JPH04260632A - Production of optical fiber containing rare earths added thereto - Google Patents

Production of optical fiber containing rare earths added thereto

Info

Publication number
JPH04260632A
JPH04260632A JP4275191A JP4275191A JPH04260632A JP H04260632 A JPH04260632 A JP H04260632A JP 4275191 A JP4275191 A JP 4275191A JP 4275191 A JP4275191 A JP 4275191A JP H04260632 A JPH04260632 A JP H04260632A
Authority
JP
Japan
Prior art keywords
soot
quartz tube
optical fiber
additive
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4275191A
Other languages
Japanese (ja)
Inventor
Taiichiro Tanaka
大一郎 田中
Akira Wada
朗 和田
Tetsuya Sakai
哲弥 酒井
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP4275191A priority Critical patent/JPH04260632A/en
Publication of JPH04260632A publication Critical patent/JPH04260632A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To improve addition efficiency by depositing a porous soot in the interior of a starting quartz tube, then impregnating the deposited soot with sublimed rare earths in the vapor phase, sintering the impregnated soot and transparently vitrifying the impregnated soot. CONSTITUTION:A soot deposited in the interior of a soot deposited quartz tube [13A (13B)] is dehydrated by heating with an oxyhydrogen torch 17 to provide a porous state. An additive of a rare earth compound such as ErCl3 in a sublimation chamber (14a) and an additive such as AlCl3 in a sublimation chamber (14b) are respectively heated with subliming burners (18a) and (18b), sublimed, converted into a vapor-phase state, fed into a soot quartz tube [13A (13B)] with a feeding gas such as He, impregnated into the soot and then heated with the oxyhydrogen torch 17. Thereby, the soot is sintered while moving the oxyhydrogen torch 17 in the direction of an arrow (B). As a result, a transparent quartz tube doped with the additives is obtained, further heated at a high temperature and collapsed to afford the objective preform for the optical fiber containing the rare earths added thereto.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光ファイバによる光の
直接増幅等の光ファイバ技術に応用される、エルビウム
等の希土類元素を含む希土類添加光ファイバの製造方法
に関し、特に常温で固体状態の添加剤の添加効率を向上
せしめたファイバの製造方法である。
[Industrial Application Field] The present invention relates to a method for manufacturing rare earth-doped optical fibers containing rare earth elements such as erbium, which are applied to optical fiber technology such as direct amplification of light using optical fibers, and in particular to a method for manufacturing rare earth-doped optical fibers containing rare earth elements such as erbium. This is a fiber manufacturing method that improves the efficiency of adding additives.

【0002】0002

【従来の技術】昨今注目されている光ファイバ技術とし
て、希土類金属を添加した光ファイバによる光の直接増
幅がある。図9は、その増幅技術の一例を示すものであ
って、この図に示された増幅器は、希土類金属を添加し
た光ファイバ1(特に有望なものとしては、波長1.5
5μm帯の光増幅を目指したエルビウム(Er)添加単
一モードファイバである 。)に、光カプラ2を用いて
励起光源3からの励起光と信号光4とを入射し、励起光
で励起された希土類イオンのエネルギーが誘導放出によ
って信号光に与えられ、増幅された光がファイバ通信路
5に伝送される構成になっている。
2. Description of the Related Art Direct amplification of light using optical fibers doped with rare earth metals is an optical fiber technology that has recently attracted attention. FIG. 9 shows an example of this amplification technology.
This is an erbium (Er) doped single mode fiber aimed at optical amplification in the 5 μm band. ), the excitation light from the excitation light source 3 and the signal light 4 are incident on the optical coupler 2, and the energy of the rare earth ions excited by the excitation light is given to the signal light by stimulated emission, and the amplified light is It is configured to be transmitted to a fiber communication path 5.

【0003】従来、上記希土類添加光ファイバの母材を
製造する方法として、以下に示すCVD法とVAD法に
よる方法が知られている。例えば図10に示す方法は、
添加しようとする金属のハロゲン化物(例えばNdCl
3やErCl3)を昇華させて得られる気体とHeとの
混合ガスを、出発石英管6内部のCVD反応ゾーンに導
入しながらスート7を堆積することによりNdやEr等
の添加物をスート7内に添加し、さらにこれを中実化し
てコア中にNdやErを含有する光ファイバ母材を作製
する方法(CVD―気相法)である。
[0003] Conventionally, methods using the following CVD method and VAD method are known as methods for manufacturing the base material of the rare earth-doped optical fiber. For example, the method shown in FIG.
A halide of the metal to be added (for example, NdCl
Additives such as Nd and Er are deposited in the soot 7 while introducing a mixed gas of He and a gas obtained by sublimating 3 and ErCl3) into the CVD reaction zone inside the starting quartz tube 6. This is a method (CVD-vapor phase method) in which an optical fiber preform containing Nd or Er is added to the core and then solidified to produce an optical fiber preform containing Nd or Er in the core.

【0004】一方、上記NdCl3やErCl3が、水
やアルコールに可溶であることを利用して、これらNd
Cl3やErCl3をエタノール等に溶解した添加剤溶
液を調製し、この添加剤溶液を上記石英管6のスート7
の部位に含浸し、さらにこれを乾燥させた後に、バーナ
ー7で焼結させてスート7にNdやErを添加する方法
(CVD―液相法)も知られている。
On the other hand, taking advantage of the fact that NdCl3 and ErCl3 are soluble in water and alcohol, these NdCl3 and ErCl3
An additive solution is prepared by dissolving Cl3 or ErCl3 in ethanol, etc., and this additive solution is poured into the soot 7 of the quartz tube 6.
There is also a known method (CVD-liquid phase method) in which Nd and Er are added to the soot 7 by impregnating the soot 7, drying it, and then sintering it with a burner 7.

【0005】またVAD法では、例えば図11に示すよ
うに、スートを堆積した石英ガラスロッド9のスート堆
積部分10を、Heと固体状態のNdCl3やErCl
3を昇華させて得られる気体の混合雰囲気中で焼結する
方法(VAD―気相法)が知られている。
Furthermore, in the VAD method, as shown in FIG. 11, for example, a soot-deposited portion 10 of a quartz glass rod 9 on which soot is deposited is heated with He and solid state NdCl3 or ErCl.
A method of sintering in a mixed atmosphere of gas obtained by sublimating No. 3 (VAD-vapor phase method) is known.

【0006】一方、スートを堆積した石英ガラスロッド
9のスート堆積部分10に、NdCl3やErCl3を
エタノール等に溶解した添加剤溶液を含浸させ、乾燥後
焼結する方法(VAD―液相法)も知られている。
On the other hand, there is also a method (VAD - liquid phase method) in which the soot-deposited portion 10 of the quartz glass rod 9 on which soot is deposited is impregnated with an additive solution in which NdCl3 or ErCl3 is dissolved in ethanol, etc., and then dried and sintered. Are known.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記C
VD法のうち前者の方法(CVD―気相法)にあっては
、スートの堆積に長時間かかり、かつ固体状態のNdC
l3およびErCl3を昇華させる際に与える熱量の制
御が非常に困難であるため、CVD反応ゾーンに流入す
る混合ガス中のNdCl3ガスやErCl3ガス分圧を
長時間均一することが極めて困難である。このためNd
やErが均一に添加されたスートが得られないという問
題があった。またスート堆積時間が長くなると添加剤が
固体のままCVD反応ゾーンにまで流れる頻度が増し、
気泡発生の原因となる問題があった。
[Problem to be solved by the invention] However, the above C
In the former method (CVD-vapor phase method) of the VD methods, it takes a long time to deposit soot, and NdC in a solid state is used.
Since it is very difficult to control the amount of heat applied when sublimating l3 and ErCl3, it is extremely difficult to make the partial pressure of NdCl3 gas and ErCl3 gas in the mixed gas flowing into the CVD reaction zone uniform for a long time. For this reason, Nd
There was a problem in that it was not possible to obtain soot to which Er and Er were added uniformly. Additionally, as the soot deposition time increases, the frequency of the additive flowing into the CVD reaction zone as a solid increases.
There was a problem that caused bubbles to form.

【0008】また、後者の方法(CVD―液相法)にあ
っては、エタノール等の溶媒に対し溶解させることがで
きるNdCl3およびErCl3の量は、当然その溶解
度に見合った限度があり、その限度を超えてNdやEr
を添加することは不可能であった。
In addition, in the latter method (CVD-liquid phase method), the amount of NdCl3 and ErCl3 that can be dissolved in a solvent such as ethanol naturally has a limit commensurate with its solubility; exceeding Nd and Er
It was not possible to add

【0009】また、上記VAD法のうち前者の方法(V
AD―気相法)にあっては、スートの焼結に長時間(2
〜5時間)必要であるが、その焼結操作の間、添加剤を
一定量で昇華させる事は極めて困難であるため、添加剤
を石英ロッドの長手方向に均一に添加する事は難しいと
いう問題があった。
[0009] Furthermore, among the above VAD methods, the former method (V
In AD-vapor phase method), it takes a long time to sinter the soot (2
However, during the sintering operation, it is extremely difficult to sublimate a constant amount of additives, so it is difficult to add additives uniformly in the longitudinal direction of the quartz rod. was there.

【0010】また、後者の方法(VAD―液相法)にあ
っては、スートを添加剤溶液に浸す際にスート割れを起
こす事があるという問題があった。
[0010] Furthermore, the latter method (VAD-liquid phase method) has the problem that soot cracking may occur when the soot is immersed in the additive solution.

【0011】一方、最近光ファイバ中にErとともにA
lを添加して光ファイバ型の光増幅器の波長特性を改善
する方法が盛んに行なわれている。この方法により、E
rとAlを添加された光ファイバは、図12に示す波長
―利得特性グラフからも明らかなように、コア中にEr
等の希土類金属のみを添加してなる光ファイバに比べ、
利得波長特性がより優れていることが知られている。ま
たEr等の希土類金属のみを添加してなる光ファイバを
、前述した図10に示す光増幅器に応用する場合に、1
00ppmを越える高濃度のErを含有する光ファイバ
を用いると、本来Erイオンの誘導放出によって信号光
4に与えられるべき励起エネルギーをErイオン同士で
授受する現象(コ・オペレーティブ・アップ・コンバー
ジョン効果)を起こす不都合があったが、Alを共添加
するとこの現象が起きないことも知られている。
On the other hand, recently, A along with Er has been added to optical fibers.
A method of improving the wavelength characteristics of an optical fiber type optical amplifier by adding l is widely used. By this method, E
As is clear from the wavelength-gain characteristic graph shown in FIG. 12, the optical fiber doped with Er and Al has Er in the core.
Compared to optical fibers doped only with rare earth metals such as
It is known that the gain wavelength characteristics are better. Furthermore, when applying an optical fiber doped only with rare earth metals such as Er to the optical amplifier shown in FIG.
When using an optical fiber containing Er at a high concentration exceeding 00 ppm, a phenomenon occurs in which Er ions give and receive excitation energy that should originally be given to signal light 4 through stimulated emission of Er ions (co-operative up-conversion effect). ), but it is also known that this phenomenon does not occur if Al is co-added.

【0012】しかしながら、上記スート中へのAlの添
加を上述した2つのCVD法および2つのVAD法によ
り行った場合も、上述した希土類添加の際と同様の理由
により、高濃度かつ均一に添加することが非常に困難で
あった。
However, even when Al is added to the soot by the two CVD methods and the two VAD methods mentioned above, it is not possible to add Al at a high concentration and uniformly for the same reason as when adding rare earths. It was extremely difficult.

【0013】本発明は上記事情に鑑みなされたもので、
常温で固体状態の希土類金属やAl等の金属を、石英管
に堆積したスート中に高濃度かつ均一に添加することの
できる希土類添加光ファイバの製造方法を提供すること
を目的とする。
The present invention was made in view of the above circumstances, and
It is an object of the present invention to provide a method for manufacturing a rare earth-doped optical fiber that can uniformly add metals such as rare earth metals and Al that are solid at room temperature to soot deposited on a quartz tube at a high concentration.

【0014】[0014]

【課題を解決するための手段】かかる課題は、出発石英
管内にCVD法により多孔質状態の石英ガラススートを
堆積するとともに、該スートに希土類元素を添加し、こ
の後、該出発石英管を加熱して該スートを溶融し、上記
希土類元素を含有する透明なガラス層とし、さらに該出
発石英管を加熱し、中実化してプリフォームを形成する
希土類添加光ファイバの製造方法において、上記出発石
英管の一方の開口側に少なくとも1つの添加剤昇華用チ
ャンバを連設させたものを用意し、出発石英管の内側部
分に、多孔質のスートを堆積させた後、該昇華用チャン
バ内に収容された添加剤を加熱して、昇華した気相の添
加剤を前記スート内に含浸させ、しかる後添加剤が含浸
されたスートを、透明ガラス化することにより解決され
る。
[Means for Solving the Problems] This problem is solved by depositing a porous silica glass soot in a starting quartz tube by CVD, adding a rare earth element to the soot, and then heating the starting quartz tube. In the method for manufacturing a rare earth-doped optical fiber, the soot is melted to form a transparent glass layer containing the rare earth element, and the starting quartz tube is further heated and solidified to form a preform. A tube with at least one additive sublimation chamber connected to one open side of the tube is prepared, and after porous soot is deposited on the inner part of the starting quartz tube, it is placed in the sublimation chamber. The problem is solved by heating the additive, impregnating the sublimated gas-phase additive into the soot, and then converting the soot impregnated with the additive into transparent vitrification.

【0015】以下、本発明の希土類添加光ファイバの製
造方法の一例を詳細に説明する。
An example of the method for manufacturing the rare earth-doped optical fiber of the present invention will be explained in detail below.

【0016】まず、図1に示すようにフッ素等をドープ
したフッ素ドープ石英管11の両端に、このフッ素ドー
プ石英管11と外径および内径が同じ純粋石英管12,
12の各々端部を、その外径を合わせて溶融接合して石
英管13を作製する。
First, as shown in FIG. 1, pure quartz tubes 12 having the same outer diameter and inner diameter as the fluorine-doped quartz tube 11 are placed at both ends of a fluorine-doped quartz tube 11 doped with fluorine or the like.
A quartz tube 13 is produced by melting and joining the ends of each of the tubes 12 so that their outer diameters match.

【0017】次に、図2に示すように上記石英管13の
一方の開口に連通する2つの昇華用チャンバ14aと1
4bを連設する。なおこの昇華用チャンバ14a内には
ErCl3を入れ、14bにはAlCl3等の添加剤を
あらかじめ入れておく。
Next, as shown in FIG. 2, two sublimation chambers 14a and 1 are connected to one opening of the quartz tube 13.
4b are installed in series. Note that ErCl3 is placed in the sublimation chamber 14a, and additives such as AlCl3 are placed in the sublimation chamber 14b in advance.

【0018】次に、昇華用チャンバ14a,14bを連
設した石英管13を図3に示すようにガラス旋盤15に
設置し、さらにガス送入装置16によって、この石英管
13管内にSF6等のエッチングガスを、酸素をキャリ
アガスとして送入し、同時に上記石英管13管内のスー
ト堆積部となる部分を、石英管13の直下に備えた酸水
素トーチ17を矢印Bに示す石英管13の長手方向に移
動させつつ加熱して石英管13内面のエッチングを行う
Next, the quartz tube 13 with the sublimation chambers 14a and 14b connected thereto is installed in a glass lathe 15 as shown in FIG. The etching gas is supplied with oxygen as a carrier gas, and at the same time, an oxyhydrogen torch 17 provided directly below the quartz tube 13 is installed at a portion of the quartz tube 13 that will become a soot deposition portion, along the length of the quartz tube 13 shown by arrow B. The inner surface of the quartz tube 13 is etched by heating while moving in the direction.

