JPH05330831A - Production of rare-earth-element-doped quartz glass - Google Patents

Production of rare-earth-element-doped quartz glass

Info

Publication number
JPH05330831A
JPH05330831A JP16371692A JP16371692A JPH05330831A JP H05330831 A JPH05330831 A JP H05330831A JP 16371692 A JP16371692 A JP 16371692A JP 16371692 A JP16371692 A JP 16371692A JP H05330831 A JPH05330831 A JP H05330831A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
gas
quartz glass
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16371692A
Other languages
Japanese (ja)
Other versions
JP3163167B2 (en
Inventor
Noboru Edakawa
川 登 枝
Hisahiro Yoshida
田 尚 弘 吉
Minoru Taya
家 実 田
Kazuo Kamiya
屋 和 雄 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
KDDI Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Kokusai Denshin Denwa KK filed Critical Shin Etsu Chemical Co Ltd
Priority to JP16371692A priority Critical patent/JP3163167B2/en
Publication of JPH05330831A publication Critical patent/JPH05330831A/en
Application granted granted Critical
Publication of JP3163167B2 publication Critical patent/JP3163167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/90Feeding the burner or the burner-heated deposition site with vapour generated from solid glass precursors, i.e. by sublimation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To produce a rare-earth-element-doped quartz glass capable of forming an optical fiber exhibiting an excellent property as an use for a light amplifier. CONSTITUTION:In this method for producing the rare-earth-element-doped quartz glass, gaseous hydrogen and gaseous oxygen are supplied into a concentric multiple tube burner to form oxyhydrogen flame, a glass forming raw material gas composed of a halide of silicon, a halide containing an element to be a dopant and a sublimable organic rare earth element compound are supplied into the flame and the porous silica base material obtained by depositing a silica glass particulates produced by flame hydrolyzing is sintered at high temp. and transparently vitrified. In this way, gaseous hydrogen for forming oxyhydrogen flame is used as a carrier gas of the organic rare earth element compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類元素ドープ石英ガ
ラスの製造方法、特には光ファイバレーザーなどに使用
される機能性希土類元素ドープ石英ガラスの製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing rare earth element-doped quartz glass, and more particularly to a method for producing functional rare earth element-doped quartz glass used in optical fiber lasers and the like.

【0002】[0002]

【従来の技術】希土類元素ドープ石英ガラスは光機能を
有していることから、光ファイバレーザー、光増幅器、
センサー素子などとして使用されている。しかして、こ
の種の石英ガラスの製造は従来からMCVD法による方
法が知られている(特表昭 63-501711号公報参照)が、
これは希土類元素酸化物を高温に加熱し蒸発させて反応
系に供給するものであるため、これには供給量の制御が
困難であり、また大型の母材が得られにくいという欠点
がある。
2. Description of the Related Art Since rare earth element-doped quartz glass has an optical function, an optical fiber laser, an optical amplifier,
It is used as a sensor element. However, the method of manufacturing the quartz glass of this kind by the MCVD method has been conventionally known (see Japanese Patent Publication No. 63-501711).
This is because the rare earth element oxide is heated to a high temperature to be vaporized and supplied to the reaction system. Therefore, it is difficult to control the supply amount and it is difficult to obtain a large base material.

【0003】他方、この希土類元素ドープ石英ガラスの
製造については、ガラス形成原料としてのけい素化合物
を酸水素火炎中に送り、この火炎加水分解で生成したシ
リカガラス微粒子を推積して多孔質シリカ母材を作り、
この多孔質シリカ母材を希土類元素化合物の溶液に浸漬
して希土類元素化合物を多孔質シリカ母材に含侵させ、
ついでこれを高温で焼結し、透明ガラス化するという方
法が提案されており(特公昭58-3980 号公報参照)、こ
れには溶液の濃度によってドープ量が制御できるし、蒸
気圧の低い化合物にも適用できるという利点があるけれ
ども、しかしこれには多孔質シリカ母材を希土類元素化
合物の溶液に浸漬し、乾燥する際に毛細管現象によって
溶媒が多孔質シリカ母材の表面に移動するときに溶質も
同時に移動してこれが表面近くに蓄積されるために、得
られたガラスにドーパントの濃度分布ができてしまい、
極端な場合には表面と内部での熱膨張係数の差によって
これが割れてしまうという問題点があり、これにはまた
焼結、ガラス化のときに希土類元素化合物の一部が揮散
してしまい、所望のドープ量をもつものが得られなくな
るという欠点もある。
On the other hand, in the production of this rare earth element-doped quartz glass, a silicon compound as a glass forming raw material is fed into an oxyhydrogen flame, and silica glass fine particles produced by the flame hydrolysis are deposited to form porous silica. Making the base material,
The porous silica base material is immersed in a solution of a rare earth element compound to impregnate the porous silica base material with the rare earth element compound,
Then, a method has been proposed in which it is sintered at a high temperature to form a transparent glass (see Japanese Patent Publication No. 58-3980), in which the amount of dope can be controlled by the concentration of the solution and the compound with a low vapor pressure is used. However, when the solvent migrates to the surface of the porous silica matrix by capillary action when the porous silica matrix is dipped in the solution of the rare earth element compound and dried, Since the solute also moves at the same time and accumulates near the surface, the obtained glass has a dopant concentration distribution,
In an extreme case, there is a problem that it is cracked due to the difference in coefficient of thermal expansion between the surface and the inside, and this also causes a part of the rare earth element compound to volatilize during sintering and vitrification, There is also a drawback in that a desired amount of doping cannot be obtained.

【0004】また、これについてはドープ原料の融点以
下の温度に保持された酸化雰囲気内において多孔質シリ
カ母材中のドープ原料を酸化する工程を付加することも
提案されている(特公昭63-60121号公報参照)が、希土
類塩化物を酸化して酸化物に完全に転換させることは難
しく、酸化雰囲気で熱処理してもかなりの希土類塩化物
が残留するためにこれがガラス工程で揮散し、揮散せず
にガラス中に取り込まれたとしても塩化物の状態ではガ
ラスネットワークの中に入ることができず、微少結晶と
して分離してしまうので、ガラスが白濁した状態とな
り、光伝送損失の原因となるし、レーザー発振効率も低
いものになるという不利がある。
In addition, it has been proposed to add a step of oxidizing the dope raw material in the porous silica matrix in an oxidizing atmosphere maintained at a temperature below the melting point of the dope raw material (Japanese Patent Publication No. 63-63-63). However, it is difficult to oxidize rare earth chlorides completely to convert them to oxides, and a considerable amount of rare earth chlorides remains even after heat treatment in an oxidizing atmosphere. Even if it is taken into the glass without doing so, it cannot enter the glass network in the chloride state and separates as minute crystals, causing the glass to become cloudy and causing optical transmission loss. However, there is a disadvantage that the laser oscillation efficiency is low.

【0005】[0005]

【発明が解決しようとする課題】そのため、この希土類
元素ドープ石英ガラスの製造方法については、ハロゲン
を含有しないガラス形成原料ガスと昇華性の有機希土類
元素化合物を気相で供給する方法も提案されており(特
願平3-89741 号明細書参照)、これによればこの有機希
土類元素化合物が低い温度で気化することができるもの
であるので供給量の制御が容易であるという有利性が与
えられるけれども、この有機希土類元素化合物もこれが
アセチルアセトナイト系錯体であると水分あるいはハロ
ゲン化物の存在する雰囲気では速やかに分解するため
に、これが配管の途中やバーナーの内部あるいはノズル
の先端で反応して固形物を形成し、これによって経路が
閉塞されるという危険があるので、これについては1本
ノズルにけい素のハロゲン化物とドーパントとなるゲル
マニウムやアルミニウムのハロゲン化物を供給し、別の
1本のノズルに昇華性の有機希土類元素化合物を気相で
供給することによって解決された。
Therefore, as a method of producing this rare earth element-doped quartz glass, a method of supplying a halogen-free glass forming raw material gas and a sublimable organic rare earth element compound in a gas phase has also been proposed. (See Japanese Patent Application No. 3-89741), which provides the advantage that the supply amount can be easily controlled because the organic rare earth element compound can be vaporized at a low temperature. However, even if this organic rare earth element compound is an acetylacetonite complex, it decomposes rapidly in an atmosphere containing water or a halide, and this reacts in the middle of the pipe, inside the burner, or at the tip of the nozzle to cause solidification. There is a risk that it will form an object, and this will block the path, so this is done with a single nozzle with a silicon halo. Supplying down products and dopant consisting of germanium and aluminum halides, it has been solved by feeding in a gas phase sublimable organic rare-earth compounds to a different one nozzle.

【0006】なお、この有機希土類元素化合物を気相に
供給するためのキャリアガスとしては、ガラス形成原料
ガスやドーパント原料ガスのキャリアガスと同様のアル
ゴンガスの使用が考えられるのであるが、有機希土類元
素化合物は蒸気圧が小さく、蒸気圧を高くするために高
温に加熱すると分解してしまうために、希土類元素を十
分にドープするためにはキャリアガスを大量に使用する
必要がある。しかし、このキャリアガスとしてアルゴン
ガスを大量に流した場合には母材の製造が困難となり、
極端な場合には製造が不可能になるという問題がある
し、このキャリアガスとして酸素を用いると容器内ある
いは搬送チューブ内で有機希土類元素化合物の酸化分解
が促進されるという問題がある。
As the carrier gas for supplying the organic rare earth element compound to the gas phase, it is conceivable to use the same argon gas as the carrier gas of the glass forming raw material gas or the dopant raw material gas. Elemental compounds have a small vapor pressure and are decomposed when heated to a high temperature in order to increase the vapor pressure. Therefore, it is necessary to use a large amount of carrier gas in order to sufficiently dope the rare earth element. However, when a large amount of argon gas is flown as this carrier gas, it becomes difficult to manufacture the base material,
In an extreme case, there is a problem that production becomes impossible, and when oxygen is used as the carrier gas, there is a problem that oxidative decomposition of the organic rare earth element compound is promoted in the container or the transfer tube.

【0007】[0007]

【課題を解決するための手段】本発明はこのような不
利、問題点を解決した希土類元素ドープ石英ガラスの製
造方法に関するものであり、これは同心多重管バーナー
に水素ガス、酸素ガスを供給して酸水素火炎を形成し、
この火炎中にけい素のハロゲン化物よりなるガラス形成
原料ガスとドーパントとなる元素を含むハロゲン化物お
よび昇華性の有機希土類元素化合物を供給し火炎加水分
解によって生成するシリカガラス微粒子を推積して得ら
れる多孔質シリカ母材を高温で焼結して透明ガラス化す
る希土類元素ドープ石英ガラスの製造方法において、上
記有機希土類元素化合物のキャリアガスとして酸水素火
炎形成用の水素ガスを用いることを特徴とするものであ
る。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a rare earth element-doped quartz glass, which solves the above disadvantages and problems, by supplying hydrogen gas and oxygen gas to a concentric multi-tube burner. Form an oxyhydrogen flame,
In this flame, a glass-forming raw material gas consisting of a silicon halide, a halide containing an element serving as a dopant, and a sublimable organic rare earth element compound were supplied to obtain silica glass fine particles produced by flame hydrolysis. In a method for producing a rare earth element-doped quartz glass in which a porous silica base material is sintered at a high temperature to form a transparent glass, a hydrogen gas for forming an oxyhydrogen flame is used as a carrier gas for the organic rare earth element compound, To do.

【0008】すなわち、本発明者らは上記したような不
利、問題点を解決した希土類元素ドープ石英ガラスの製
造方法について種々検討した結果、この希土類元素ドー
プ石英ガラスの製造を公知の酸水素火炎による多孔質シ
リカ母材の製造時にこの火炎中に昇華性の有機希土類元
素化合物を供給して火炎加水分解し、このようにして得
た多孔質シリカ母材を焼結して透明ガラス化する方法で
行なうのであるが、このとき有機希土類元素化合物を搬
送するキャリアガスを酸水素火炎形成中の水素ガスとし
たところ、これによれば有機希土類元素化合物を支障な
く搬送できるし、これを多量に流しても多孔質シリカ母
材の製造が困難になることはなく、さらにこれによって
有機希土類元素化合物が分解することもないので、目的
とする有機希土類元素ドープ石英ガラスを効率よく生産
することができることを見出し、このようにして得られ
た希土類元素ドープ石英ガラスから製造した光ファイバ
は光増幅器用としてすぐれた特性を示すということを確
認して本発明を完成させた。以下にこれをさらに詳述す
る。
That is, the inventors of the present invention have made various studies on a method for producing a rare earth element-doped quartz glass which solves the above disadvantages and problems, and as a result, the production of this rare earth element-doped quartz glass is carried out by a known oxyhydrogen flame. By the method of supplying a sublimable organic rare earth element compound into the flame during the production of the porous silica matrix to cause flame hydrolysis, and by the method of sintering the porous silica matrix thus obtained to form a transparent glass. At this time, when the carrier gas for transporting the organic rare earth element compound was hydrogen gas during the formation of the oxyhydrogen flame, the organic rare earth element compound could be transported without any trouble, and a large amount of this was flowed. However, the production of the porous silica base material does not become difficult, and the organic rare earth element compound is not decomposed by this. It was found that an undoped quartz glass can be efficiently produced, and it was confirmed that the optical fiber produced from the rare earth element-doped quartz glass thus obtained exhibits excellent characteristics for an optical amplifier. Was completed. This will be described in more detail below.

【0009】[0009]

【作用】本発明は希土類元素ドープ石英ガラスの製造方
法に関するものであり、これは酸水素火炎による多孔質
シリカ母材の製造時にこの火炎中に有機希土類元素化合
物を供給し火炎加水分解し、得られた多孔質シリカ母材
を焼結し、透明ガラス化する方法において、この有機希
土類元素化合物を酸水素火炎形成用の水素ガスをキャリ
アガスとして搬送するようにしてなることを特徴とする
ものであるが、これによれば目的とする希土類元素ドー
プ石英ガラスを効率よく製造することができるという有
利性が与えられる。
The present invention relates to a method for producing rare earth element-doped quartz glass, which comprises supplying an organic rare earth element compound into a flame during the production of a porous silica base material by an oxyhydrogen flame and subjecting it to flame hydrolysis to obtain In a method of sintering the obtained porous silica base material to make it a transparent glass, the organic rare earth element compound is characterized by being carried as a hydrogen gas for forming an oxyhydrogen flame as a carrier gas. However, this provides the advantage that the desired rare earth element-doped quartz glass can be efficiently manufactured.

【0010】本発明による希土類元素ドープ石英ガラス
の製造方法は同じ多重管からなる酸水素火炎バーナーに
水素ガスと酸素ガスと供給して酸水素火炎を形成させ、
この火炎中にけい素のハロゲン化物よりなるガラス形成
用原料ガスと、ドーパントとなるゲルマニウム、アルミ
ニウムなどのハロゲン化物および昇華性の有機希土類元
素化合物を供給し、これらの火炎加水分解によって生成
するシリカガラス微粒子を推積して多孔質シリカ母材を
作り、これを高温で焼結し透明ガラス化するという公知
の方法で行なわれるが、この多孔質シリカ母材の製造法
は光ファイバ母材の製造方法として知られているVAD
法やOVD法としてもよい。
In the method for producing a rare earth element-doped quartz glass according to the present invention, an oxyhydrogen flame is formed by supplying hydrogen gas and oxygen gas to an oxyhydrogen flame burner composed of the same multi-tube.
Into this flame, a raw material gas for forming a glass consisting of a halide of silicon, a halide such as germanium or aluminum as a dopant and a sublimable organic rare earth element compound are supplied, and silica glass produced by flame hydrolysis of these. A known method is to deposit fine particles to form a porous silica preform, and sinter this at high temperature to form vitrified glass. The method for producing this porous silica preform is the production of an optical fiber preform. VAD known as a method
Method or OVD method.

【0011】ここで使用される有機希土類元素化合物と
してはネオジウム、エルビウム、ユーロピウム、セリウ
ムなどの有機化合物とされるが、これに使用される有機
希土類元素化合物としてはネオジウム、ユーロピウム、
セリウムなどの希土類元素の一般式 R−CO−CH=
CO−R’で示され、R、R’がアルキル基、アリル
基、フッ素置換アルキル基、複素環基などである、例え
ばアセチルアセトナイト、トリフルオロアセチルアセト
ナイト、ヘキサフルオロアセチルアセトナイト、ジベン
ゾイルトリフルオロアセトナイト、ジベンゾイルメタナ
ト、ジピバロイルメタナト、テノイルトルフルオロアセ
チルアセトナイト、フロイルトリフルオロアセチルアセ
トナイトなどの各錯体が例示される。これらは蒸発器に
これを収容し、オイルバスで加熱して気化させ、これを
キャリアガスで反応器中に供給するようにすればよい
が、これらはその2種以上を混合して、この2種以上か
らドープされた希土類元素ドープ石英ガラスを製造する
ようにしてもよい。
The organic rare earth element compound used here is an organic compound such as neodymium, erbium, europium or cerium. The organic rare earth element compound used for this is neodymium, europium,
General formula of rare earth elements such as cerium R-CO-CH =
CO-R ', wherein R and R'are an alkyl group, an allyl group, a fluorine-substituted alkyl group, a heterocyclic group, etc., for example, acetylacetonite, trifluoroacetylacetonite, hexafluoroacetylacetonite, dibenzoyl. Examples thereof include trifluoroacetonite, dibenzoylmethanato, dipivaloylmethanato, thenoyltolufluoroacetylacetonite, and furoyltrifluoroacetylacetonite. These may be housed in an evaporator, heated in an oil bath to be vaporized, and supplied to the reactor with a carrier gas. Rare earth element-doped quartz glass doped from more than one species may be produced.

【0012】本発明ではこの希土類元素化合物が酸水素
火炎形成用の水素ガスをキャリアガスとして酸水素火炎
中に導入されるのであるが、有機希土類元素化合物を水
素ガスをキャリアガスとして搬送するとこの水素量に応
じて多孔質シリカ母材に含有される希土類元素量をコン
トロールすることができるし、この場合この水素ガスに
よって有機希土類元素化合物の搬送に支障が生ずること
はなく、これを大量に流しても多孔質シリカ母材の製造
に困難は生じず、さらにこの水素ガスによって有機希土
類元素化合物に化学的な変化がもたらされることもな
い。
In the present invention, the rare earth element compound is introduced into the oxyhydrogen flame by using the hydrogen gas for forming the oxyhydrogen flame as the carrier gas. When the organic rare earth element compound is carried by the hydrogen gas as the carrier gas, the hydrogen The amount of rare earth element contained in the porous silica matrix can be controlled according to the amount, and in this case, the hydrogen gas does not hinder the transport of the organic rare earth element compound, and a large amount of this can be flowed. However, there is no difficulty in producing the porous silica base material, and the hydrogen gas does not cause a chemical change in the organic rare earth element compound.

【0013】なお、この場合における水素ガスは酸水素
火炎形成用の水素ガスの一部を使用すればよく、この水
素ガスで搬送された有機希土類元素化合物はガラス形成
用ガスとされるけい素のハロゲン化物やドーパントとし
てのゲルマニウム、アルミニウムなどのハロゲン化物と
は別のノズルに供給されるが、酸水素火炎形成用の残り
の水素ガスは別のノズルからバーナーに供給すればよ
い。
In this case, as the hydrogen gas, a part of the hydrogen gas for forming the oxyhydrogen flame may be used, and the organic rare earth element compound carried by the hydrogen gas may be used as a glass forming gas. The halide and the halide such as germanium and aluminum as the dopant are supplied to a nozzle different from the nozzle, but the remaining hydrogen gas for forming the oxyhydrogen flame may be supplied to the burner from another nozzle.

【0014】この酸水素火炎バーナーに供給されたガラ
ス形成用ガス、ドーパントおよび有機希土類元素化合物
はこのバーナーからの酸水素火炎中で火炎加水分解さ
れ、ドーパントおよび希土類元素を含んだシリカガラス
微粒子が坦体上に推積されて多孔質シリカ母材とされ
る。このようにして得られた多孔質シリカ母材はついで
定法により、電気炉中で加熱処理し、透明ガラス化する
ことによって希土類元素ドープ石英ガラスとされるので
あるが、この場合の雰囲気はヘリウムガスとすることが
望ましく、脱水を目的とした場合にはハロゲンガスを微
量混合してもよいし、酸化物への転換を完全なものにす
るために酸素ガスを微量混合してもよい。
The glass forming gas, the dopant and the organic rare earth element compound supplied to the oxyhydrogen flame burner are flame-hydrolyzed in the oxyhydrogen flame from the burner, and silica glass fine particles containing the dopant and the rare earth element are carried. It is deposited on the body to form a porous silica matrix. The porous silica base material thus obtained is then heat treated in an electric furnace by a conventional method, and is made into a rare earth element-doped quartz glass by vitrification, but the atmosphere in this case is helium gas. For the purpose of dehydration, a small amount of halogen gas may be mixed, or a small amount of oxygen gas may be mixed in order to complete conversion to oxide.

【0015】[0015]

【実施例】つぎに本発明の実施例をあげる。 実施例 石英製同心多重管バーナーに水素ガス 4.2リットル/分、酸
素ガス7リットル/分を供給して酸水素火炎を形成させ、こ
のバーナーの中心ノズルに四塩化けい素と四塩化ゲルマ
ニウムとをそれぞれ0.18リットル/分のアルゴンガスをキャ
リアガスとして供給したが、このときこのガスを 200℃
に加熱されている三塩化アルミニウムの入った蒸発皿に
吹き込んで昇華により発生した三塩化アルミニウムガス
を同拌させた。
EXAMPLES Next, examples of the present invention will be given. Example A hydrogen gas of 4.2 liters / minute and an oxygen gas of 7 liters / minute were supplied to a quartz concentric multi-tube burner to form an oxyhydrogen flame, and silicon tetrachloride and germanium tetrachloride were respectively supplied to the central nozzles of the burner. Argon gas of 0.18 liters / minute was supplied as a carrier gas.
The aluminum trichloride gas generated by sublimation was blown into the evaporating dish containing aluminum trichloride heated to the same temperature to stir the same.

【0016】他方、この酸水素火炎バーナーは、この酸
水素火炎形成用の水素ガス4.2 リットル/分をトリスシクロ
ペンタジェニルエルビウムの入った 150℃に加熱されて
いる蒸発皿に吹き込み、ここで昇華したトリスシクロペ
ンタジェニルエルビウムガスをこの水素ガスで搬送し、
このガスを上記したガラス形成用原料ガス、ドーパント
ガスとは別のノズルを経て上記の酸水素火炎バーナーに
供給した。
On the other hand, the oxyhydrogen flame burner blows 4.2 liters / minute of hydrogen gas for forming the oxyhydrogen flame into an evaporation dish containing triscyclopentagenenyl erbium which is heated to 150 ° C., where sublimation is performed. This triscyclopentaenyl erbium gas was carried by this hydrogen gas,
This gas was supplied to the oxyhydrogen flame burner through a nozzle different from the above-mentioned glass forming raw material gas and dopant gas.

【0017】ついで、この酸水素火炎バーナーに供給さ
れたガラス形成用原料ガス、ドーパントガスおよび有機
希土類元素化合物の混合ガスをこの火炎中に火炎加水分
解させ、ここに発生したドーパントおよび希土類元素を
含有したシリカガラス微粒子を坦体上に8時間推積成長
させたところ、外径45mm、長さ 300mmで重さが150g、平
均かさ密度が0.314g/cm2 である多孔質シリカ母材が得
られたので、このものの希土類元素含有量をICP発光
分析でしらべたところ、これには酸化エルビウムが 700
ppm 含有されていることが確認された。
Then, the mixed gas of the raw material gas for forming glass, the dopant gas and the organic rare earth element compound supplied to the oxyhydrogen flame burner is flame-hydrolyzed in this flame to contain the dopant and the rare earth element generated therein. By depositing the silica glass fine particles on the carrier for 8 hours, a porous silica matrix with an outer diameter of 45 mm, a length of 300 mm, a weight of 150 g, and an average bulk density of 0.314 g / cm 2 was obtained. Therefore, when the rare earth element content of this substance was examined by ICP emission analysis, it was found that erbium oxide was 700
It was confirmed that it contained ppm.

【0018】つぎにこの希土類元素ドープ石英ガラスを
コアとし、フッ素ドープ石英ガラスをクラッドした光フ
ァイバプリフォームを作り、このものの光増幅特性をし
らべたところ、これは1.48μmのポンプ光10mWで励起
し、1.55μmの信号光で増幅ゲイン28dBを示した。
Next, an optical fiber preform in which this rare earth element-doped quartz glass was used as a core and fluorine-doped quartz glass was clad, and the optical amplification characteristics of this were investigated. It was excited by a pump light of 10 mW of 1.48 μm. , 1.55 μm signal light showed an amplification gain of 28 dB.

【0019】[0019]

【発明の効果】本発明は希土類元素ドープ石英ガラスの
製造方法に関するものであり、これは前記したようにガ
ラス形成用原料ガス、ドーパントガスおよび有機希土類
元素化合物を酸水素火炎バーナー中で火炎加水分解して
多孔質シリカ母材を製造する方法において、この有機希
土類元素化合物を酸水素火炎形成用の水素ガスをキャリ
アガスとして搬送してなることを特徴とするものである
が、これによれば有機希土類元素化合物を何の支障もな
しに搬送できるし、これは大量に添加しても多孔質シリ
カ母材の製造が困難になることもないので、多孔質シリ
カ母材に十分かつ任意の量で希土類元素をドープするこ
とが可能となるという有利性が与えられ、この方法で製
造した希土類元素ドープ石英ガラスを用いた光ファイバ
は光増幅器用としてすぐれた特性を示すようになる。
Industrial Applicability The present invention relates to a method for producing a rare earth element-doped quartz glass, which, as described above, flame-hydrolyzes a glass forming raw material gas, a dopant gas and an organic rare earth element compound in an oxyhydrogen flame burner. In the method for producing a porous silica matrix, the organic rare earth element compound is characterized in that it is carried by using hydrogen gas for forming an oxyhydrogen flame as a carrier gas. Rare earth element compounds can be transported without any hindrance, and even if added in large quantities, it does not make the production of porous silica base material difficult, so it is sufficient for the porous silica base material to be used in any desired amount. Given the advantage that it is possible to dope rare earth elements, optical fibers using rare earth element-doped quartz glass manufactured by this method are used for optical amplifiers. It exhibits a superior characteristic.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田 家 実 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 (72)発明者 神 屋 和 雄 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Minoru Taie 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Kagaku Kogyo Co., Ltd., Institute for Precision Materials (72) Inventor Kazuo Kamiya Yasushi Gunma 2-13-1, Isobe, Naka-shi Shin-Etsu Chemical Co., Ltd. Precision Materials Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】同心多重管バーナーに水素ガス、酸素ガス
を供給して酸水素火炎を形成し、この火炎中にけい素の
ハロゲン化物よりなるガラス形成原料ガスとドーパント
となる元素を含むハロゲン化物および昇華性の有機希土
類元素化合物を供給し火炎加水分解によって生成するシ
リカガラス微粒子を推積して得られる多孔質シリカ母材
を高温で焼結して透明ガラス化する希土類元素ドープ石
英ガラスの製造方法において、上記有機希土類元素化合
物のキャリアガスとして酸水素火炎形成用の水素ガスを
用いることを特徴とする希土類元素ドープ石英ガラスの
製造方法。
1. A hydrogen gas and an oxygen gas are supplied to a concentric multi-tube burner to form an oxyhydrogen flame, and a glass forming raw material gas made of a silicon halide and a halide containing an element serving as a dopant in the flame. Of rare earth element-doped quartz glass, which is obtained by supplying silica and sublimable organic rare earth compound and depositing silica glass fine particles generated by flame hydrolysis to sinter porous silica matrix at high temperature to form transparent glass In the method, a hydrogen gas for forming an oxyhydrogen flame is used as a carrier gas for the organic rare earth element compound, and a method for producing a rare earth element-doped quartz glass.
【請求項2】酸水素火炎形成用の水素ガスの一部を有機
希土類元素化合物のキャリアガスとして使用し、これを
残りの水素ガスと合流させてバーナーへ供給する請求項
1に記載した希土類元素ドープ石英ガラスの製造方法。
2. The rare earth element according to claim 1, wherein a part of the hydrogen gas for forming the oxyhydrogen flame is used as a carrier gas for the organic rare earth element compound, which is combined with the remaining hydrogen gas and supplied to the burner. Method for producing doped quartz glass.
【請求項3】酸水素火炎形成用の水素ガスの一部を有機
希土類元素化合物のキャリアガスとして使用し、これを
残りの水素ガスとは別のノズルによってバーナーへ供給
する請求項1に記載した希土類元素ドープ石英ガラスの
製造方法。
3. The method according to claim 1, wherein a part of the hydrogen gas for forming the oxyhydrogen flame is used as a carrier gas for the organic rare earth element compound, and this is supplied to the burner by a nozzle different from the rest of the hydrogen gas. Manufacturing method of rare earth element-doped quartz glass.
JP16371692A 1992-05-29 1992-05-29 Method for producing rare earth element doped quartz glass Expired - Fee Related JP3163167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16371692A JP3163167B2 (en) 1992-05-29 1992-05-29 Method for producing rare earth element doped quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16371692A JP3163167B2 (en) 1992-05-29 1992-05-29 Method for producing rare earth element doped quartz glass

Publications (2)

Publication Number Publication Date
JPH05330831A true JPH05330831A (en) 1993-12-14
JP3163167B2 JP3163167B2 (en) 2001-05-08

Family

ID=15779291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16371692A Expired - Fee Related JP3163167B2 (en) 1992-05-29 1992-05-29 Method for producing rare earth element doped quartz glass

Country Status (1)

Country Link
JP (1) JP3163167B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187254A (en) * 2003-12-25 2005-07-14 Sumitomo Electric Ind Ltd Manufacturing method of glass body
DE102009022559A1 (en) * 2008-12-19 2010-06-24 J-Fiber Gmbh Producing glass articles comprises depositing a reaction mixture comprising a silicon compound and an oxygen compound onto a substrate using a high-frequency plasma
DE102013002357A1 (en) 2012-02-09 2013-08-14 Asahi Glass Co., Ltd. Process for producing doped quartz glass
US20220041488A1 (en) * 2020-08-06 2022-02-10 Heraeus Quarzglas Gmbh & Co. Kg Process for the preparation of fluorinated quartz glass

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187254A (en) * 2003-12-25 2005-07-14 Sumitomo Electric Ind Ltd Manufacturing method of glass body
DE102009022559A1 (en) * 2008-12-19 2010-06-24 J-Fiber Gmbh Producing glass articles comprises depositing a reaction mixture comprising a silicon compound and an oxygen compound onto a substrate using a high-frequency plasma
DE102013002357A1 (en) 2012-02-09 2013-08-14 Asahi Glass Co., Ltd. Process for producing doped quartz glass
US20220041488A1 (en) * 2020-08-06 2022-02-10 Heraeus Quarzglas Gmbh & Co. Kg Process for the preparation of fluorinated quartz glass
US11952302B2 (en) * 2020-08-06 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Process for the preparation of fluorinated quartz glass

Also Published As

Publication number Publication date
JP3163167B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
AU652351B2 (en) Quartz glass doped with rare earth element and production thereof
US4666247A (en) Multiconstituent optical fiber
KR950004059B1 (en) Method for producing glass for optical fiber
EP0556580B1 (en) Method of doping porous glass preforms
EP0565439B1 (en) Manufacturing method for erbium-doped silica glass optical fibre preforms
US4203744A (en) Method of making nitrogen-doped graded index optical waveguides
US6109065A (en) Method of making optical waveguide devices using perchloryl fluoride to make soot
JP2599511B2 (en) Method for producing rare earth element doped quartz glass
EP0243010B1 (en) Preparation of glass fibre
US6474106B1 (en) Rare earth and alumina-doped optical fiber preform process
CN100503493C (en) Method for manufacturing a glass doped with a rare earth element and fiber for optical amplification using the same
JP2669976B2 (en) Erbium-doped fiber for optical amplifier
JP3163167B2 (en) Method for producing rare earth element doped quartz glass
JPH04300218A (en) Production of quartz glass doped with rare-earth element
JP3187130B2 (en) Method for producing rare earth element doped quartz glass
JP2604466B2 (en) Method for producing rare earth element doped quartz glass
DiGiovanni Fabrication of rare-earth-doped optical fiber
US20030213268A1 (en) Process for solution-doping of optical fiber preforms
JP3188309B2 (en) Method for manufacturing optical fiber preform for optical amplifier
JP3188304B2 (en) Rare earth element doped silica glass based optical fiber preform and method of manufacturing the same
JPH03265537A (en) Rare-earth element-doped glass and its production
JPH0585759A (en) Manufacture of rare-earth-element-doped quartz glass
JPS63310744A (en) Production of glass doped with rare earth element
JPH03218947A (en) Rare-earth element and halogen element-doped quartz glass-based optical fiber preform and its production
JPH03218935A (en) Rare earth element-doped quartz glass and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees