折率
差が51o2  ガラスニジも0.5%以上小さいクラ
ッド用パイプの中空部内に挿入して加熱することによシ
両考を溶着一体化する工程を有する元ファイバ用母材の
製造方法において、上記クラッド用パイプとして外径5
0騙以下の7ツ素含有SiO□ ガラスパイプを用い、
上記加熱には水素を含む火炎を加熱源として用い、かつ
溶着一体化した後のコア径Aおよびクラツド径Bが の上記条件を満足することを特徴とする光フアイバ用母
材の製造方法であ夛、これによシ伝送特性に優れ九1.
55μm帯零分散シフトシングルモードファイバを効率
の良いロッドインチューブ法を利用して製造することを
実現するものである。
[Problem t-Means and effects for solving] The present invention has 8
102 A core rod made of glass whose relative refractive index difference is 51o2 is inserted into the hollow part of a cladding pipe that is smaller than 0.5% and heated to weld and integrate the two elements. In the method for manufacturing a fiber base material, the cladding pipe has an outer diameter of 5
Using a SiO□ glass pipe containing 7 elements with less than 0 deception,
A method for producing an optical fiber base material, characterized in that a flame containing hydrogen is used as a heating source for the heating, and the core diameter A and the cladding diameter B after welding and integration satisfy the above conditions. 91. This has excellent transmission characteristics.
This makes it possible to manufacture a 55 μm band zero dispersion shifted single mode fiber using an efficient rod-in-tube method.

以下に本発明に到達した経緯から始めて、本発明の詳細
な説明する。
The present invention will be described in detail below, starting with the circumstances that led to the invention.

コアが8102、クラッドがF−3iO2ガラスからな
シ第1図(al又は(blに示す屈折率分布構造であっ
て、分散シフト型等のコア・クラッドの比屈折率差が0
.5以上と大きく、かつコア径が5μ−程度と小さなフ
ァイバ全作製しようとすると、クラッドへのフッ素CF
) m加量を大きくとる必要があシ、また、クラツド径
/コア径比を大きく形成する必要がある。
If the core is 8102 and the cladding is F-3iO2 glass, it has a refractive index distribution structure shown in Figure 1 (al or (bl), and the relative refractive index difference between the core and cladding is 0, such as a dispersion shift type.
.. If you try to make a whole fiber with a large core diameter of 5μ or more and a small core diameter of about 5μ, the fluorine CF in the cladding
) It is necessary to have a large m addition, and it is also necessary to form a large clad diameter/core diameter ratio.

ところでSiO□にフッ素CF) ?添加してF−81
02とすると、その物性が5in2  とは異ってくる
が、特に粘性において大きく変化し、Fの重加によって
SiO□ の粘性は大巾に低下する。Fti加量の多い
シングルモードファイバではこれが特に顕著になる。
By the way, SiO□ with fluorine CF)? Add F-81
02, its physical properties are different from those of 5in2, but the viscosity in particular changes greatly, and the viscosity of SiO□ is greatly reduced by the addition of F. This is particularly noticeable in single mode fibers with a large Fti addition.

コラップス法で本発明の目的とする細径51o2コア、
太径のF−3iO2クラツドからなる構造体の作製を試
みると、加熱の際にクラッドガラスがより軟かくなるた
め、このクラッドガラスがコアガラスによシ低温状態で
溶着してしまい、コアガラス表面が充分な加熱による滑
らかな状態(アレのない状態)となる以前に一体化して
し1う。その九めにコアークラッド界面にはアレが残る
度合が大きくなシ、これが7アイパの伝送損失の劣下金
招く大きな要因となっていた。
A small diameter 51o2 core, which is the object of the present invention, by the collapse method,
When attempting to fabricate a structure consisting of large-diameter F-3iO2 cladding, the cladding glass becomes softer during heating, and this cladding glass is welded to the core glass at low temperatures, causing the core glass surface to become softer. They are integrated before they reach a smooth state (without any cracks) due to sufficient heating. Ninth, there is a large degree of crackling left on the core-clad interface, which is a major factor contributing to the deterioration of the transmission loss of the 7-IPA.