【0019】エッチング終了後、図4に示すようにエッ
チングガスの送入を停止し、続いてSiCl4を酸素を
キャリアガスとしてガス送入装置16により石英管13
管内に送入し、石英管13表面が1100〜1300℃
程度となるように酸水素トーチ17の火力を調節しなが
ら酸水素トーチ17を矢印B方向に移動させて石英管1
3管内にスートを堆積させた石英管13Aを作製する。
After the etching is completed, as shown in FIG. 4, the feeding of the etching gas is stopped, and then SiCl4 is injected into the quartz tube 13 by the gas feeding device 16 using oxygen as the carrier gas.
into the tube, and the surface of the quartz tube 13 reaches 1100 to 1300℃.
Move the oxyhydrogen torch 17 in the direction of arrow B while adjusting the firepower of the oxyhydrogen torch 17 so that the quartz tube 1
3. A quartz tube 13A with soot deposited therein is manufactured.

【0020】続いて、図5に示すようにガス送入装置1
6からヘリウムガスとCl2ガスとを石英管13A内の
スート堆積部分に流し入れるとともに、昇華用チャンバ
14aおよび14b内部が190〜210℃程度となる
ように、上記昇華用チャンバ14a,14bのそれぞれ
直下に備えた加熱バーナー18a,18bで上記各昇華
用チャンバを加熱して、上記各昇華用チャンバ内部の添
加剤を脱水する。
Next, as shown in FIG.
6, helium gas and Cl2 gas are poured into the soot-depositing portion in the quartz tube 13A, and the gas is directly below the sublimation chambers 14a and 14b so that the temperature inside the sublimation chambers 14a and 14b is approximately 190 to 210°C. Each of the sublimation chambers is heated with the provided heating burners 18a and 18b to dehydrate the additives inside each of the sublimation chambers.

【0021】さらに上記の添加剤脱水操作を行いつつ酸
水素トーチ17を矢印B方向に移動させ、石英管13A
管内に堆積したスートの脱水を行う。なおこのスート脱
水時の酸水素トーチ17の火力は、石英管13Aの表面
温度が650〜750℃程度となるように調節する。
Further, while performing the above additive dehydration operation, the oxyhydrogen torch 17 is moved in the direction of arrow B, and the quartz tube 13A is
Dehydrates the soot that has accumulated inside the pipe. The heating power of the oxyhydrogen torch 17 during this soot dehydration is adjusted so that the surface temperature of the quartz tube 13A is approximately 650 to 750°C.

【0022】次に、上記添加剤並びにスートの脱水操作
後、図6に示すようにガス送入装置16操作して石英管
13AへのCl2ガスの流入を停止させる。次に加熱バ
ーナー18aの火力を昇華用チャンバ14a内が930
〜970℃程度となるように調節し、かつ加熱バーナー
18bの火力を昇華用チャンバ14b内が240〜26
0℃程度となるように調節し、昇華用チャンバ14a内
のErと14b内のAlとを昇華させてそれぞれ気体状
態とし、さらにこれら気体状態の添加剤を石英管13A
内のスート堆積部分に送り込んで含浸させる。さらにそ
の後、酸水素トーチ17の火力を、石英管13Aの表面
温度が1700〜1900℃程度となるように調節し、
さらに酸水素トーチ17を石英管13Aの長手方向に移
動させながらスートを焼結して添加剤のドープされた透
明な石英管13Bを作製する。
Next, after dehydrating the additives and soot, as shown in FIG. 6, the gas supply device 16 is operated to stop the flow of Cl2 gas into the quartz tube 13A. Next, the heating power of the heating burner 18a is set to 930°C in the sublimation chamber 14a.
The heating temperature of the heating burner 18b is adjusted so that the temperature in the sublimation chamber 14b is about 240-260°C.
The temperature is adjusted to about 0° C., and Er in the sublimation chamber 14a and Al in the sublimation chamber 14b are sublimated into gaseous states, and these gaseous additives are added to the quartz tube 13A.
It is sent to the soot-accumulated area in the interior and impregnated. Furthermore, after that, the heating power of the oxyhydrogen torch 17 is adjusted so that the surface temperature of the quartz tube 13A is about 1700 to 1900°C,
Further, while moving the oxyhydrogen torch 17 in the longitudinal direction of the quartz tube 13A, the soot is sintered to produce a transparent quartz tube 13B doped with additives.

【0023】次に、図7に示すように酸水素トーチ17
により高温で加熱して石英管13Bを収縮させて石英管
13Bを中実化し、添加剤が添加されたコア19を有す
る光ファイバ母材20を作製する。
Next, as shown in FIG.
The quartz tube 13B is heated to a high temperature to shrink the quartz tube 13B, thereby making the quartz tube 13B solid, thereby producing an optical fiber preform 20 having a core 19 added with an additive.

【0024】本例の希土類添加光ファイバの製造方法に
あっては、以上述べたように2種の添加剤(ErCl3
とAlCl3)を各々出発石英管の一方の開口部に連設
した昇華用チャンバ内に入れ、これらを昇華させて気体
状態とし、さらにこれら気体状態の添加剤をスート堆積
部分にドープし、しかる後添加剤が含浸されたスートを
透明ガラス化し、これにより得られた石英管を中実化し
て光ファイバ母材を作製する構成としたので、光ファイ
バ母材のコアに高濃度のErとAlを添加することがで
きる。従ってこの希土類添加光ファイバの製造方法によ
り作製された光ファイバ母材は波長―利得特性が大きく
改善されるため、非常に広い帯域の光増幅器に応用でき
る。
In the method for manufacturing the rare earth-doped optical fiber of this example, as described above, two types of additives (ErCl3
and AlCl3) are placed in a sublimation chamber connected to one opening of the starting quartz tube, and sublimated into a gaseous state.The soot deposited area is doped with these gaseous additives, and then The soot impregnated with additives is made into transparent glass, and the resulting quartz tube is solidified to produce an optical fiber base material. Can be added. Therefore, the optical fiber preform manufactured by this rare earth-doped optical fiber manufacturing method has greatly improved wavelength-gain characteristics, and can be applied to an extremely wide band optical amplifier.

【0025】また本例の希土類添加光ファイバの製造方
法においては、ErとAlとを添加剤として用いるので
、本法により製造した光ファイバ母材には、Alが共添
加されることとなり、この光ファイバ母材よりなる光フ
ァイバを用いた光増幅器では、コ・オペレーティブ・ア
ップ・コンバージョン効果が抑制される。
[0025] Furthermore, in the method for manufacturing the rare earth-doped optical fiber of this example, Er and Al are used as additives, so Al is co-doped into the optical fiber preform manufactured by this method. In an optical amplifier using an optical fiber made of an optical fiber base material, the co-operative up-conversion effect is suppressed.

【0026】[0026]

【実施例】上述した本発明の光ファイバの製造方法の一
例に基づいて光ファイバを製造した。
EXAMPLE An optical fiber was manufactured based on an example of the optical fiber manufacturing method of the present invention described above.

【0027】まず外径26mm、内径20mm、長さ2
00mmのフッ素ドープ石英管11を1本と、このフッ
素ドープ石英管11と外径および内径が同じ純粋石英管
12,12の各々端部を、その外径を合わせて溶融接合
して石英管13を作製した。
First, the outer diameter is 26 mm, the inner diameter is 20 mm, and the length is 2.
A quartz tube 13 is obtained by melting and joining one 00 mm fluorine-doped quartz tube 11 and pure quartz tubes 12, 12 having the same outer diameter and inner diameter as this fluorine-doped quartz tube 11, by aligning their outer diameters. was created.

【0028】次に、図2に示すように上記石英管13の
一方の開口に連通する2つの昇華用チャンバ14aと1
4bを連設した。なおこの昇華用チャンバ14a内には
ErCl3を5g入れ、14bにはAlCl3を10g
を入れておいた。
Next, as shown in FIG. 2, two sublimation chambers 14a and 1 are connected to one opening of the quartz tube 13.
4b were installed in series. Note that 5 g of ErCl3 is placed in the sublimation chamber 14a, and 10 g of AlCl3 is placed in the sublimation chamber 14b.
I put it in.

【0029】次に、昇華用チャンバ14a,14bを連
設した石英管13を図3に示すようにガラス旋盤15に
設置し、さらにガス送入装置16によって、毎分100
mlのSF6と毎分2000mlの酸素とをこの石英管
13管内に送入し、同時に上記石英管13管内のスート
堆積部となる部分を、石英管13の直下に備えた酸水素
トーチ17を矢印Bに示す石英管13の長手方向に移動
させつつ加熱して石英管13内面のエッチングを行った
Next, the quartz tube 13 with the sublimation chambers 14a and 14b connected thereto was installed in a glass lathe 15 as shown in FIG.
ml of SF6 and 2,000 ml of oxygen per minute are fed into this quartz tube 13, and at the same time, the oxyhydrogen torch 17 provided directly below the quartz tube 13 is connected to the portion of the quartz tube 13 that will become the soot accumulation section. The inner surface of the quartz tube 13 was etched by heating while moving it in the longitudinal direction of the quartz tube 13 shown in B.

【0030】エッチング終了後、図4に示すようにエッ
チングガスの送入を停止し、続いて15℃に保ったSi
Cl4を毎分530mlの酸素でバブリングして得た気
体を送入装置16により石英管13管内に送入した。ま
た、この時石英管13表面が1200℃程度となるよう
に酸水素トーチ17の火力を調節しながら酸水素トーチ
17を矢印B方向に移動させて石英管13管内にスート
を堆積させた石英管13Aを作製した。
After the etching is completed, as shown in FIG. 4, the feeding of the etching gas is stopped, and then the Si
A gas obtained by bubbling Cl4 with oxygen at a rate of 530 ml per minute was fed into the quartz tube 13 by the feeding device 16. Also, at this time, the oxyhydrogen torch 17 was moved in the direction of arrow B while adjusting the firepower of the oxyhydrogen torch 17 so that the surface of the quartz tube 13 reached about 1200° C., so that soot was deposited inside the quartz tube 13. 13A was produced.

【0031】続いて、図5に示すようにガス送入装置1
6から毎分2000mlヘリウムガスと、毎分50ml
の塩素とを石英管13A内のスート堆積部分に流し入れ
るとともに、昇華用チャンバ14aおよび14b内部が
200℃程度となるように、上記昇華用チャンバ14a
,14bのそれぞれ直下に備えた加熱バーナー18a,
18bで上記各昇華用チャンバを加熱して、上記各昇華
用チャンバ内部の添加剤を脱水した。
Next, as shown in FIG.
6 to 2000ml helium gas per minute and 50ml per minute
of chlorine is poured into the soot deposited portion in the quartz tube 13A, and the sublimation chamber 14a is heated so that the temperature inside the sublimation chambers 14a and 14b is approximately 200°C.
, 14b, heating burners 18a,
Each of the sublimation chambers was heated in step 18b to dehydrate the additives inside each of the sublimation chambers.

【0032】さらに上記の添加剤脱水操作を行いつつ酸
水素トーチ17を矢印B方向に移動させ、石英管13A
管内に堆積したスートの脱水を行った。なおこのスート
脱水時の酸水素トーチ17の火力は、石英管13Aの表
面温度が700℃程度となるように調節した。
Further, while performing the above additive dehydration operation, the oxyhydrogen torch 17 is moved in the direction of arrow B, and the quartz tube 13A is
The soot accumulated inside the pipe was dehydrated. The heating power of the oxyhydrogen torch 17 during this soot dehydration was adjusted so that the surface temperature of the quartz tube 13A was approximately 700°C.

【0033】次に、上記添加剤並びにスートの脱水操作
後、図6に示すようにガス送入装置16操作して石英管
13AへのCl2ガスの流入を停止させた。次に加熱バ
ーナー18aの火力を昇華用チャンバ14a内が950
℃程度となるように調節し、かつ加熱バーナー18bの
火力を昇華用チャンバ14b内が250℃程度となるよ
うに調節し、昇華用チャンバ14a内のErと14b内
のAlとを昇華させてそれぞれ気体状態とし、さらにこ
れら気体状態の添加剤を石英管13A内のスート堆積部
分に送り込んで含浸させた。さらにその後、酸水素トー
チ17の火力を石英管13Aの表面温度が1800℃程
度となるように調節し、さらに酸水素トーチ17を石英
管13Aの長手方向に移動させながらスートを焼結して
添加剤のドープされた透明な石英管13Bを作製した。
Next, after dehydrating the additives and soot, the gas supply device 16 was operated to stop the flow of Cl2 gas into the quartz tube 13A, as shown in FIG. Next, the heating power of the heating burner 18a is set to 950°C in the sublimation chamber 14a.
The heating power of the heating burner 18b is adjusted so that the temperature inside the sublimation chamber 14b is about 250°C, and Er in the sublimation chamber 14a and Al in the sublimation chamber 14b are sublimed. The additives in the gaseous state were then sent into the soot deposited portion of the quartz tube 13A to impregnate it. After that, the heating power of the oxyhydrogen torch 17 is adjusted so that the surface temperature of the quartz tube 13A is about 1800°C, and the soot is sintered and added while moving the oxyhydrogen torch 17 in the longitudinal direction of the quartz tube 13A. A transparent quartz tube 13B doped with the agent was prepared.

【0034】次に、図7に示すように酸水素トーチ17
により高温で加熱して石英管13Bを収縮させて石英管
13Bを中実化し、添加剤が添加されたコア19を有す
る光ファイバ母材20を作製した。
Next, as shown in FIG.
The quartz tube 13B was heated at a high temperature to shrink the quartz tube 13B, thereby making the quartz tube 13B solid, thereby producing an optical fiber preform 20 having a core 19 to which an additive was added.

【0035】上記光ファイバ母材20のコア19をEP
MA法でAlの濃度分布を測定した結果、このコア19
の径方向及び長手方向ともに4wt・%の濃度で均一に
添加されていることが判った。なお、上記本実施例にお
いて作製した光ファイバ母材20を用いて作製した光増
幅用光ファイバの波長利得特性を図8に示す。
The core 19 of the optical fiber preform 20 is coated with EP
As a result of measuring the Al concentration distribution using the MA method, this core 19
It was found that the addition was uniform at a concentration of 4 wt.% in both the radial and longitudinal directions. Incidentally, FIG. 8 shows the wavelength gain characteristics of the optical amplification optical fiber manufactured using the optical fiber preform 20 manufactured in this example.

【0036】[0036]

【発明の効果】以上述べたように、本発明の希土類添加
光ファイバの製造方法にあっては、出発石英管の内部に
スートを堆積させ、続いてこのスート堆積石英管の堆積
スートに昇華用チャンバ内で昇華させて気体状態とした
添加剤を送り込んで気相の添加剤を前記スート内に含浸
させ、しかる後スートを焼結して透明化した石英管を作
製し、さらにこの透明化した石英管を中実化して光ファ
イバ母材を作製する構成としたので、光ファイバ母材の
コアに高濃度の添加剤を添加することができる。従って
本発明の希土類添加光ファイバの製造方法により作製さ
れた光ファイバは波長―利得特性が大きく改善されるた
め、非常に広い帯域の光増幅器に応用できる。
As described above, in the method of manufacturing a rare earth-doped optical fiber of the present invention, soot is deposited inside the starting quartz tube, and then the deposited soot of the soot-deposited quartz tube is used for sublimation. The soot is impregnated with the gaseous additive by sublimating it in the chamber and making it into a gaseous state.The soot is then sintered to produce a transparent quartz tube, and the soot is then sintered to produce a transparent quartz tube. Since the optical fiber preform is manufactured by solidifying the quartz tube, a high concentration of additive can be added to the core of the optical fiber preform. Therefore, the optical fiber manufactured by the method for manufacturing a rare earth-doped optical fiber of the present invention has greatly improved wavelength-gain characteristics, and can be applied to an extremely wide band optical amplifier.

【0037】また添加剤ドープ時間が短時間でよいので
、添加剤を昇華させておく時間も短くて済み、このため
添加剤の昇華量を均一に保持する事が容易となる。従っ
てスート内に添加される添加剤の濃度が均一化される。 また、添加剤を昇華させておく時間が短いと、添加剤が
固体状態のままCVD反応ゾーンに送り込まれる頻度が
極めて少なくため、スート透明化の際に気泡が発生しに
くくなる。
Furthermore, since the time for doping the additive is short, the time for sublimating the additive is also short, making it easy to maintain a uniform amount of sublimation of the additive. Therefore, the concentration of additives added into the soot is made uniform. In addition, if the time for sublimating the additive is short, the frequency of the additive being fed into the CVD reaction zone in a solid state is extremely low, making it difficult for air bubbles to be generated during soot clarification.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る希土類添加光ファイバ製造方法の
一例に用いる出発石英管の縦断面図である。
FIG. 1 is a longitudinal cross-sectional view of a starting quartz tube used in an example of the method for producing a rare earth-doped optical fiber according to the present invention.

【図2】図1中符号13で示す石英管の一方の開口に昇
華用チャンバ14a,14bを連設した状態を示す図で
ある。
2 is a diagram showing a state in which sublimation chambers 14a and 14b are connected to one opening of a quartz tube indicated by reference numeral 13 in FIG. 1. FIG.

【図3】本発明の希土類添加光ファイバ製造方法におい
て好適に用いられる装置を示す概略図である。
FIG. 3 is a schematic diagram showing an apparatus suitably used in the rare earth-doped optical fiber manufacturing method of the present invention.

【図4】本発明の希土類添加光ファイバ製造方法におけ
るスート堆積操作を説明するための図である。
FIG. 4 is a diagram for explaining a soot deposition operation in the rare earth doped optical fiber manufacturing method of the present invention.

【図5】図4中符号13Aで示される石英管内に堆積さ
せたスートおよび符号14a,14bで示される昇華用
チャンバ内の添加剤の脱水操作を説明するための図であ
る。
5 is a diagram for explaining the dehydration operation of the soot deposited in the quartz tube indicated by 13A in FIG. 4 and the additives in the sublimation chamber indicated by 14a and 14b; FIG.

【図6】添加剤を昇華させてスート中に含浸させる操作
を説明するための図である。
FIG. 6 is a diagram for explaining the operation of sublimating the additive and impregnating it into soot.

【図7】図6中符号13Bで示される石英管を中実化さ
せる操作を説明するための図である。
7 is a diagram for explaining an operation of solidifying a quartz tube indicated by reference numeral 13B in FIG. 6. FIG.

【図8】実施例において作製した光ファイバ母材20を
用いて作製した光増幅用光ファイバの波長利得特性を示
すグラフである。
FIG. 8 is a graph showing wavelength gain characteristics of an optical amplification optical fiber manufactured using the optical fiber preform 20 manufactured in the example.

【図9】従来行われている希土類添加光ファイバを用い
た光の直接増幅技術の一例を示す図である。
FIG. 9 is a diagram showing an example of a conventional direct amplification technology of light using a rare earth-doped optical fiber.

【図10】従来のCVD―気相法を用いた希土類添加光
ファイバの製造方法を説明するための図である。
FIG. 10 is a diagram for explaining a method of manufacturing a rare earth-doped optical fiber using a conventional CVD-vapor phase method.

【図11】従来のVAD―気相法を用いた希土類添加光
ファイバの製造方法を説明するための図である。
FIG. 11 is a diagram for explaining a method of manufacturing a rare earth doped optical fiber using the conventional VAD-vapor phase method.

【図12】コアにErを添加してなる光ファイバと、コ
アにErとAlとを添加してなる光ファイバの波長―利
得特性を比較するためのグラフである。
FIG. 12 is a graph for comparing the wavelength-gain characteristics of an optical fiber whose core is doped with Er and an optical fiber whose core is doped with Er and Al.

【符号の説明】[Explanation of symbols]

11  フッ素ドープ石英管 12  純粋石英管 13  石英管 13Aスート堆積石英管 14a昇華用チャンバ 14b昇華用チャンバ 20  光ファイバ母材 11 Fluorine-doped quartz tube 12 Pure quartz tube 13 Quartz tube 13A soot deposited quartz tube 14a sublimation chamber 14b sublimation chamber 20 Optical fiber base material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  出発石英管内にCVD法により多孔質
状態の石英ガラススートを堆積するとともに、該スート
に希土類元素を添加し、この後、該出発石英管を加熱し
て該スートを溶融し、上記希土類元素を含有する透明な
ガラス層とし、さらに該出発石英管を加熱し、中実化し
てプリフォームを形成する希土類添加光ファイバの製造
方法において、上記出発石英管の一方の開口側に少なく
とも1つの添加剤昇華用チャンバを連設させたものを用
意し、出発石英管の内側部分に、多孔質のスートを堆積
させた後、該昇華用チャンバ内に収容された添加剤を加
熱して、昇華した気相の添加剤を前記スート内に含浸さ
せ、しかる後添加剤が含浸されたスートを、透明ガラス
化することを特徴とする希土類添加光ファイバの製造方
法。
1. Depositing a porous silica glass soot in a starting quartz tube by a CVD method, adding a rare earth element to the soot, and then heating the starting quartz tube to melt the soot, In the method for manufacturing a rare earth-doped optical fiber, the transparent glass layer containing a rare earth element is formed, and the starting quartz tube is further heated and solidified to form a preform. A series of additive sublimation chambers is prepared, and after depositing porous soot on the inner part of the starting quartz tube, the additive contained in the sublimation chamber is heated. . A method for producing a rare earth-doped optical fiber, comprising impregnating the soot with a sublimated gas-phase additive, and then converting the soot impregnated with the additive into transparent glass.
JP4275191A 1991-02-14 1991-02-14 Production of optical fiber containing rare earths added thereto Pending JPH04260632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4275191A JPH04260632A (en) 1991-02-14 1991-02-14 Production of optical fiber containing rare earths added thereto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4275191A JPH04260632A (en) 1991-02-14 1991-02-14 Production of optical fiber containing rare earths added thereto

Publications (1)

Publication Number Publication Date
JPH04260632A true JPH04260632A (en) 1992-09-16

Family

ID=12644710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4275191A Pending JPH04260632A (en) 1991-02-14 1991-02-14 Production of optical fiber containing rare earths added thereto

Country Status (1)

Country Link
JP (1) JPH04260632A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503650A (en) * 1992-03-17 1996-04-02 Sumitomo Electric Industries, Ltd. Method for producing a glass thin film with controlloing an oxide vapor of an additive
KR100521958B1 (en) * 2002-09-18 2005-10-14 엘에스전선 주식회사 method and apparatus for fabricating of optical fiber preform with double torch in MCVD
KR100545813B1 (en) * 2002-08-20 2006-01-24 엘에스전선 주식회사 Optical fiber preform manufacturing method using crystal chemical vapor deposition including dehydration and dechlorination process and optical fiber manufactured by this method
KR100554424B1 (en) * 2002-11-07 2006-02-22 엘에스전선 주식회사 Method For Dehydration Used In Optical Fiber Preform Menufacturing Process, and Method And Apparatus of Manufacturing Optical Fiber Preform Using The Same
JP2010155780A (en) * 2010-03-05 2010-07-15 Mitsubishi Cable Ind Ltd Method of manufacturing optical fiber
CN102875019A (en) * 2012-09-26 2013-01-16 武汉烽火锐光科技有限公司 Manufacturing method of rare earth-doped optical fiber preformed rod
CN109020185A (en) * 2018-08-03 2018-12-18 长飞光纤光缆股份有限公司 The preparation method of microstructured optical fibers prefabricated rods

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503650A (en) * 1992-03-17 1996-04-02 Sumitomo Electric Industries, Ltd. Method for producing a glass thin film with controlloing an oxide vapor of an additive
US5660611A (en) * 1992-03-17 1997-08-26 Sumitomo Electric Industries, Ltd. Method for producing glass thin film
KR100545813B1 (en) * 2002-08-20 2006-01-24 엘에스전선 주식회사 Optical fiber preform manufacturing method using crystal chemical vapor deposition including dehydration and dechlorination process and optical fiber manufactured by this method
US7155098B2 (en) 2002-08-20 2006-12-26 L.G. Cable Ltd. Method of manufacturing optical fiber preform using modified chemical vapor deposition including dehydration and dechlorination process and optical fiber manufactured by the method
KR100521958B1 (en) * 2002-09-18 2005-10-14 엘에스전선 주식회사 method and apparatus for fabricating of optical fiber preform with double torch in MCVD
KR100554424B1 (en) * 2002-11-07 2006-02-22 엘에스전선 주식회사 Method For Dehydration Used In Optical Fiber Preform Menufacturing Process, and Method And Apparatus of Manufacturing Optical Fiber Preform Using The Same
JP2010155780A (en) * 2010-03-05 2010-07-15 Mitsubishi Cable Ind Ltd Method of manufacturing optical fiber
CN102875019A (en) * 2012-09-26 2013-01-16 武汉烽火锐光科技有限公司 Manufacturing method of rare earth-doped optical fiber preformed rod
CN109020185A (en) * 2018-08-03 2018-12-18 长飞光纤光缆股份有限公司 The preparation method of microstructured optical fibers prefabricated rods

Similar Documents

Publication Publication Date Title
US5474588A (en) Solution doping of a silica preform with erbium, aluminum and phosphorus to form an optical fiber
US5262365A (en) Quartz glass doped with rare earth element and production thereof
CA2910731C (en) A process for fabrication of ytterbium doped optical fiber
US6408652B1 (en) Solution doping method of making an optical amplifying fiber
US4799946A (en) Preparation of glass fibre
US5246475A (en) Method for preparing a fused silica glass body co-doped with a rare earth element and aluminum
US6751990B2 (en) Process for making rare earth doped optical fiber
CA2436579C (en) A process for making rare earth doped optical fibre
AU2001242728A1 (en) A process for making rare earth doped optical fibre
JPH04260632A (en) Production of optical fiber containing rare earths added thereto
US8649650B2 (en) Method for fabricating rare earth (RE) doped optical fiber using a new codopant
JP3075583B2 (en) Manufacturing method of rare earth doped optical fiber
CA2481204C (en) A method of fabricating rare earth doped optical fibre
JP4875301B2 (en) Rare earth doped optical fiber preform manufacturing method
DiGiovanni Fabrication of rare-earth-doped optical fiber
JPH02293332A (en) Production of rare earth element-doped silica glass
JP4676118B2 (en) Manufacturing method of optical fiber preform
JP2012053476A (en) Rare earth doped optical fiber
ZA200305990B (en) A process for making rare earth doped optical fibre.
JPH0742128B2 (en) Rare earth-doped fiber and method for manufacturing preform thereof
JPH04347825A (en) Production of rare earth element added optical fiber

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000111