JP4134927B2 - Excimer lamp - Google Patents

Excimer lamp Download PDF

Info

Publication number
JP4134927B2
JP4134927B2 JP2004088655A JP2004088655A JP4134927B2 JP 4134927 B2 JP4134927 B2 JP 4134927B2 JP 2004088655 A JP2004088655 A JP 2004088655A JP 2004088655 A JP2004088655 A JP 2004088655A JP 4134927 B2 JP4134927 B2 JP 4134927B2
Authority
JP
Japan
Prior art keywords
discharge vessel
glass
discharge
excimer lamp
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004088655A
Other languages
Japanese (ja)
Other versions
JP2005276640A (en
Inventor
賢一 廣瀬
一晃 矢野
幸裕 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35176071&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4134927(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2004088655A priority Critical patent/JP4134927B2/en
Priority to TW093134485A priority patent/TW200532741A/en
Priority to KR1020040110322A priority patent/KR100811391B1/en
Publication of JP2005276640A publication Critical patent/JP2005276640A/en
Application granted granted Critical
Publication of JP4134927B2 publication Critical patent/JP4134927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/302Vessels; Containers characterised by the material of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/245Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
    • H01J9/247Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/265Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps
    • H01J9/266Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps specially adapted for gas-discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/385Exhausting vessels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Glass Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

本発明はエキシマランプに関する。   The present invention relates to an excimer lamp.

近年、金属、ガラス、その他の材料よりなる被処理体に波長200nm以下の真空紫外線を照射することにより、当該真空紫外線およびこれにより生成されるオゾンの作用によって被処理体を処理する技術、例えば被処理体の表面に付着した有機汚染物質を除去する洗浄処理技術や、被処理体の表面に酸化膜を形成する酸化膜形成処理技術が開発され、実用化されている。   2. Description of the Related Art In recent years, for example, a technique for treating a target object by irradiating the target object made of metal, glass, or other material with vacuum ultraviolet rays having a wavelength of 200 nm or less, by the action of the vacuum ultraviolet light and ozone generated thereby. A cleaning processing technology for removing organic contaminants adhering to the surface of the processing object and an oxide film forming processing technology for forming an oxide film on the surface of the processing object have been developed and put into practical use.

このような紫外線処理を行うためのランプとしては、石英ガラスよりなる放電容器の中に、適宜のエキシマ発光用ガスを充填したエキシマランプが用いられている。   As a lamp for performing such ultraviolet treatment, an excimer lamp in which an appropriate excimer emission gas is filled in a discharge vessel made of quartz glass is used.

このエキシマランプに用いられているエキシマ発光用ガスとして例えばキセノンガスを用いることにより、主にキセノンエキシマ光である波長172nmにピークを有する真空紫外線が放出され、また、エキシマ発光用ガスとして例えばアルゴンと塩素ガスとの混合ガスを用いることにより、主にアルゴン−塩素エキシマ光である波長175nmにピークを有する真空紫外線が放出されることが知られている。
このようなエキシマ放電ランプは、特許文献1、特許文献2に記載されている。
By using, for example, xenon gas as the excimer light emission gas used in this excimer lamp, vacuum ultraviolet light having a peak at a wavelength of 172 nm, which is mainly xenon excimer light, is emitted, and as excimer light emission gas, for example, argon. It is known that vacuum ultraviolet rays having a peak at a wavelength of 175 nm, which is mainly argon-chlorine excimer light, are emitted by using a mixed gas with chlorine gas.
Such excimer discharge lamps are described in Patent Document 1 and Patent Document 2.

このようなエキシマランプは、放電空間内で発生する真空紫外線や紫外線が放電容器を形成している石英ガラスを透過する際に石英ガラスに歪みが発生し、早期にガラスが破損するという問題があった。   Such an excimer lamp has a problem that the quartz glass is distorted when vacuum ultraviolet rays or ultraviolet rays generated in the discharge space pass through the quartz glass forming the discharge vessel, and the glass is damaged early. It was.

近年、高圧放電灯や紫外線ランプの放電容器である石英ガラスの紫外線ダメージ、すなわち、紫外線歪みによる機械的強度の低下防止や透過率低下の防止のため、仮想温度を最適な範囲にすることによって、それらの問題を改善することが提案されている。
具体的には、特許文献3、特許文献4には、石英ガラスの仮想温度を500〜1300℃程度にすると、紫外線ダメージを少なくすることが記載されており、特に特許文献3にはエキシマランプ用ガラスにも効果があることが記載されている。
In recent years, in order to prevent damage to quartz glass, which is a discharge vessel for high-pressure discharge lamps and ultraviolet lamps, that is, to prevent mechanical strength from being lowered due to ultraviolet distortion and to prevent transmittance from being lowered, by setting the virtual temperature to an optimum range, It has been proposed to improve those problems.
Specifically, Patent Document 3 and Patent Document 4 describe that ultraviolet damage is reduced when the fictive temperature of quartz glass is set to about 500 to 1300 ° C. In particular, Patent Document 3 describes an excimer lamp. It is described that glass is also effective.

特許第2951139号Patent No. 2951139 特許第2775695号Japanese Patent No. 2775695 特開平9−241030号Japanese Patent Laid-Open No. 9-244103 特開平8−026764号JP-A-8-026764

しかしながら、このような石英ガラス材を用いて放電容器としたエキシマランプを製作しても、目標の寿命に達する前に破損することがあった。   However, even when an excimer lamp as a discharge vessel is manufactured using such a quartz glass material, it may be damaged before reaching the target life.

例えば、1mを超える長尺のエキシマランプの場合は、長いガラス管材を使って放電容器に加工するが、ガラス管材は必ずしも真っ直ぐではないのでバーナーなどを使った加熱加工による芯出しが必要になる。または、短いガラス管材を複数本繋いで長いガラス管材として放電容器を製作する場合、部分的に加熱変形や短いガラス管材を加熱して接合することで、予め適切な仮想温度のガラス管材を用いたとしても加工部の仮想温度は高くなり、その加工部から破損することがあった。   For example, in the case of a long excimer lamp exceeding 1 m, a long glass tube material is used to process the discharge vessel. However, since the glass tube material is not necessarily straight, centering by heat processing using a burner or the like is required. Or, when manufacturing a discharge vessel as a long glass tube by connecting a plurality of short glass tubes, a glass tube with an appropriate virtual temperature was used in advance by partially heating and bonding the short glass tube. Even so, the fictive temperature of the processed part becomes high and the processed part may be damaged.

また、エキシマランプの放電容器を形成するために予め適切な仮想温度のガラス管材を用いた場合でも、更に長時間点灯した場合や高出力ランプであった場合、放電容器の端部から破損することがあった。これは、ガラス管材の両端部をバーナーなどを使った加熱加工で封止して放電容器を製作するが、加熱加工した部分は、たとえ予め適切な仮想温度のガラス管材を使用したとしても熱影響を受けて仮想温度は高くなり、その部分から破損するものである。   In addition, even when a glass tube with an appropriate virtual temperature is used in advance to form a discharge vessel for an excimer lamp, it may be damaged from the end of the discharge vessel if it is lit for a long time or is a high-power lamp. was there. This is because the discharge vessel is manufactured by sealing both ends of the glass tube material by heat processing using a burner, etc., but the heat-processed portion is affected by heat even if glass tube material at an appropriate virtual temperature is used in advance. In response, the fictive temperature rises and breaks from that part.

さらに、エキシマランプにおいては、放電容器の内面に黒化物が付着し、放射照度維持率が低下してしまうという問題があった。また、この黒化物が原因で高輝度なアーク状の放電が発生し、光出力が大幅に低下したり、アーク状の放電が動き回ることにより光量の変動が大きくなる、という問題があった。   Further, the excimer lamp has a problem in that blackened matter adheres to the inner surface of the discharge vessel, and the irradiance maintenance rate decreases. In addition, there is a problem that a high-intensity arc-like discharge is generated due to the blackened matter, and the light output is greatly reduced, or the fluctuation of the light amount increases due to the arc-like discharge moving around.

このようなことから、確実に放電容器の破損を防止することができず、また、放射照度維持率が短時間で低下し、更には、アーク状の不安定な放電により、光出力の低下や光量が変動するという問題があった。   For this reason, it is impossible to reliably prevent the discharge vessel from being damaged, and the irradiance maintenance rate is reduced in a short time. There was a problem that the amount of light fluctuated.

本発明は、以上のような事情に基づいてなされたものであって、その目的は、エキシマランプの放電容器が紫外線によって破損することがなく、しかも、長時間点灯しても放射照度維持率が減衰せず、光出力も低下せず、光量が安定したエキシマランプを提供することにある。   The present invention has been made based on the above circumstances, and its purpose is that the discharge vessel of the excimer lamp is not damaged by ultraviolet rays, and the irradiance maintenance rate is maintained even if it is lit for a long time. An object of the present invention is to provide an excimer lamp that is not attenuated, does not decrease light output, and has a stable light quantity.

本発明の請求項1に記載のエキシマランプは、エキシマランプの放電容器の発光部のガラスの仮想温度が900〜1200℃であって、前記放電容器のガラスに含まれる炭素(C)の量が、C/Siの比で0.1atm%以下であることを特徴とする。   In the excimer lamp according to claim 1 of the present invention, the fictive temperature of the glass of the light emitting part of the discharge vessel of the excimer lamp is 900 to 1200 ° C., and the amount of carbon (C) contained in the glass of the discharge vessel is The C / Si ratio is 0.1 atm% or less.

請求項2に記載のエキシマランプは、請求項1に記載のエキシマランプであって、特に、前記放電容器の両端の加熱加工によって形成された封止壁部の仮想温度が900〜1200℃であることを特徴とする。   The excimer lamp according to claim 2 is the excimer lamp according to claim 1, and in particular, the fictive temperature of the sealing wall portion formed by heat processing at both ends of the discharge vessel is 900 to 1200 ° C. It is characterized by that.

請求項3に記載のエキシマランプは、請求項1又は請求項2に記載のエキシマランプであって、特に、前記放電容器に排気管残部が形成されており、当該排気管残部の仮想温度が900〜1200℃であることを特徴とする。   An excimer lamp according to a third aspect is the excimer lamp according to the first or second aspect, and in particular, an exhaust pipe remainder is formed in the discharge vessel, and a virtual temperature of the exhaust pipe remainder is 900. It is -1200 degreeC.

本発明のエキシマランプによれば、長時間点灯してもエキシマランプを構成している放電容器の発光部及び封止壁部が紫外線による歪みが入りにくく、放電容器の破損を防止できるとともに、放電容器の内面に黒化物が付着せず、放射照度維持率の低下を防止することができ、光出力が大幅に低下したり、放電が動き回ることなく放電が安定したものとなる。   According to the excimer lamp of the present invention, the light emitting part and the sealing wall part of the discharge vessel constituting the excimer lamp are not easily distorted by ultraviolet rays even when the excimer lamp is lit, and the discharge vessel can be prevented from being damaged and discharged. Blackened material does not adhere to the inner surface of the container, and a decrease in the irradiance maintenance rate can be prevented, and the light output is greatly reduced and the discharge is stabilized without moving around.

さらには、放電容器を製造する際に、排気管残部はガラスが高温状態になった時に、封止切られて形成されるものであり、そのままの状態では仮想温度が1200℃以上となっているが、排気管残部を封止切られた後に、加熱処理し、仮想温度を900〜1200℃にすることにより、排気管残部に紫外線が照射されても歪が発生せず、排気管残部またはその近傍を起点とする放電容器の破損を防止することができる。
また、放電容器を構成する外側管および内側管の各々の両端が加熱加工によってそれぞれが溶着されて封止壁部が形成されているが、この封止壁部の仮想温度を900〜1200℃にすることにより、封止壁部に紫外線が照射されても歪が発生せず、封止壁部を起点とする放電容器の破損を防止することができる。
Furthermore, when manufacturing the discharge vessel, the exhaust pipe remainder is formed by being cut off when the glass is in a high temperature state, and the fictive temperature is 1200 ° C. or higher in that state. However, after the exhaust pipe remainder is cut off, heat treatment is performed and the fictive temperature is set to 900 to 1200 ° C., so that distortion does not occur even when the exhaust pipe remainder is irradiated with ultraviolet rays. Breakage of the discharge vessel starting from the vicinity can be prevented.
Further, both ends of each of the outer tube and the inner tube constituting the discharge vessel are welded to each other by heat processing to form a sealing wall portion. The virtual temperature of the sealing wall portion is set to 900 to 1200 ° C. By doing so, even if the sealing wall portion is irradiated with ultraviolet rays, distortion does not occur, and the discharge vessel starting from the sealing wall portion can be prevented from being damaged.

以下、本発明の実施形態を実施例に基づいて説明する。
図1は、本発明の一実施形態を示すエキシマランプの図である。同図において、エキシマランプ1の放電容器13は、石英ガラスよりなる円筒状の外側管11と、この外側管11内にその筒軸に沿って配置された、外側管11の内径より小さい外径を有する石英ガラスよりなる内側管12と、外側管11および内側管12の各々の両端が加熱加工によってそれぞれが溶着されて封止壁部14が形成されており、外側管11と内側管12との間に円筒状の放電空間Sを形成するものである。この放電容器13の放電空間Sには発光ガスとしてキセノンガスが封入されている。
Hereinafter, embodiments of the present invention will be described based on examples.
FIG. 1 is a diagram of an excimer lamp showing an embodiment of the present invention. In the figure, a discharge vessel 13 of an excimer lamp 1 has a cylindrical outer tube 11 made of quartz glass, and an outer diameter smaller than the inner diameter of the outer tube 11 disposed in the outer tube 11 along its cylinder axis. The inner tube 12 made of quartz glass and the both ends of each of the outer tube 11 and the inner tube 12 are welded to each other by heat processing to form a sealing wall portion 14, and the outer tube 11, the inner tube 12, A cylindrical discharge space S is formed between the two. The discharge space S of the discharge vessel 13 is filled with xenon gas as a luminescent gas.

放電容器13における外側管11には、その外周面15に密接して、例えば金網などの導電性材料よりなる網状の一方の電極16設けられ、内側管12の外周面17には、その外周面17を覆うようアルミニウムよりなる膜状の他方の電極18が設けられている。そして、一方の電極16および他方の電極18は、それぞれ電流供給用のコード19,19によって適宜の電源装置(図示省略)に接続されている。   The outer tube 11 in the discharge vessel 13 is provided with one net-like electrode 16 made of a conductive material such as a wire mesh in close contact with the outer peripheral surface 15, and the outer peripheral surface 17 of the inner tube 12 is provided with the outer peripheral surface thereof. The other electrode 18 made of aluminum is provided so as to cover 17. The one electrode 16 and the other electrode 18 are connected to appropriate power supply devices (not shown) by current supply cords 19 and 19, respectively.

また、この放電容器13には、放電空間S内に発光ガスを封入するための排気管が封止切られた排気管残部aが形成されている。   Further, the discharge vessel 13 is formed with an exhaust pipe remaining portion a in which an exhaust pipe for sealing the luminescent gas in the discharge space S is cut off.

上記放電容器13の発光部を構成しているガラスは、仮想温度が900〜1200℃である。ここでいう、「発光部」とは、図1中、符号Lで示す外側管11の外周面に密接して形成された電極16が存在する部分の放電容器13の放電領域のことである。発光部は、放電空間で発生する放電に最も近く紫外線による歪みが発生しやすいため、この発光部の仮想温度が放電容器の破損に極めて密接に関係するものである。   The glass constituting the light emitting part of the discharge vessel 13 has a fictive temperature of 900 to 1200 ° C. Here, the “light emitting portion” refers to a discharge region of the discharge vessel 13 in a portion where the electrode 16 formed in close contact with the outer peripheral surface of the outer tube 11 indicated by a symbol L in FIG. Since the light emitting part is closest to the discharge generated in the discharge space and is easily distorted by ultraviolet rays, the fictive temperature of the light emitting part is very closely related to the breakage of the discharge vessel.

また、ここでいう、「仮想温度」とは、ガラスの構造を示す尺度であって、構造決定温度ということもできる。すなわち、ガラスはその熱処理条件によって構造が全く異なるものとなる。例えば、ある高温Tで熱平衡状態にあるガラスを室温まで急速に冷却すると、ガラスの構造は温度Tにおける状態が保持されたまま凍結されることになり、この場合にこの高温Tをそのガラスの仮想温度という。また同じように高温Tで熱平衡状態にあるガラスを急速ではなく、徐々に室温態まで冷却させた場合は、仮想温度は室温に近い温度となる。
このようにガラスは、熱平衡状態とそこからの冷却方法によって様々な仮想温度となるように制御することができ、ガラスの構造を様々に制御することができる。
In addition, the “virtual temperature” referred to here is a scale indicating the structure of glass, and can also be referred to as a structure determining temperature. That is, the glass has a completely different structure depending on the heat treatment conditions. For example, when a glass in a thermal equilibrium state at a certain high temperature T is rapidly cooled to room temperature, the structure of the glass is frozen while the state at the temperature T is maintained. It is called temperature. Similarly, when glass in a thermal equilibrium state at a high temperature T is gradually cooled to room temperature rather than rapidly, the fictive temperature becomes a temperature close to room temperature.
Thus, the glass can be controlled to have various fictive temperatures according to the thermal equilibrium state and the cooling method therefrom, and the glass structure can be controlled variously.

仮想温度の算出は、赤外吸収スペクトル法やラマンスペクトルの測定によって求めることができる。   The calculation of the virtual temperature can be obtained by measuring an infrared absorption spectrum method or a Raman spectrum.

具体的には、発光管部分の仮想温度は赤外吸収スペクトル法を用いた。赤外吸収スペクトル法は、石英ガラスのSi‐O結合の伸縮振動を示すピーク(2260 cm-1付近)のシフト量から石英ガラスの仮想温度を算出する方法であり、A. Agarwal[参考文献1]らは簡便に仮想温度を算出する下記の数1を見出している。 Specifically, an infrared absorption spectrum method was used for the fictive temperature of the arc tube portion. The infrared absorption spectrum method is a method of calculating the fictive temperature of quartz glass from the shift amount of the peak (near 2260 cm −1 ) indicating the stretching vibration of Si—O bond of quartz glass. A. Agarwal [Reference 1 Have found the following formula 1 for calculating the fictive temperature easily.

Figure 0004134927
Figure 0004134927

一方、排気管残部、封止壁部は表面形状が複雑であるため反射や散乱の影響が大きく赤外吸収スペクトル法では測定できない。顕微ラマン分光器は後方散乱法を用いるため、表面形状に左右されず測定が出来る。ラマンスペクトルからガラスの仮想温度を算出する方法はGeissberger[参考文献2]らにより提案されている方法を用いた。石英ガラス中のSi-O-Si結合の変角振動に起因するω1(440 cm-1付近に現れるピーク)ラインのシフト量を利用する方法であり、石英ガラスのラマンシグナルに現れるω1のピーク位置と仮想温度:Tfの間には下記の数2の関係がある。
このラマンスペクトルの測定により排気管残部・封止壁部の仮想温度を算出した。
On the other hand, since the exhaust pipe remaining part and the sealing wall part have complicated surface shapes, they are greatly affected by reflection and scattering and cannot be measured by the infrared absorption spectrum method. Since the microscopic Raman spectrometer uses a backscattering method, measurement can be performed regardless of the surface shape. The method proposed by Geissberger [Reference 2] et al. Was used to calculate the fictive temperature of the glass from the Raman spectrum. A method of utilizing the shift amount of the line (peak appears in the vicinity of 440 cm -1) of omega 1 due to the deformation vibration of Si-O-Si bonds in the quartz glass appear on the Raman signal of the quartz glass omega 1 of The relationship between the peak position and the fictive temperature: T f is expressed by the following equation (2).
The virtual temperature of the exhaust pipe remaining part and the sealing wall part was calculated from the measurement of the Raman spectrum.

Figure 0004134927
Figure 0004134927

参考文献1 A. Agarwal, K. M. Davis, M. Tomozawa, J. Non-Cryst. Solids 185 (1995). 参考文献2 E. Geissberger and F. L. Galeener, Phys. Rev. B, 28 6 (1983) 3266. Reference 1 A. Agarwal, K. M. Davis, M. Tomozawa, J. Non-Cryst. Solids 185 (1995). Reference 2 E. Geissberger and F. L. Galeener, Phys. Rev. B, 28 6 (1983) 3266.

放電容器の発光部のガラスの仮想温度が900〜1200℃になるための条件の一例を示す。
予め外側管と内側管及び封止壁部よりなる放電容器本体を製造しておく。この状態では、放電容器に形成された封止管が封止切られていない状態であって、放電容器の放電空間には発光ガスが封入されていない状態である。
この放電容器本体を電気炉内に配置し、1120℃で1時間加熱した後に、10℃/分のペースで900℃まで急速冷却することで仮想温度「1100℃」のガラスからなる放電容器本体を製造することができる。
他の方法としては、上述した放電容器本体を電気炉内に配置し、950℃で120時間加熱した後に、0.1℃/分のペースで700℃まで除々に冷却することで仮想温度「900℃」のガラスからなる放電容器本体を製造することができる。
An example of the conditions for the fictive temperature of the glass of the light emitting part of the discharge vessel to be 900 to 1200 ° C. is shown.
A discharge vessel body consisting of an outer tube, an inner tube and a sealing wall is manufactured in advance. In this state, the sealing tube formed in the discharge vessel is not sealed, and no luminescent gas is sealed in the discharge space of the discharge vessel.
This discharge vessel main body is placed in an electric furnace, heated at 1120 ° C. for 1 hour, and then rapidly cooled to 900 ° C. at a rate of 10 ° C./min. Can be manufactured.
As another method, the above-described discharge vessel main body is placed in an electric furnace, heated at 950 ° C. for 120 hours, and then gradually cooled to 700 ° C. at a rate of 0.1 ° C./min. A discharge vessel body made of glass at “° C.” can be produced.

つまり、このような熱処理をすることにより、放電容器の発光部の仮想温度を900〜1200℃にすることができる。
また、このような熱処理をすることにより、必然的に、放電容器の発光部以外の封止壁部も同時に、仮想温度を900〜1200℃にすることができる。
That is, the fictive temperature of the light emitting part of the discharge vessel can be set to 900 to 1200 ° C. by performing such heat treatment.
In addition, by performing such heat treatment, the fictive temperature of the sealing wall portion other than the light emitting portion of the discharge vessel can be inevitably set to 900 to 1200 ° C.

これらは、一例であり、他のさまざまな条件により放電容器の発光部及び封止壁部のガラスの仮想温度が900〜1200℃になるように制御することができる。   These are examples, and can be controlled so that the fictive temperature of the light emitting part of the discharge vessel and the glass of the sealing wall is 900 to 1200 ° C. under various other conditions.

このように、放電容器の発光部及び封止壁部のガラスの仮想温度を900〜1200℃にすることにより、長時間点灯しても放電容器に紫外線による歪みが入り難く放電容器の破損を防止することができる。   In this way, by setting the virtual temperature of the light emitting part and the glass of the sealing wall of the discharge vessel to 900 to 1200 ° C., the discharge vessel is less likely to be distorted by ultraviolet rays even if it is lit for a long time, preventing damage to the discharge vessel. can do.

次に放電容器13のガラスに含まれる炭素(C)について説明する。
以下、放電容器のガラスに含まれる炭素(C)とは、発光部と封止壁部、及び後述する排気管残部とからなる放電容器本体全体のガラスに含まれる炭素(C)のことを意味するものである。
Next, carbon (C) contained in the glass of the discharge vessel 13 will be described.
Hereinafter, the carbon (C) contained in the glass of the discharge vessel means carbon (C) contained in the glass of the entire discharge vessel body composed of the light emitting part, the sealing wall part, and the exhaust pipe remaining part described later. To do.

放電容器のガラス中に炭素が取り込まれる原因は、材料となるガラス製造工程中の熱処理や炭素冶具を使った(管や板への)成型だけでなく、ランプ製造工程中の熱処理や炭素冶具を使った加工などが考えられる。
さらには、放電容器を熱処理する時間が長くなるにしたがって、放電容器のガラス内に取り込まれる炭素の量が増えるものである。
The reason why carbon is taken into the glass of the discharge vessel is not only the heat treatment during the glass manufacturing process and the molding using the carbon jig (to tubes and plates), but also the heat treatment and carbon jig during the lamp manufacturing process. The processing used can be considered.
Furthermore, as the time for heat treating the discharge vessel becomes longer, the amount of carbon taken into the glass of the discharge vessel increases.

炭素がCOやCOの状態でガラス内部から放電空間に出てくると、放電空間のプラズマによって分解され、炭素がガラス表面に付着して透過率を低下させ、放射照度維持率が低下するという問題が生じる。
さらには、ガラス表面に付着した炭素が導電性を示し、高輝度なアーク状の放電が発生し、光出力が大幅に低下したり、アーク状の放電が動き回ることにより光量の変動が大きくなるという問題が生じる。
よって、放電容器を構成するガラスに炭素(C)が実質的に含まれないことで、放射照度維持率の低下、光出力の低下、光量変動を防止することができる。
When carbon comes into the discharge space from the inside of the glass in the state of CO or CO 2 , it is decomposed by the plasma in the discharge space, and carbon adheres to the glass surface, reducing the transmittance and reducing the irradiance maintenance rate. Problems arise.
Furthermore, carbon adhering to the glass surface exhibits electrical conductivity, and a high-intensity arc-like discharge occurs, resulting in a significant decrease in light output, and fluctuations in the amount of light increase due to the arc-like discharge moving around. Problems arise.
Therefore, since the glass constituting the discharge vessel is substantially free of carbon (C), it is possible to prevent a decrease in irradiance maintenance rate, a decrease in light output, and a change in light amount.

その際、放電容器を構成しているガラスは、炭素(C)の量が、C/Siの比で0.1atm%以下であると、放電空間内に放出される炭素(C)の量を少なくでき、ガラス面に付着する炭素の量が著しく少なく、確実に、ガラスの透過率の低下を防止でき放射照度維持率の低下を防止することができる。また、高輝度なアーク状の放電も発生せず、光出力の低下もなく、光量の変動も小さくできる。   At that time, if the amount of carbon (C) in the glass constituting the discharge vessel is 0.1 atm% or less in terms of C / Si, the amount of carbon (C) released into the discharge space is reduced. The amount of carbon adhering to the glass surface is remarkably small, and the decrease in the transmittance of the glass can be surely prevented and the decrease in the irradiance maintenance factor can be prevented. In addition, a high-brightness arc-shaped discharge does not occur, the light output does not decrease, and the variation in light quantity can be reduced.

炭素量の具体的な測定方法について示す。炭素量の定量には蛍光X線分析装置を用いた。放電容器のガラスの内部の測定は、ランプ表面に付着している炭素の影響、また大気中に浮遊している炭素の付着によって、ガラス内部の炭素の検出感度が損なわれるのを防ぐために、真空チェンバーの中でガラス試料を破断し、大気に曝さずにその破断面を測定した。
肉厚方向に炭素量の分布があると考えられるため、内外表面から0.1mmの点、および肉厚の中心部分の計3点について測定を行いその平均値を実際の測定値とした。検出下限は0.1atm%であり、検出限界値以下のデータは0として平均値を求めた。
A specific method for measuring the carbon content will be described. A fluorescent X-ray analyzer was used to determine the amount of carbon. The inside of the glass of the discharge vessel is measured by vacuum in order to prevent the detection sensitivity of carbon inside the glass from being affected by the influence of carbon adhering to the lamp surface and of carbon floating in the atmosphere. A glass sample was broken in a chamber and its fracture surface was measured without exposure to the atmosphere.
Since it is considered that there is a distribution of carbon content in the thickness direction, measurements were made at a total of three points, 0.1 mm from the inner and outer surfaces, and the central portion of the thickness, and the average value was used as the actual measurement value. The lower limit of detection was 0.1 atm%, and the data below the detection limit value was 0, and the average value was obtained.

次に、放電容器を構成するガラスの仮想温度と、炭素(C)の量を変えたエキシマランプを複数製作し、点灯時間の経過に伴う放電容器の破損率と、初期点灯時の紫外線放射照度を100%とした場合の点灯後1000時間経過後の紫外線放射照度維持率を調べる実験を行った。エキシマランプは、図1に示すエキマランプであって、放電容器のガラスは石英ガラス、外側管は外径25mm、肉厚1mm、内側管は外径12mm、肉厚1mm、全長(両端の封止壁部間の距離)800mm、定格500Wのものである。そして、放電容器内には、放電ガスとしてXeガスを30kPa封入した。   Next, a number of excimer lamps with different fictive temperatures of glass and carbon (C) that make up the discharge vessel were manufactured. The breakage rate of the discharge vessel with the lapse of lighting time, and the ultraviolet irradiance at the time of initial lighting. An experiment was conducted to examine the ultraviolet irradiance maintenance rate after 1000 hours from lighting when the value is 100%. The excimer lamp is an excimer lamp shown in FIG. 1. The discharge vessel glass is quartz glass, the outer tube has an outer diameter of 25 mm, a wall thickness of 1 mm, the inner tube has an outer diameter of 12 mm, a wall thickness of 1 mm, and a total length (sealing walls at both ends). (Distance between parts) 800 mm, rated 500 W. Then, 30 kPa of Xe gas was sealed as a discharge gas in the discharge vessel.

図2は、実験結果と実験条件を示すものであり、放電容器を構成するガラスが同じ仮想温度と同じ炭素含有量を有するエキシマランプ5本を1つのグループとして、それぞれグループ間で仮想温度、或いは、炭素含有比率を変えた7つのA〜Gグループのエキシマランプの放電容器の破損率(1つのグループに属する5本のランプのうち何本のランプが破損したかを示す比率)と、放射照度維持率(1つのグループに属する5本のランプの平均放射照度維持率)を調べる実験を行った。   FIG. 2 shows experimental results and experimental conditions. The glass constituting the discharge vessel is composed of five excimer lamps having the same virtual temperature and the same carbon content as one group, and the virtual temperature between the groups, or The breakage rate of the discharge vessel of the excimer lamps of the seven A to G groups with different carbon content ratios (ratio indicating how many of the five lamps belonging to one group were damaged) and the irradiance An experiment was conducted to examine the maintenance factor (average irradiance maintenance factor of five lamps belonging to one group).

図2より、グループAのエキマランプは、放電容器の発光部及び封止壁部のガラスの仮想温度が800℃であり、炭素含比率(C/Si)が0.2atm%である。
このグループAでは、全てのランプは点灯後2000時間経っても破損しなかった。しかし、放射照度維持率は59%であった。
As shown in FIG. 2, in the excimer lamps of group A, the fictive temperature of the light emitting part and the sealing wall part of the discharge vessel is 800 ° C., and the carbon content (C / Si) is 0.2 atm%.
In this group A, all the lamps were not damaged even after 2000 hours from lighting. However, the irradiance maintenance rate was 59%.

つまり、仮想温度が800℃と低いため、紫外線歪みが入りにくく放電容器は破損しないものである。しかし、仮想温度を800℃に制御するためには、放電容器を長時間電気炉内に配置して熱処理を加える必要があり、或いは、高温状態になった放電容器を時間をかけて徐々に冷却させる必要があり、この熱処理工程が長時間におよぶために放電容器を構成しているガラスに炭素が多量に混入し、炭素含比率(C/Si)が0.1atm%以上の0.2atm%となり、炭素が放電容器のガラスに多量に含まれる結果、早期に放電容器の内面に黒化物が付着し、放射照度維持率が低下するという問題が生じた。   That is, since the fictive temperature is as low as 800 ° C., ultraviolet distortion is difficult to enter and the discharge vessel is not damaged. However, in order to control the fictive temperature to 800 ° C., it is necessary to place the discharge vessel in an electric furnace for a long time and apply heat treatment, or gradually cool the discharge vessel that has reached a high temperature state over time. Since this heat treatment process takes a long time, a large amount of carbon is mixed in the glass constituting the discharge vessel, and the carbon content (C / Si) is 0.2 atm% of 0.1 atm% or more. Thus, as a result of a large amount of carbon contained in the glass of the discharge vessel, there was a problem that blackened material adhered to the inner surface of the discharge vessel at an early stage and the irradiance maintenance rate was lowered.

また、ランプは破損しないものの、5本中1本のランプは1800時間が経過した時点で高輝度なアーク状の放電が発生し、また、他の1本のランプは、1900時間が経過した時点で高輝度なアーク状の放電が発生した。そして、その高輝度なアーク状の放電が動き回り、同じ位置での光量の時間変化は大幅に変動した。具体的には光出力は安定な場合の約3/4〜1/4の範囲に減衰した。   In addition, although one lamp out of five lamps does not break, a high-intensity arc-shaped discharge occurs when 1800 hours have elapsed, and another lamp has a point when 1900 hours have elapsed. A high-intensity arc-like discharge occurred. The high-intensity arc-shaped discharge moved around, and the temporal change in the amount of light at the same position fluctuated significantly. Specifically, the light output was attenuated to a range of about 3/4 to 1/4 when stable.

グループFのエキマランプは、放電容器の発光部及び封止壁部のガラスの仮想温度が1300℃であり、炭素含比率(C/Si)が0.1atm%以下である。
このグループFでは、点灯後1000時間で40%のエキシマランプの放電容器が破損し、点灯時間の経過とともに破損率が上昇し、ついには2000時間で破損率100%となり、全てのエキマランプの放電容器が破損した。一方、放射照度維持率は50%という低い値を示すのであった。これは、放電容器のガラスの炭素含有量が少なく黒化物による影響はないものの、ソーラリゼーションなどによって放電容器のガラス自身の透過率が低下し、結果的に放射照度維持率が低下するものである。
In the group F excimer lamp, the fictive temperature of the light emitting part and the sealing wall of the discharge vessel is 1300 ° C., and the carbon content (C / Si) is 0.1 atm% or less.
In this group F, 40% of the excimer lamp discharge vessel was damaged in 1000 hours after lighting, and the failure rate increased with the passage of lighting time. Finally, the failure rate reached 100% in 2000 hours. Was damaged. On the other hand, the irradiance maintenance factor showed a low value of 50%. This is because the carbon content of the glass of the discharge vessel is small and there is no influence by blackened material, but the transmittance of the glass of the discharge vessel itself decreases due to solarization etc., resulting in a decrease in the irradiance maintenance rate. is there.

グループGでは、放電容器の発光部及び封止壁部のガラスの仮想温度が1300℃であり、点灯後1000時間で、全てのエキシマランプの放電容器が紫外線の歪みにより破損しており、実用上使用できないランプである。   In group G, the fictive temperature of the light emitting part of the discharge vessel and the glass of the sealing wall is 1300 ° C., and 1000 hours after lighting, all the discharge vessels of the excimer lamp are damaged due to the distortion of ultraviolet rays. The lamp cannot be used.

一方、本発明のグループB〜Eに属するエキシマランプは、点灯後2000時間を経過しても破損率が0%であり、長時間点灯しても放電容器が破損しないエキシマランプである。また、炭素含比率(C/Si)が0.1atm%以下であるために、放電容器の内面に黒化物が付着せず、紫外線放射照度の低下がなく、長時間点灯しても、放射照度維持率が低下しないものである。   On the other hand, the excimer lamps belonging to the groups B to E of the present invention are excimer lamps that have a breakage rate of 0% even after 2000 hours have elapsed after lighting, and that do not break the discharge vessel even when lighted for a long time. In addition, since the carbon content (C / Si) is 0.1 atm% or less, no blackened matter adheres to the inner surface of the discharge vessel, the ultraviolet irradiance does not decrease, and the irradiance is maintained even if the lamp is lit for a long time. The maintenance rate does not decrease.

この結果から、エキシマランプの放電容器の発光部及び封止壁部のガラスの仮想温度が900〜1200℃であって、放電容器のガラスに含まれる炭素(C)の量が、C/Siの比で0.1atm%以下であると、長時間点灯しても放電容器が紫外線歪みによって破損することがなく、しかも、放射照度維持率が低下しにくいエキシマランプとなる。
また、高輝度なアーク状の放電も発生せず、2000時間点灯後も光出力や光量の変動がすくなく安定な放電であった。
From this result, the fictive temperature of the glass of the light emitting part and the sealing wall part of the discharge vessel of the excimer lamp is 900 to 1200 ° C., and the amount of carbon (C) contained in the glass of the discharge vessel is C / Si. When the ratio is 0.1 atm% or less, even if the lamp is lit for a long time, the discharge vessel is not damaged by ultraviolet distortion, and the excimer lamp is less likely to have a reduced irradiance maintenance rate.
Further, no arc discharge with high brightness was generated, and the light output and light quantity did not fluctuate even after 2000 hours of lighting, and the discharge was stable.

次に、放電容器の発光部及び封止壁部のガラスの仮想温度を本発明の条件範囲内である1100℃であって、炭素含有量が異なるエキシマランプを4本を用いて、1000時間点灯後の放射照度維持率の変化を調べる実験を行った。
仮想温度を同じにして、炭素含有量を異ならす方法は、例えば放電容器本体の加熱処理方法に依存するものもある。今回の実験の場合、放電容器本体を1100℃で長時間電気炉内に配置して熱処理を加える方法を採用することで、炉壁や固定用の冶具や炉を設置している環境などから放電容器のガラスに取り込まれる炭素量を変えた。熱処理時間を変えることであえて炭素含比率(C/Si)を異ならせ、炭素による影響が顕著にわかるような実験を行った。
結果を図3に示す。
Next, the fictive temperature of the light emitting part of the discharge vessel and the glass of the sealing wall is 1100 ° C. which is within the condition range of the present invention, and the four excimer lamps having different carbon contents are used for lighting for 1000 hours. An experiment was conducted to investigate changes in the irradiance maintenance rate.
The method of making the fictive temperature the same and making the carbon content different depends on, for example, the heat treatment method of the discharge vessel body. In the case of this experiment, the discharge vessel body was placed in an electric furnace at 1100 ° C for a long time and heat treatment was applied to discharge from the environment where the furnace wall, fixing jig and furnace were installed. The amount of carbon incorporated into the glass of the container was changed. Experiments were performed in which the carbon content (C / Si) was varied by changing the heat treatment time, and the influence of carbon was noticeable.
The results are shown in FIG.

図3に示すように、ランプ1、ランプ2は放電容器のガラスに含まれる炭素(C)の量が、C/Siの比で0.1atm%以下であるため放射照度維持率が70%以上となり、高い紫外線放射維持率を保っており、長時間点灯しても放射照度の低下が起きにくいエキシマランプとなる。
しかしながら、ランプ3、ランプ4では、放電容器のガラスに含まれる炭素(C)の量が、C/Siの比で0.1atm%以上であるため放射照度維持率が70%を下回り、放射維持率が低く、長時間点灯すると紫外線の放射照度の低下が起こり実用上使用できないランプとなる。
なお、いずれのランプも2000時間点灯したが、仮想温度が適切であるため破損するランプはなかった。また、ランプ3は1900時間点灯後、高輝度なアーク状放電が発生し、ランプ4は1600時間点灯後、高輝度なアーク状の放電が発生して放電が安定しなかった。
As shown in FIG. 3, in the lamp 1 and the lamp 2, the amount of carbon (C) contained in the glass of the discharge vessel is 0.1 atm% or less in terms of the C / Si ratio, so the irradiance maintenance rate is 70% or more. Thus, an excimer lamp that maintains a high ultraviolet radiation maintenance rate and is less likely to cause a decrease in irradiance even when lit for a long time.
However, in the lamp 3 and the lamp 4, the amount of carbon (C) contained in the glass of the discharge vessel is 0.1 atm% or more in the C / Si ratio, so the irradiance maintenance ratio is less than 70%, and the radiation is maintained. If the lamp is lit for a long period of time, the irradiance of ultraviolet rays will decrease, resulting in an unusable lamp.
All the lamps were lit for 2000 hours, but no lamp was damaged because the virtual temperature was appropriate. Further, after the lamp 3 was lit for 1900 hours, a high-intensity arc-shaped discharge was generated, and after the lamp 4 was lit for 1600 hours, a high-luminance arc-shaped discharge was generated and the discharge was not stable.

次に、放電容器の排気管残部について説明する。
上述したように、放電容器のガラスの仮想温度制御処理方法は、放電容器本体に封止切られていない状態の排気管が形成された状態で熱処理をするものである。
これは、放電容器本体に発光ガスを封入し、排気管を封止切り排気管残部を形成した状態で放電容器本体を電気炉に入れて加熱すると、内部の発光ガスが膨張し、放電容器本体が破裂する恐れがあり、予め放電容器内にガスを封入し、完全に放電容器が完成した状態で排気管残部を含む放電容器全体を仮想温度が900〜1200℃の範囲になるように制御することができないものである。また、封入ガスの圧力によってはガラスから放電容器内部へ大量の酸素、水素、水、炭素などが放出され、放電に悪影響を及ぼす。
この結果、必然的に、封止管を封止切る作業が仮想温度制御処理工程の後に発生し、この封止管を封止切る作業は高温で排気管を焼き切るために、排気管残部のみ仮想温度が1200℃以上となる。
Next, the exhaust pipe remainder of the discharge vessel will be described.
As described above, the glass fictive temperature control processing method of the discharge vessel performs heat treatment in a state in which an exhaust pipe that is not sealed off is formed on the discharge vessel body.
This is because when the discharge vessel body is sealed in the discharge vessel body, the exhaust tube is sealed and the exhaust tube remainder is formed, and the discharge vessel body is heated in an electric furnace, the internal emission gas expands and the discharge vessel body , The gas is filled in the discharge vessel in advance, and the discharge vessel including the remainder of the exhaust pipe is controlled so that the virtual temperature is in the range of 900 to 1200 ° C. with the discharge vessel completely completed. It is something that cannot be done. Depending on the pressure of the sealed gas, a large amount of oxygen, hydrogen, water, carbon, etc. is released from the glass into the discharge vessel, which adversely affects the discharge.
As a result, the work of sealing off the sealing pipe inevitably occurs after the virtual temperature control processing step, and the work of cutting off the sealing pipe is burned out at a high temperature. The temperature is 1200 ° C. or higher.

このように排気管残部のみ仮想温度が1200℃以上となっている場合、この排気管残部に紫外線が照射されると排気管残部に紫外線による歪みが発生し、排気管残部やその近傍より放電容器の破損が発生する恐れがある。   Thus, when only the exhaust pipe remaining portion has a fictive temperature of 1200 ° C. or higher, when the exhaust pipe remaining portion is irradiated with ultraviolet rays, the exhaust pipe remaining portion is distorted by the ultraviolet rays, and the discharge vessel is discharged from the exhaust pipe remaining portion or the vicinity thereof. There is a risk of damage.

このようなことを防止するために、放電容器本体に形成された排気管残部のみ、別途、バーナーによって加熱処理したり、排気管残部近傍のみを電気炉等で加熱処理し、排気管残部の仮想温度が900〜1200℃になるように加熱処理する。この結果、排気管残部を含む放電容器全体のガラスの仮想温度が900〜1200℃になり、確実に紫外線による放電容器の破損を防止することができる。また、加熱範囲は小さいので放電容器内部へ放出される不純ガス(酸素、水素、水、炭素など)は、量が少なく放電には影響しなかったり、量が少ないので放電容器の非加熱部に設けたゲッター材によって吸着させ、安定な放電を発生させることができる。   In order to prevent this, only the exhaust pipe remaining part formed in the discharge vessel main body is separately heat-treated with a burner, or only the vicinity of the exhaust pipe residual part is heat-treated with an electric furnace or the like, thereby Heat treatment is performed so that the temperature becomes 900 to 1200 ° C. As a result, the fictive temperature of the glass of the entire discharge vessel including the exhaust pipe remainder becomes 900 to 1200 ° C., and the discharge vessel can be reliably prevented from being damaged by ultraviolet rays. In addition, since the heating range is small, the amount of impure gas (oxygen, hydrogen, water, carbon, etc.) released into the discharge vessel is small and does not affect the discharge, or the amount is so small that it can enter the unheated part of the discharge vessel It is adsorbed by the provided getter material and can generate a stable discharge.

図4は、他のエキシマランプの説明図である。
図4では、放電容器20は石英ガラスよりなる管型の両端封止型構造であって、放電容器20の内部に内部電極21が配置されており、放電容器20の外面にコイル状の外部電極22が配置されており、ガラス製の放電容器20の壁を介して内部電極21と外部電極22との間で放電が起こることにより放電空間S内でエキシマ放電が発生するものである。
この放電容器は外径15mm、肉厚1mm、放電容器内には、放電ガスとしてXeガスを40kPa封入した。
FIG. 4 is an explanatory diagram of another excimer lamp.
In FIG. 4, the discharge vessel 20 has a tube-type sealed both ends structure made of quartz glass, an internal electrode 21 is disposed inside the discharge vessel 20, and a coiled external electrode is disposed on the outer surface of the discharge vessel 20. 22 is arranged, and excimer discharge is generated in the discharge space S by the discharge occurring between the internal electrode 21 and the external electrode 22 through the wall of the glass discharge vessel 20.
This discharge vessel had an outer diameter of 15 mm, a wall thickness of 1 mm, and 40 kPa of Xe gas was enclosed as a discharge gas in the discharge vessel.

このようなエキシマランプでは、両端の封止部2aを含む放電容器20全体をガラスの仮想温度が900〜1200℃になるように熱処理をしてもよいが、図4中、符号Lで示す外部電極22が存在する位置の放電容器の発光部のみ仮想温度を900〜1200℃になるように熱処理しても、紫外線による歪みの発生を十分に抑制することができる。なお、排気管残部2bは発光部に取り付いている為に、排気管残部2bとその近傍は放電ガス封入後に仮想温度は900〜1200℃になるように部分的に熱処理を行なったものである。   In such an excimer lamp, the entire discharge vessel 20 including the sealing portions 2a at both ends may be heat-treated so that the fictive temperature of the glass becomes 900 to 1200 ° C. Even if heat treatment is performed so that only the light emitting portion of the discharge vessel at the position where the electrode 22 is present has a fictive temperature of 900 to 1200 ° C., generation of distortion due to ultraviolet rays can be sufficiently suppressed. Since the exhaust pipe remaining part 2b is attached to the light emitting part, the exhaust pipe residual part 2b and the vicinity thereof are partially heat-treated so that the fictive temperature becomes 900 to 1200 ° C. after the discharge gas is sealed.

これは、放電空間で発生する放電に最も近く紫外線による歪みが発生しやすい発光部の歪みを抑えることにより、実用上問題とならない程度までエキシマランプの寿命を延ばすことができる。
なお、放電容器20を構成するガラスに含まれる炭素(C)の量は、C/Siの比で0.1atm%以下である。
This suppresses the distortion of the light emitting portion that is closest to the discharge generated in the discharge space and is likely to be distorted by ultraviolet rays, thereby extending the life of the excimer lamp to a level that does not cause a problem in practice.
In addition, the quantity of carbon (C) contained in the glass which comprises the discharge vessel 20 is 0.1 atm% or less by the ratio of C / Si.

図5は、他のエキシマランプの説明図である。
図5では、放電容器30は石英ガラスよりなる管型の一端封止型構造であって、放電容器30の内部に内部電極31が配置されており、放電容器30の外面に金網状の外部電極32が配置されており、ガラス製の放電容器30の壁を介して内部電極31と外部電極32との間で放電が起こることにより放電空間S内でエキシマ放電が発生するものである。
この放電容器は外径40mm、肉厚1mm、放電容器内には、放電ガスとしてXeガスを25kPa封入した。
FIG. 5 is an explanatory diagram of another excimer lamp.
In FIG. 5, the discharge vessel 30 has a tube-type one-end sealed structure made of quartz glass, an internal electrode 31 is disposed inside the discharge vessel 30, and a wire mesh external electrode is disposed on the outer surface of the discharge vessel 30. 32 is arranged, and excimer discharge is generated in the discharge space S by the discharge occurring between the internal electrode 31 and the external electrode 32 through the wall of the glass discharge vessel 30.
This discharge vessel had an outer diameter of 40 mm, a wall thickness of 1 mm, and Xe gas as a discharge gas was sealed at 25 kPa in the discharge vessel.

このようなエキシマランプでは、封止部3aを含む放電容器30全体をガラスの仮想温度が900〜1200℃になるように熱処理をし、排気管残部3b近傍も仮想温度が900〜1200℃になるように熱処理をしてもよいが、図5中、符号Lで示す外部電極32が存在する位置の放電容器の発光部のみ仮想温度を900〜1200℃になるように熱処理しても、紫外線による歪みの発生を十分に抑制することができる。   In such an excimer lamp, the entire discharge vessel 30 including the sealing portion 3a is heat-treated so that the fictive temperature of the glass is 900 to 1200 ° C., and the fictive temperature is also 900 to 1200 ° C. in the vicinity of the exhaust pipe remaining portion 3b. However, even in the case where only the light emitting part of the discharge vessel at the position where the external electrode 32 indicated by the symbol L is present in FIG. Generation of distortion can be sufficiently suppressed.

これは、放電空間で発生する放電に最も近く紫外線による歪みが発生しやすい発光部の歪みを抑えることにより、実用上問題とならない程度までエキシマランプの寿命を延ばすことができる。
なお、放電容器20を構成するガラスに含まれる炭素(C)の量は、C/Siの比で0.1atm%以下である。
This suppresses the distortion of the light emitting portion that is closest to the discharge generated in the discharge space and is likely to be distorted by ultraviolet rays, thereby extending the life of the excimer lamp to a level that does not cause a problem in practice.
In addition, the quantity of carbon (C) contained in the glass which comprises the discharge vessel 20 is 0.1 atm% or less by the ratio of C / Si.

図6は、他のエキシマランプの説明図である。
図6では、放電容器40は石英ガラスよりなる管型の両端封止型構造であって、略コの字になっており、放電容器40の内部に内部電極41が配置されており、放電容器40の直管部の外面に円周の半分を覆うように反射鏡を兼ねた外部電極42が配置されており、ガラス製の放電容器40の壁を介して内部電極41と外部電極42との間で放電が起こることにより放電空間S内でエキシマ放電が発生するものである。
この放電容器は外径20mm、肉厚1mm、放電容器内には、放電ガスとしてXeガスを20kPa封入した。
FIG. 6 is an explanatory diagram of another excimer lamp.
In FIG. 6, the discharge vessel 40 has a tube-shaped both-end sealed structure made of quartz glass, is substantially U-shaped, and an internal electrode 41 is disposed inside the discharge vessel 40. An external electrode 42 that also serves as a reflecting mirror is disposed on the outer surface of the straight tube portion 40 so as to cover half of the circumference, and the internal electrode 41 and the external electrode 42 are connected to each other through the wall of the glass discharge vessel 40. Excimer discharge is generated in the discharge space S due to discharge occurring between them.
The discharge vessel had an outer diameter of 20 mm, a wall thickness of 1 mm, and 20 kPa of Xe gas as a discharge gas was sealed in the discharge vessel.

このようなエキシマランプでは、封止部4aを含む放電容器40全体をガラスの仮想温度が900〜1200℃になるように熱処理をし、排気管残部4d近傍も仮想温度が900〜1200℃になるように熱処理をしてもよいが、図6中、符号Lで示す外部電極42が存在する位置の放電容器の直管部4bを形成している発光部のみ仮想温度を900〜1200℃になるように熱処理しても、紫外線による歪みの発生を十分に抑制することができる。
なお、このような略コの字状の放電容器は、放電ガス封入前に曲管部4cと直管部4bを全体として電気炉内に配置するものであり、必然的に曲管部4c仮想温度も900〜1200℃になるものである。
In such an excimer lamp, the entire discharge vessel 40 including the sealing portion 4a is heat-treated so that the fictive temperature of the glass is 900 to 1200 ° C., and the fictive temperature is also 900 to 1200 ° C. in the vicinity of the exhaust pipe remaining portion 4d. However, the fictive temperature is 900 to 1200 ° C. only in the light emitting part forming the straight tube part 4b of the discharge vessel at the position where the external electrode 42 indicated by the symbol L in FIG. Thus, even when heat treatment is performed, the occurrence of distortion due to ultraviolet rays can be sufficiently suppressed.
In addition, such a substantially U-shaped discharge vessel arranges the curved tube portion 4c and the straight tube portion 4b as a whole in the electric furnace before the discharge gas is filled, and inevitably the curved tube portion 4c is virtual. The temperature is also 900 to 1200 ° C.

つまり、放電空間で発生する放電に最も近く紫外線による歪みが発生しやすい発光部の歪みを抑えることにより、実用上問題とならない程度までエキシマランプの寿命を延ばすことができる。
なお、放電容器40を構成するガラスに含まれる炭素(C)の量は、C/Siの比で0.1atm%以下である。
In other words, the life of the excimer lamp can be extended to such an extent that it does not cause a practical problem by suppressing the distortion of the light emitting portion that is closest to the discharge generated in the discharge space and is likely to be distorted by ultraviolet rays.
In addition, the quantity of carbon (C) contained in the glass which comprises the discharge vessel 40 is 0.1 atm% or less by ratio of C / Si.

図7は、他のエキシマランプの説明図である。
図7では、放電容器50は石英ガラスよりなる管型の一端封止型構造であって、渦巻き状になっており、放電容器50の内部に内部電極51が配置されており、放電容器50の外面に金網状の外部電極52が配置されており、ガラス製の放電容器50の壁を介して内部電極51と外部電極52との間で放電が起こることにより放電空間S内でエキシマ放電が発生するものである。
この放電容器は外径15mm、肉厚1mm、放電容器内には、放電ガスとしてXeガスを40kPa封入した。
FIG. 7 is an explanatory diagram of another excimer lamp.
In FIG. 7, the discharge vessel 50 has a tube-type one-end sealed structure made of quartz glass, has a spiral shape, and an internal electrode 51 is disposed inside the discharge vessel 50. A wire net-like external electrode 52 is arranged on the outer surface, and excimer discharge is generated in the discharge space S due to discharge between the internal electrode 51 and the external electrode 52 through the wall of the glass discharge vessel 50. To do.
This discharge vessel had an outer diameter of 15 mm, a wall thickness of 1 mm, and 40 kPa of Xe gas was enclosed as a discharge gas in the discharge vessel.

このようなエキシマランプでは、封止部5aを含む放電容器50全体をガラスの仮想温度が900〜1200℃になるように熱処理をしてもよいが、図7中、外部電極52が存在する位置の放電容器の渦巻き部5bを形成している発光部のみ仮想温度を900〜1200℃になるように熱処理しても、紫外線による歪みの発生を十分に抑制することができる。なお、排気管残部5cは発光部に取り付いている為に、排気管残部5cとその近傍は放電ガス封入後に仮想温度は900〜1200℃になるように部分的に熱処理を行なったものである。   In such an excimer lamp, the entire discharge vessel 50 including the sealing portion 5a may be heat-treated so that the fictive temperature of the glass becomes 900 to 1200 ° C., but the position where the external electrode 52 exists in FIG. Even if only the light emitting part forming the spiral part 5b of the discharge vessel is heat-treated so that the fictive temperature is 900 to 1200 ° C., the occurrence of distortion due to ultraviolet rays can be sufficiently suppressed. Since the exhaust pipe remaining portion 5c is attached to the light emitting portion, the exhaust pipe remaining portion 5c and the vicinity thereof are partially heat-treated so that the fictive temperature becomes 900 to 1200 ° C. after the discharge gas is sealed.

なお、放電容器50を構成するガラスに含まれる炭素(C)の量は、C/Siの比で0.1atm%以下である。   In addition, the quantity of carbon (C) contained in the glass which comprises the discharge vessel 50 is 0.1 atm% or less by ratio of C / Si.

図8は、他のエキシマランプの説明図である。
図8では、放電容器60はガラス製である両端封止型構造であって、放電容器60の外部に内部に一対の外部電極61が配置されており、ガラス製の放電容器60の壁を介して外部電極61間で放電が起こることにより放電空間S内でエキシマ放電が発生するものである。
FIG. 8 is an explanatory diagram of another excimer lamp.
In FIG. 8, the discharge vessel 60 has a both-end sealed structure made of glass, and a pair of external electrodes 61 are arranged inside the discharge vessel 60, and the glass discharge vessel 60 is interposed through the wall. Excimer discharge is generated in the discharge space S by the discharge occurring between the external electrodes 61.

このようなエキシマランプでは、放電容器60全体をガラスの仮想温度が900〜1200℃になるように熱処理をしてもよいが、外部電極61が存在する位置の放電容器の発光部のみ仮想温度を900〜1200℃になるように熱処理しても、紫外線による歪みの発生を十分に抑制することができる。   In such an excimer lamp, the entire discharge vessel 60 may be heat-treated so that the fictive temperature of the glass becomes 900 to 1200 ° C. However, only the light emission part of the discharge vessel at the position where the external electrode 61 exists has a fictive temperature. Even if it heat-processes so that it may become 900-1200 degreeC, generation | occurrence | production of the distortion by an ultraviolet-ray can fully be suppressed.

これは、放電空間で発生する放電に最も近く紫外線による歪みが発生しやすい発光部の歪みを抑えることにより、実用上問題とならない程度までエキシマランプの寿命を延ばすことができる。
なお、放電容器60を構成するガラスに含まれる炭素(C)の量は、C/Siの比で0.1atm%以下である。
This suppresses the distortion of the light emitting portion that is closest to the discharge generated in the discharge space and is likely to be distorted by ultraviolet rays, thereby extending the life of the excimer lamp to a level that does not cause a problem in practice.
Note that the amount of carbon (C) contained in the glass constituting the discharge vessel 60 is 0.1 atm% or less in terms of the C / Si ratio.

次に、図4に示すエキシマランプの封止部2aを仮想温度が900〜1200℃になるように電気炉内で加熱する際に、封止部2aから突出する外部リード棒を酸化させない方法の一例を図9に示す。
図9(イ)放電容器20の内部であって、端部より少し中央よりに、金属箔Hと外部リード棒Gが位置しており、予めこの位置eで金属箔Hと外部リード棒Gを封着しておき、さらに、放電容器20の端部fを封止して、空間Aを真空または不活性ガス雰囲気にしておく。
Next, when the sealing portion 2a of the excimer lamp shown in FIG. 4 is heated in an electric furnace so that the virtual temperature becomes 900 to 1200 ° C., the external lead rod protruding from the sealing portion 2a is not oxidized. An example is shown in FIG.
FIG. 9 (a) The metal foil H and the external lead rod G are located in the inside of the discharge vessel 20 and slightly in the center from the end, and the metal foil H and the external lead rod G are previously placed at this position e. In addition, the end f of the discharge vessel 20 is sealed, and the space A is kept in a vacuum or an inert gas atmosphere.

そして、この状態で、封止部2aを含めて放電容器20全体を、電気炉内に入れて、仮想温度が900〜1200℃になるように加熱する。
この結果、外部リード棒Gが電気炉内の存在する酸素によって酸化されることを防止できる。
その後、図9(イ)中のX−Xで示す部分を切断することにより、図9(ロ)に示すように、外部リード棒Gを外部に露出させ、給電部とする。
なお、図5、図6、図7の封止部3a、4a、5aも同様にすることにより、外部リード棒の酸化を防止できる。
当然、電気炉内部を真空又は不活性雰囲気にして外部リード棒が剥き出しのランプを入れても酸化は防止できる。
In this state, the entire discharge vessel 20 including the sealing portion 2a is placed in an electric furnace and heated so that the fictive temperature is 900 to 1200 ° C.
As a result, the external lead rod G can be prevented from being oxidized by oxygen present in the electric furnace.
Thereafter, the portion indicated by XX in FIG. 9A is cut to expose the external lead rod G to the outside as shown in FIG.
It should be noted that the oxidation of the external lead rod can be prevented by making the sealing portions 3a, 4a, and 5a of FIGS.
Naturally, oxidation can be prevented even if the inside of the electric furnace is in a vacuum or an inert atmosphere and a lamp with an exposed external lead bar is inserted.

なお、ガラスの歪は紫外線や真空紫外線によって発生するが、波長の短い真空紫外線のほうが発生しやすい。本発明の実施例は主に172nmの真空紫外光を発光するXeガスを封入したXeエキシマランプに関して述べた。アルゴン−塩素エキシマ光である波長175nmなどでも同様の効果がある。また、キセノン−塩素やクリプトン−フッ素などの混合ガスにおいても主に308nmや248nmの紫外線が発生するが、キセノンの172nmやクリプトンの147nmの真空紫外光も発生しているため、歪は入りやすい。特に長時間点灯するとハロゲンガスの枯渇現象が起こり、寿命末期には真空紫外光の割合は高くなる。   Glass distortion is generated by ultraviolet rays or vacuum ultraviolet rays, but vacuum ultraviolet rays having a short wavelength are more likely to occur. The embodiment of the present invention has been described mainly with respect to an Xe excimer lamp encapsulating Xe gas that emits vacuum ultraviolet light of 172 nm. The same effect can be obtained with a wavelength of 175 nm, which is argon-chlorine excimer light. Further, even in a mixed gas such as xenon-chlorine and krypton-fluorine, ultraviolet rays of 308 nm and 248 nm are mainly generated, but since 172 nm of xenon and 147 nm of vacuum ultraviolet light of krypton are also generated, distortion is likely to occur. In particular, when the lamp is lit for a long time, a halogen gas depletion phenomenon occurs, and the ratio of vacuum ultraviolet light increases at the end of the lifetime.

本発明のエキシマランプの説明図である。It is explanatory drawing of the excimer lamp of this invention. エキシマランプの放電容器を構成するガラスの仮想温度と、炭素(C)の量を変えた場合の放電容器の破損率と紫外線放射照度維持率を調べた実験結果データ説明図である。It is an experimental result data explanatory drawing which investigated the fracture | rupture rate of the discharge vessel at the time of changing the virtual temperature of the glass which comprises the discharge vessel of an excimer lamp, and the quantity of carbon (C), and an ultraviolet irradiance maintenance factor. 放電容器の仮想温度を一定に場合の炭素含有量を変えた時の放射照度維持率の変化を調べた実験結果データ説明図である。It is experiment result data explanatory drawing which investigated the change of the irradiance maintenance factor when changing the carbon content in the case where the fictive temperature of the discharge vessel is constant. 本発明のエキマランプの他の実施例の説明図である。It is explanatory drawing of the other Example of the excimer lamp of this invention. 本発明のエキマランプの他の実施例の説明図である。It is explanatory drawing of the other Example of the excimer lamp of this invention. 本発明のエキマランプの他の実施例の説明図である。It is explanatory drawing of the other Example of the excimer lamp of this invention. 本発明のエキマランプの他の実施例の説明図である。It is explanatory drawing of the other Example of the excimer lamp of this invention. 本発明のエキマランプの他の実施例の説明図である。It is explanatory drawing of the other Example of the excimer lamp of this invention. 本発明のエキシマランプの外部リード棒の酸化防止方法の説明図である。It is explanatory drawing of the oxidation prevention method of the external lead rod of the excimer lamp of this invention.

符号の説明Explanation of symbols

1 エキシマランプ
11 外側管
12 内側管
13 放電容器
14 封止壁部
15 外側管の外周面
16 電極
17 内側管の外周面
18 電極
19 給電用のコード
a 排気管残部
DESCRIPTION OF SYMBOLS 1 Excimer lamp 11 Outer tube 12 Inner tube 13 Discharge vessel 14 Sealing wall part 15 Outer tube outer peripheral surface 16 Electrode 17 Inner tube outer peripheral surface 18 Electrode 19 Power supply code a Exhaust pipe remainder

Claims (3)

エキシマランプの放電容器の少なくとも発光部のガラスの仮想温度が900〜1200℃であって、
前記放電容器のガラスに含まれる炭素(C)の量が、C/Siの比で0.1atm%以下であることを特徴とするエキシマランプ。
The fictive temperature of the glass of at least the light emitting part of the discharge vessel of the excimer lamp is 900 to 1200 ° C.,
An excimer lamp characterized in that the amount of carbon (C) contained in the glass of the discharge vessel is 0.1 atm% or less in a C / Si ratio.
前記放電容器の両端の加熱加工によって形成された封止壁部の仮想温度が900〜1200℃であることを特徴とする請求項1に記載のエキシマランプ。 2. The excimer lamp according to claim 1, wherein a fictive temperature of a sealing wall portion formed by heat processing at both ends of the discharge vessel is 900 to 1200 ° C. 3. 前記放電容器に排気管残部が形成されており、当該排気管残部の仮想温度が900〜1200℃であることを特徴とする請求項1又は請求項2に記載のエキシマランプ。
The excimer lamp according to claim 1 or 2, wherein an exhaust pipe remainder is formed in the discharge vessel, and a virtual temperature of the exhaust pipe remainder is 900 to 1200 ° C.
JP2004088655A 2004-03-25 2004-03-25 Excimer lamp Expired - Lifetime JP4134927B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004088655A JP4134927B2 (en) 2004-03-25 2004-03-25 Excimer lamp
TW093134485A TW200532741A (en) 2004-03-25 2004-11-11 Excimer lamp
KR1020040110322A KR100811391B1 (en) 2004-03-25 2004-12-22 Excimer lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088655A JP4134927B2 (en) 2004-03-25 2004-03-25 Excimer lamp

Publications (2)

Publication Number Publication Date
JP2005276640A JP2005276640A (en) 2005-10-06
JP4134927B2 true JP4134927B2 (en) 2008-08-20

Family

ID=35176071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088655A Expired - Lifetime JP4134927B2 (en) 2004-03-25 2004-03-25 Excimer lamp

Country Status (3)

Country Link
JP (1) JP4134927B2 (en)
KR (1) KR100811391B1 (en)
TW (1) TW200532741A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998832B2 (en) * 2008-03-19 2012-08-15 ウシオ電機株式会社 Excimer lamp
JP4748208B2 (en) * 2008-11-18 2011-08-17 ウシオ電機株式会社 Excimer discharge lamp and excimer discharge lamp manufacturing method
JP5741603B2 (en) * 2013-01-30 2015-07-01 ウシオ電機株式会社 Excimer lamp
US11377385B2 (en) 2016-04-28 2022-07-05 Nippon Electric Glass Co., Ltd. Glass tube for metal sealing and glass for metal sealing
JP2021125437A (en) * 2020-02-10 2021-08-30 東芝ライテック株式会社 Barrier discharge lamp module, barrier discharge lamp, and ultraviolet radiation device
CN116053112B (en) * 2022-12-20 2024-11-01 桑尼维尔新材料科技(南京)有限公司 222 Nanometer excimer lamp panel and manufacturing method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69219445T2 (en) * 1991-06-29 1997-08-07 Shinetsu Quartz Prod SYNTHETIC OPTICAL ELEMENT MADE OF QUARTZ GLASS FOR EXCIMER LASER AND ITS PRODUCTION
JP2951139B2 (en) * 1993-01-20 1999-09-20 ウシオ電機株式会社 Dielectric barrier discharge lamp
JP2775695B2 (en) * 1993-05-27 1998-07-16 ウシオ電機株式会社 Dielectric barrier discharge lamp
JP3189481B2 (en) * 1993-03-19 2001-07-16 ウシオ電機株式会社 Dielectric barrier discharge lamp
JP3025403B2 (en) * 1993-11-15 2000-03-27 ウシオ電機株式会社 Dielectric barrier discharge lamp
JP2980510B2 (en) * 1994-01-28 1999-11-22 信越石英株式会社 High purity silica glass for ultraviolet lamp and method for producing the same
JP3171004B2 (en) * 1994-04-15 2001-05-28 ウシオ電機株式会社 Dielectric barrier discharge lamp
JP2000100389A (en) * 1998-09-18 2000-04-07 Ushio Inc Discharge lamp
JP3069562B1 (en) * 1999-10-19 2000-07-24 信越石英株式会社 Silica glass optical material for excimer laser and excimer lamp and method for producing the same
JP2002151013A (en) * 2000-11-13 2002-05-24 Ushio Inc Reference light source for fluorine laser device
JP2002289150A (en) * 2001-03-26 2002-10-04 Harison Toshiba Lighting Corp Dielectric barrier discharge lamp and ultraviolet irradiation device
JP3582500B2 (en) * 2001-05-23 2004-10-27 ウシオ電機株式会社 Ultra high pressure mercury lamp

Also Published As

Publication number Publication date
TW200532741A (en) 2005-10-01
TWI317964B (en) 2009-12-01
JP2005276640A (en) 2005-10-06
KR20050095540A (en) 2005-09-29
KR100811391B1 (en) 2008-03-07

Similar Documents

Publication Publication Date Title
JP4998832B2 (en) Excimer lamp
EP2883244B1 (en) Laser sustained plasma bulb including water
TWI497560B (en) Ultraviolet ray irradiation apparatus, ultraviolet irradiation method, and ultraviolet ray irradiation apparatus
US5889367A (en) Long-life high powered excimer lamp with specified halogen content, method for its manufacture and extension of its burning life
JP2007048592A (en) Excimer lamp
JP4134927B2 (en) Excimer lamp
JP4400136B2 (en) Short arc type mercury vapor discharge lamp
JP3292016B2 (en) Discharge lamp and vacuum ultraviolet light source device
JP4358729B2 (en) Short arc type discharge lamp
JP2007273153A (en) Short-arc mercury lamp
JP5800189B2 (en) Short arc type discharge lamp
JP3626324B2 (en) Manufacturing method of ceramic discharge lamp
JPH11329350A (en) Discharge lamp and its manufacture
JP2009283226A (en) Metal halide lamp
JP4048998B2 (en) Lamp and ultraviolet light irradiation device
TWI399785B (en) Discharge lamp
JP2009283227A (en) Metal halide lamp
JP2010257840A (en) Method of manufacturing fluorescent lamp
JP6660594B2 (en) Discharge lamp
JP4432321B2 (en) Initial adjustment method of excimer irradiation equipment
JP2011204434A (en) Metal halide lamp and ultraviolet irradiation device
JPH06231732A (en) Dielectric barrier discharge lamp
JP4449566B2 (en) Discharge lamp
JP4606850B2 (en) Metal halide lamp
JP2005203331A (en) Glass for excimer lamp, discharge container for excimer lamp, and excimer lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4134927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term