また、F−8102ガラスにおいては、5in2ガラス
に比して、金輌イオン等の拡散速度が高温下で大きく、
特に?濃度の高いガラスでは、コラップスまたは線引等
の加熱工程において、外部から混入する、元ファイバの
伝送特性に有害な金属やOH基等の不純物が、コア近辺
に拡散する度合が高くなる。これによっても光7アイパ
の伝送損失が大きく劣下する。
In addition, in F-8102 glass, the diffusion rate of gold ions, etc. is greater at high temperatures than in 5in2 glass.
especially? In highly concentrated glass, impurities such as metals and OH groups that enter from the outside and are harmful to the transmission characteristics of the original fiber are more likely to diffuse into the vicinity of the core during heating processes such as collapse or drawing. This also greatly reduces the transmission loss of the optical 7-aiper.

そこで本発明名らは、上記の物性差による影響ができる
だけ小さくなるような、加熱工程での加熱源、そのとき
のコアとクラッドのサイズ等を求めて、詳細に検討し実
験を重ねた。
Therefore, the inventors of the present invention have conducted detailed studies and repeated experiments to determine the heating source in the heating process, the size of the core and cladding, etc. in order to minimize the influence of the above-mentioned differences in physical properties.

この結果、クラッドとなるF−3iO2ガラスパイプと
して、屈折率値が310□ ガラスに比べ比屈折率差で
0.5%以上小さな場合、パイプの外径が501mより
小さいパイプ金量いて、加熱源として水素金倉む火炎上
用いてコラップスを行ない、さらにコラップス後のコア
径t Asクラッド径′fr:Bとするとき、下記の A≧2腸、 B/A≧6、 H(s−A)27編 の条件?満せば、う1くコラップスでき、また不純物、
特に残留水分の影響も、実用ファイバとしては無視でき
る程小さなSx O2コアの分散シフトシングルモード
ファイバが得られることが判った。
As a result, if the refractive index value is 0.5% or more smaller than the relative refractive index difference compared to 310□ glass for the F-3iO2 glass pipe that becomes the cladding, the pipe metal weight is smaller than 501 m in outer diameter, and the heating source When collapsing is carried out using a flame of hydrogen, and the core diameter after collapsing is t As cladding diameter 'fr:B, the following A≧2, B/A≧6, H(s-A)27 Conditions for the edition? If it is filled, you can collapse even more, and impurities,
In particular, it has been found that a dispersion-shifted single mode fiber with an SxO2 core can be obtained in which the influence of residual moisture is negligible for a practical fiber.

本発明に用いるF −SiO□ガラスからなるクラッド
用のパイプは、例えば特願昭53−137659号明細
書、同58−195209号明細書、同60−1039
97号明細書等に提案される方法により、径方向に比較
的均一に2が添加され比高純度な石英ガラス母材を作製
することができるので、該母材中央に機械的に穿孔する
ことにより所望のパイプを得ることができる。該クラッ
ドパイプの外径は501!11以下、肉厚は20酊以下
が好ましい。これらの値を越えるとコア部表面を充分に
高温とすることが難かしくなるからである。
The pipe for cladding made of F -SiO
By the method proposed in Specification No. 97, etc., it is possible to produce a relatively high-purity quartz glass base material in which 2 is added relatively uniformly in the radial direction. A desired pipe can be obtained by this method. The outer diameter of the clad pipe is preferably 501!11 or less, and the wall thickness is preferably 20% or less. This is because if these values are exceeded, it becomes difficult to raise the core surface to a sufficiently high temperature.

コアの810.  ガラスロッドは、原料ガス中にGe
O等のドーパントを導入しない条件で8102スート体
を作製し、これをCI!2等の塩素系ガスで充分に脱水
処理した後、さらに加熱して透明化することにより所望
のガラスロッドを炸裂できる。
Core 810. The glass rod contains Ge in the raw material gas.
An 8102 soot body was prepared without introducing dopants such as O, and this was used as CI! After sufficiently dehydrating with a chlorine-based gas such as No. 2, the desired glass rod can be exploded by further heating to make it transparent.

以上のようなりラッド用F−8102パイプの中空部に
コア用5zO2ロッドを挿入した状態で、水素を含む火
炎で該パイプの外側から加熱しコラップスする。
As described above, with the 5zO2 rod for the core inserted into the hollow part of the F-8102 pipe for rad, the pipe is heated from the outside with a flame containing hydrogen and collapsed.

本発明に用いられる水素を含む火炎としては、例えばH
2102炎、天然ガス102炎、メタン102やプロパ
ン102等の炭化水素10□炎等が手軽で強い火力が得
られる点で好ましい。
Examples of the flame containing hydrogen used in the present invention include H
2102 flame, natural gas 102 flame, hydrocarbon 10□ flame such as methane 102 or propane 102 flame, etc. are preferable because they are easy to use and can provide strong heat.

コラップス後のコア径Aとクランド径Bについては、ま
すA≧2IrlIが好ましく、これはこの径よりも細く
なると、コラップス過程にてコアが蛇行し易くなり、コ
ア周辺に気泡を巻き込んだり、コアの偏心が大きなもの
とがったりして良好なコラップス体が得られないからで
ある。
Regarding the core diameter A and the crund diameter B after collapse, it is preferable that A≧2IrlI.If the diameter is smaller than this, the core will tend to meander during the collapse process, causing air bubbles to be drawn around the core, or the core This is because if the eccentricity is large, it becomes sharp and a good collapsed body cannot be obtained.

またa / A≧6及び3A(B−A )≧70という
条件は、いずれも得られるファイバの伝送損失に大きな
影響を与える残留水分量を所定の値に制限するという理
由による。
Further, the conditions of a/A≧6 and 3A(B-A)≧70 are based on the reason that the residual water content, which greatly affects the transmission loss of the obtained fiber, is limited to a predetermined value.

コアとクランドの比屈折率差が0.5%で、コア径が5
μm1フアイバ外径が125μmの第1図ta+の構造
のファイバk 、H2/ o2炎によるコラップスと、
@3図に示すスート堆積法を組合せて合成した。このと
き、コラップス後のBを241111と一定値にしてコ
ア用ロッド外径Aの値を主に変えて、クラツド径/コア
径すなわちBZAを変化させた場合の、光ファイバの1
.38μmにおける伝送ロスの変化を調べた。1.38
11mでの伝送ロスは残留OH景を推定できる。この結
果は第4図のグラフに示すとb5であって、本発明の範
囲のa / Aが6以上で伝送ロスが急激に低下してい
ることが判る。
The relative refractive index difference between the core and the crand is 0.5%, and the core diameter is 5.
Fiber k having the structure shown in Fig. 1 ta+ with an outer diameter of 125 μm, collapse by H2/O2 flame,
It was synthesized by combining the soot deposition methods shown in Figure @3. At this time, when B after collapse is kept at a constant value of 241111, the value of the core rod outer diameter A is mainly changed, and the cladding diameter/core diameter, that is, BZA, is changed.
.. Changes in transmission loss at 38 μm were investigated. 1.38
The transmission loss at 11 m can be estimated as the residual OH view. This result is shown in the graph of FIG. 4 as b5, and it can be seen that the transmission loss decreases rapidly when a/A is 6 or more, which is within the range of the present invention.

〔実施例〕〔Example〕

実施例及び比較例 VAD法によジ高純度なS工02  ガラスロッドを合
成し、これをヒータがカーボンである抵抗炉を用いて、
所定の外径に延伸した。一方、比屈折率差で8102 
 ガラスに比べ0.7%低い屈折率のF含有8102 
 ガラスロッドをVAD法により合成し、これらの中央
を穿孔し、次に延伸して所定サイズのクラッド用パイプ
を作製した。
Examples and Comparative Examples A high-purity S-02 glass rod was synthesized by the VAD method, and it was heated using a resistance furnace with a carbon heater.
It was stretched to a predetermined outer diameter. On the other hand, the relative refractive index difference is 8102
F-containing 8102 with a refractive index 0.7% lower than glass
Glass rods were synthesized by the VAD method, a hole was punched in the center of the rods, and the rods were then stretched to produce a cladding pipe of a predetermined size.

表1にロッドとパイプの組合<を示す。41〜A3が本
発明品(実施例)であり、A4〜A6は比較品(比較例
)である。
Table 1 shows the combinations of rods and pipes. 41 to A3 are products of the present invention (examples), and A4 to A6 are comparative products (comparative examples).

以上のガラスロッドをクラッド用ガラスパイプの中空部
に挿入し、両者の界面に(3123o 。
Insert the above glass rod into the hollow part of the glass pipe for cladding, and place it at the interface between the two (3123o).

ee/分及びSF6500007分を導入しながら、H
2102炎バーナによジ約1800DK加熱し、パイプ
の一端より該パイプを収縮させることにj、り、上記コ
アロッドとクラッドパイプとを溶着一体化させた(第2
図参照)。得られた構成体を延伸し、この延伸体の外周
部に第3図の構成のVAD法によ’) 、S 102 
 スートを堆積させた。SiO2  スート層の厚さは
、これをフッ素添加及び透明化して線引用プリフォーム
とした後、外径125μm のファイバに線引きしたと
き、コア径が5μm となるような所定厚さとした。
H while introducing ee/min and SF6500007 min.
The core rod and the clad pipe were welded and integrated by heating the pipe to about 1800 DK with a 2102 flame burner and shrinking the pipe from one end.
(see figure). The obtained structure was stretched, and the outer periphery of the stretched body was subjected to a VAD method having the configuration shown in FIG. 3'), S102
Deposited soot. The thickness of the SiO2 soot layer was set to a predetermined thickness such that the core diameter would be 5 μm when a fiber having an outer diameter of 125 μm was drawn after the preform was made into a wire drawing preform by adding fluorine and making it transparent.

該スート体を表1の第1ステツプの条件で脱水し、第2
ステツプの条件でフッ素添加し、第3ステツプの条件で
透明化してファイバ母材とし、線引きし、外径125μ
m1コア5μmのファイバを得友。
The soot body was dehydrated under the conditions of the first step in Table 1, and
Fluorine is added under the conditions of the first step, and the fiber is made transparent under the conditions of the third step, which is then drawn to form a fiber with an outer diameter of 125 μm.
I got a fiber with m1 core 5μm.

得られ九各ファイバの波長1.38μm における損失
(αtJ8)を測定した。これ等の結果を表2に示す。
The loss (αtJ8) of each of the nine obtained fibers at a wavelength of 1.38 μm was measured. These results are shown in Table 2.

表2の結果からコア径Aおよびクラツド径Bが本発明の
限定する範囲、条件を満足する場合に伝送損失特性が優
れたシングルモードファイバとなっていることが明らか
に判る。
From the results in Table 2, it is clearly seen that when the core diameter A and the cladding diameter B satisfy the range and conditions defined by the present invention, a single mode fiber with excellent transmission loss characteristics is obtained.

表  1 〔発明の効果〕 以上の説明及び実施例、比較例の結果から明らかなよう
に、本発明は、従来のロッドインチューブ・コラップス
を利用した方法では伝送損失の小さな7アイパが得られ
なかった、SiO2コア/ v−s1o2  クラッド
で第1図(al、(blに示す屈折率分布のシングルモ
ードファイバで伝送損失が小さいものの製造を可能とし
、特にこの種の分散シフト型シングルモードファイバで
伝送損失の小さなものを実現できる点で、非常に有利で
ある。
Table 1 [Effects of the Invention] As is clear from the above explanation and the results of Examples and Comparative Examples, the present invention has the advantage that a 7-eyeper with small transmission loss cannot be obtained by the conventional method using rod-in-tube collapse. In addition, it is possible to manufacture a single-mode fiber with a refractive index distribution shown in Figure 1 (al, (bl) with a SiO2 core/v-s1o2 cladding with low transmission loss, and in particular, it is possible to manufacture a single-mode fiber with a small transmission loss. This is extremely advantageous in that it can achieve small losses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al及び(blは本発明に係わるシングルモー
ドファイバの屈折率分布構造及びガラス組成を説明する
図である。 第2図及び第3図は本発明の実施態様の説明図であって
、第2図はコランプス工程を、第3図はスート堆積工程
を示す。 第4図はクラッド径/コア径比:B/Aと波長1.58
/JHにおける伝送ロス(dB/Km)の関係を示す図
表である。
Figure 1 (al and (bl) are diagrams for explaining the refractive index distribution structure and glass composition of a single mode fiber according to the present invention. Figures 2 and 3 are diagrams for explaining embodiments of the present invention. , Figure 2 shows the collumpus process, and Figure 3 shows the soot deposition process. Figure 4 shows the cladding diameter/core diameter ratio: B/A and the wavelength 1.58.
It is a chart showing the relationship of transmission loss (dB/Km) in /JH.

Claims (1)

【特許請求の範囲】 SiO_2ガラスからなるコア用ロッドをその比屈折率
差がSiO_2ガラスよりも0.5%以上小さいクラッ
ド用パイプの中空部内に挿入して加熱することにより両
者を溶着一体化する工程を有する光ファイバ用母材の製
造方法において、上記クラッド用パイプとして外径50
mm以下のフッ素含有SiO_2ガラスパイプを用い、
上記加熱には水素を含む火炎を加熱源として用い、かつ
溶着一体化した後のコア径Aおよびクラッド径Bが {A≧2mm B/A≧6 1/2(B−A)≧7mm} の上記条件を満足することを特徴とする光ファイバ用母
材の製造方法。
[Claims] A core rod made of SiO_2 glass is inserted into a hollow part of a cladding pipe whose relative refractive index difference is 0.5% or more smaller than that of SiO_2 glass, and the two are welded and integrated by heating. In the method for manufacturing an optical fiber base material, the cladding pipe has an outer diameter of 50 mm.
Using a fluorine-containing SiO_2 glass pipe of mm or less,
For the above heating, a flame containing hydrogen is used as a heating source, and the core diameter A and cladding diameter B after welding and integration are {A≧2mm B/A≧6 1/2 (B-A)≧7mm}. A method for producing an optical fiber base material, characterized in that it satisfies the above conditions.
JP62248088A 1987-10-02 1987-10-02 Preform for optical fiber and method of manufacturing the same Expired - Fee Related JP2645709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62248088A JP2645709B2 (en) 1987-10-02 1987-10-02 Preform for optical fiber and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62248088A JP2645709B2 (en) 1987-10-02 1987-10-02 Preform for optical fiber and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0193433A true JPH0193433A (en) 1989-04-12
JP2645709B2 JP2645709B2 (en) 1997-08-25

Family

ID=17173028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62248088A Expired - Fee Related JP2645709B2 (en) 1987-10-02 1987-10-02 Preform for optical fiber and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2645709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026150A1 (en) * 1998-10-29 2000-05-11 Sumitomo Electric Industries, Ltd. Methods for producing preform and optical fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202401A (en) * 1983-05-02 1984-11-16 Sumitomo Electric Ind Ltd Optical fiber and its manufacture
JPS60239334A (en) * 1984-05-11 1985-11-28 Sumitomo Electric Ind Ltd Manufacture of base material for optical fiber
JPS61219733A (en) * 1985-03-26 1986-09-30 Sumitomo Electric Ind Ltd Production of base material for optical fiber
JPS62167235A (en) * 1986-01-21 1987-07-23 Sumitomo Electric Ind Ltd Production of base material for optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202401A (en) * 1983-05-02 1984-11-16 Sumitomo Electric Ind Ltd Optical fiber and its manufacture
JPS60239334A (en) * 1984-05-11 1985-11-28 Sumitomo Electric Ind Ltd Manufacture of base material for optical fiber
JPS61219733A (en) * 1985-03-26 1986-09-30 Sumitomo Electric Ind Ltd Production of base material for optical fiber
JPS62167235A (en) * 1986-01-21 1987-07-23 Sumitomo Electric Ind Ltd Production of base material for optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026150A1 (en) * 1998-10-29 2000-05-11 Sumitomo Electric Industries, Ltd. Methods for producing preform and optical fiber

Also Published As

Publication number Publication date
JP2645709B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US9250386B2 (en) Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
JP5364090B2 (en) Optical fiber containing alkali metal oxide
US20070297735A1 (en) Optical fiber containing alkali metal oxide
AU2012203014A1 (en) Single mode optical fiber
JP2010526749A5 (en)
JPH044986B2 (en)
US4812153A (en) Method of making a glass body having a graded refractive index profile
WO1999040037A1 (en) Method of manufacturing optical fiber base material
JPH04270132A (en) Production of glass matrix for optical fiber
JPH0193433A (en) Production of preform for optical fiber
US4318726A (en) Process for producing optical fiber preform
KR20010078071A (en) Method for manufacturing glass base material, glass base material, and optical fiber
JPH0236535B2 (en)
CN113716861A (en) Method for preparing bending insensitive optical fiber by external gas phase deposition method
JPS6246931A (en) Production of base material for optical fiber
AU729455B2 (en) Method of making polarization retaining fiber
JP2645710B2 (en) Preform for optical fiber and method of manufacturing the same
US20030209516A1 (en) Optical fiber preform manufacture using improved VAD
JPH01160840A (en) Preform for dispersion-shift optical fiber and production thereof
JPH05286735A (en) Production of dispersion-shift optical fiber
JPS63222031A (en) Production of preform for optical fiber
JPH0717395B2 (en) Manufacturing method of base material for dispersion shift fiber
JP2001240424A (en) Manufacturing method of base material of optical fiber
US20020061402A1 (en) Polarization retaining fiber
JPH0769667A (en) Optical amplification type fiber and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees