JPS60186424A - Manufacture of glass rod having refractive index gradient - Google Patents

Manufacture of glass rod having refractive index gradient

Info

Publication number
JPS60186424A
JPS60186424A JP59041409A JP4140984A JPS60186424A JP S60186424 A JPS60186424 A JP S60186424A JP 59041409 A JP59041409 A JP 59041409A JP 4140984 A JP4140984 A JP 4140984A JP S60186424 A JPS60186424 A JP S60186424A
Authority
JP
Japan
Prior art keywords
dopant
glass body
refractive index
rod
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59041409A
Other languages
Japanese (ja)
Other versions
JPS6227012B2 (en
Inventor
Shigeaki Omi
成明 近江
Yoshiyuki Asahara
浅原 慶之
Hiroyuki Sakai
裕之 坂井
Seiichi Aragaki
新垣 誠一
Shin Nakayama
伸 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP59041409A priority Critical patent/JPS60186424A/en
Publication of JPS60186424A publication Critical patent/JPS60186424A/en
Publication of JPS6227012B2 publication Critical patent/JPS6227012B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01262Depositing additional preform material as liquids or solutions, e.g. solution doping of preform tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals

Abstract

PURPOSE:To produce a glass rod having adequate refractive index gradient, by unstuffing a stuffed porous glass rod with a dopant solution having low concentration, and precipitating the dopant in the pores. CONSTITUTION:A porous glass rod is stuffed with a dopant solution, and is unstuffed in a dopant solution containing the same kind of dopant as the above solution and having lower dopant concentration. The unstuffed rod is immersed in a solvent maintained at <=5 deg.C and having a dopant solubility of <=0.5g/100g (solvent) at 5 deg.C to effect the precipitation of the dopant in the pores. The glass is then dried and sintered to collapse the pores. The process gives a glass rod having almost ideal refractive index gradient and excellent axial aberration characteristics.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、光伝送用ファイバーの素材(プレフオーム)
やロッド状レンズの材料として、特にマイクロレンズア
レー用のロッド状マイクロレンズ、あるいは光通信用フ
ァイバーと光源との結合用マイクロレンズなどの素材と
して好適な屈折率勾配。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is directed to optical transmission fiber materials (preforms).
The refractive index gradient is suitable as a material for rod-shaped lenses, particularly rod-shaped microlenses for microlens arrays, or microlenses for coupling optical communication fibers and light sources.

を有するロッド状ガラス体の製造法に関する。The present invention relates to a method for manufacturing a rod-shaped glass body having the following.

[従来技術] 屈折率勾配を有するガラス体の製造法としては、分子ス
タッフインク法が知られている。この方法は多孔質ガラ
ス体内にドーパント(屈折率修正成分)が成る濃度勾配
を形成して分布するよう、ドーパントを多孔質ガラス体
の細孔内に充填し、しかる後その細孔を熱処理(焼成)
によってつぶす方法であって、特開昭51−12607
号公報には、多孔質ガラス体の細孔内にドーパントの溶
液を浸透(スタッフィング)させた後、そのガラス体か
らドーパントの一部を溶出(アンスタッフインク)させ
て細孔内に分布するドーパン1〜に濃度勾配を形成させ
、次いでドーパントを細孔内に析出させてからそのガラ
ス体を乾燥し、しかる後これに焼成処理を施して細孔を
つぶすことからなる屈折率勾配を有づるガラス体の製造
方法が教示されている。
[Prior Art] A molecular stuff ink method is known as a method for manufacturing a glass body having a refractive index gradient. This method involves filling the pores of a porous glass body with a dopant (refractive index modifying component) so that the dopant (refractive index modifying component) forms a concentration gradient and is distributed within the porous glass body. )
A method of crushing by
The publication describes that after a dopant solution is infiltrated into the pores of a porous glass body (stuffing), a part of the dopant is eluted from the glass body (unstuffed ink), and the dopant is distributed within the pores. A glass having a refractive index gradient, which is obtained by forming a concentration gradient in 1 to 2, then precipitating a dopant into the pores, drying the glass body, and then subjecting it to a firing treatment to collapse the pores. A method of manufacturing the body is taught.

[発明の目的] マイク【コレンズアレー用のロッド状マイクロレンズ、
あるいは光通信ファイバーと光源との結合用マイクロレ
ンズなどの素材として使用されるところの屈折率勾配を
右づ−る[」ラド状ガラス体は、収差が小さく、結像特
性がよいことが要件である。
[Object of the invention] Microphone [rod-shaped microlens for collens array,
Alternatively, the rad-shaped glass body, which is used as a material for microlenses for coupling optical communication fibers and light sources, etc., with a right gradient of refractive index, must have small aberrations and good imaging characteristics. be.

レンズの収差を小さくするためには、屈折率勾配を理想
分布に調整することが望ましい。屈折率勾配を有するロ
ッド状ガラス体の中心軸上の屈折率をno、中心軸から
半径「゛の位置の屈折率をn (r)とJるど、ロッド
の半径方向全域に亘る屈折率の理想分布は式(1)で表
わされる。
In order to reduce lens aberrations, it is desirable to adjust the refractive index gradient to an ideal distribution. Let the refractive index on the central axis of a rod-shaped glass body with a refractive index gradient be no, and the refractive index at a radius of ``'' from the central axis be n (r).The refractive index over the entire radial direction of the rod is The ideal distribution is expressed by equation (1).

n(r) −no (1−(gr) ) ・・・(1)
ここで、qは分布の2次定数である。
n(r) -no (1-(gr)) ...(1)
Here, q is a quadratic constant of the distribution.

然るに、前掲の公開公報に教示された分子スタッフィン
グ法に従って、l]ラッド多孔質ガラス体く半径ro)
を硝酸セシウム水溶液中に浸漬してスタッフィングを行
なった後、40体積%のエタノール水溶液中に浸漬して
アンスタッフインクを行ない、次いで0℃のエタノール
に3時間浸漬してドーパンl= CS N O3を細孔
内に析出さけ、しかる後乾燥、焼成を行なって屈折率勾
配を有Jるロッド状ガラス体Aを製造した場合には、そ
のガラスロッドへの半径方向の屈折率分布は、第1図(
a)に破線で示す通りあって、中心軸の近傍では実線で
示す理想分布曲線と一致するが、半径の約60%を越え
た位置では、周辺に近付くに従って勾配が緩やかになり
、理想分布曲線との隔たりが大きくなる。式(1)で表
わされる理想分布に対する屈折率分布の近似の度合は下
式(2)で定義される標準偏差Sの大きざで表わされ、
経験上、Sの値がiox io’以上になると収差が大
きくなるので、この値以下であることが好ましい。上に
紹介したガラスロッドAでは、半径の60%まではSの
値が4.4X 10’であるものの、80%まででは4
0X 10’を越えるので、ロッド状マイクロレンズと
しては実用に供し得ない。
However, according to the molecular stuffing method taught in the above-mentioned publication, the radius ro)
After immersing it in a cesium nitrate aqueous solution to perform stuffing, immersing it in a 40% by volume ethanol aqueous solution to perform unstuffing, and then immersing it in 0 °C ethanol for 3 hours to form dopane l = CS N O3. When a rod-shaped glass body A having a refractive index gradient is produced by depositing it in the pores, followed by drying and firing, the refractive index distribution in the radial direction of the glass rod is as shown in Figure 1. (
As shown by the broken line in a), it matches the ideal distribution curve shown by the solid line near the central axis, but at positions beyond about 60% of the radius, the slope becomes gentler as it approaches the periphery, and the ideal distribution curve The gap between them becomes larger. The degree of approximation of the refractive index distribution to the ideal distribution expressed by equation (1) is expressed by the size of the standard deviation S defined by equation (2) below,
Experience has shown that when the value of S exceeds iox io', aberrations increase, so it is preferable that the value of S be equal to or less than this value. In the glass rod A introduced above, the value of S is 4.4X 10' up to 60% of the radius, but it is 4.4X 10' up to 80% of the radius.
Since it exceeds 0x10', it cannot be used practically as a rod-shaped microlens.

また、ロッド状レンズでは軸上収差特性も考慮する必要
があるが、既述のガラスロッドAでは、第1図(b)で
示されるように、ロッドの周辺部で軸上収差が悪化する
Further, in a rod-shaped lens, it is necessary to consider the axial aberration characteristics, but in the glass rod A described above, the axial aberration worsens at the periphery of the rod, as shown in FIG. 1(b).

本発明の目的は、分子スタッフインク法を改良して理想
分布にほぼ一致する屈折率勾配を有するうえに、軸上収
差も良好なロッド状ガラス体の製造方法を提供すること
にある。
An object of the present invention is to improve the molecular stuff ink method to provide a method for producing a rod-shaped glass body that has a refractive index gradient that almost matches an ideal distribution and also has good axial aberration.

[発明の構成] 本発明者らは、上の目的に適うロッド状ガラス体の製造
法について研究を重ねた結果、スタッフィングしたロッ
ド状多孔質ガラス体をアンスタラ5− フィックするに際し、スタッフインクに用いたドーパン
ト溶液と同種のドーパン(−をより低濃度で含有する溶
液を使用し、このドーパント溶液にガラス体を浸漬する
ことによって、ドーパントの濃度勾配から予想されるガ
ラス体周辺部の屈折率を理想分布曲線(第2図(a)の
実線参照)より若干高くなるようにアンスタッフィング
し、しかる後このガラス体をドーパント溶解度の低い溶
媒に低温で浸漬すれば、ガラス体内のドーパントは細孔
内に析出すると共に、ガラス体周辺部のドーパントの一
部はガラス体から改めて溶出されるので、最終的には第
2図(b)に示す如く、ロッドの周辺部まで理想分布に
ほぼ合致する屈折率勾配を持つガラス体が得られること
を見出した。
[Structure of the Invention] As a result of repeated research on a method for manufacturing a rod-shaped glass body that meets the above objectives, the present inventors have discovered a method for using stuffing ink when unstirring a stuffed rod-shaped porous glass body. By using a solution containing the same type of dopant (-) at a lower concentration as the dopant solution that was used, and by immersing the glass body in this dopant solution, the refractive index of the peripheral area of the glass body expected from the dopant concentration gradient can be idealized. If the glass body is unstuffed to be slightly higher than the distribution curve (see the solid line in Figure 2 (a)) and then immersed in a solvent with low dopant solubility at low temperature, the dopant in the glass body will be absorbed into the pores. At the same time as the precipitation, a part of the dopant in the periphery of the glass body is eluted from the glass body, so that the refractive index almost matches the ideal distribution up to the periphery of the rod, as shown in Figure 2 (b). It has been found that a glass body with a gradient can be obtained.

而して本発明の方法は、ロッド状多孔質ガラス体の内部
にドーパント溶液をスタッフィングさせた後、細孔内の
ドーパントの一部をアンスタッフィングさせてガラス体
内に分布するドーパントに濃度勾配を形成させ、しかる
後ドーパントを細孔内に析出させてからガラス体を乾燥
し、次いでこ6− れを焼成して細孔をつぶすことからなる屈折率勾配を有
するロッド状ガラス体の製造法に於い−C、スタッフィ
ングさゼた前記のガラス体をスタッフインクに用いたド
ーパント溶液と同種のドーパントをより低m度で含有す
る溶′atこ浸漬づることによってアンスタッフインク
を行ない、次いでノ7ンスタッフイングされたガラス体
を5℃に於()るドーパント溶解度が0.5g/loo
g (溶媒)以下である溶媒に5℃以下の温度で浸i!
 ?lることにJ:っTI孔内でのドーパン1〜の析出
を行なわゼることを特徴とする。
Therefore, the method of the present invention involves stuffing a dopant solution inside a rod-shaped porous glass body, and then unstuffing a portion of the dopant within the pores to form a concentration gradient in the dopant distributed within the glass body. A method for producing a rod-shaped glass body having a refractive index gradient comprises: precipitating a dopant into the pores, drying the glass body, and then firing the glass body to collapse the pores. C. Unstuffed ink is carried out by immersing the stuffed glass body in a solution containing the same type of dopant at a lower concentration as the dopant solution used for the stuffed ink, and then unstuffed. Dopant solubility at 5℃ of stuffed glass body is 0.5g/loo
g (Solvent) Immerse in a solvent at a temperature of 5°C or less i!
? In particular, it is characterized in that dopanes 1 to 1 are precipitated within the J:TI pores.

本発明で使用される11ツド状多孔質ガラス体は、分相
し得る硼珪酸塩ガラスロッドから容易に製造可能であっ
て、例えば当該ガラスロッドを所定の条件で熱処理する
こにより、SiO2に富んだ酸不溶相と、アルカリ金属
酸化物及びB203に富んだ酸易溶相に分相させ、次に
このガラスロッドを酸で処理して酸易溶相を溶出さけれ
ば、連続細孔を有するロッド状多孔質ガラス体を得るこ
とができる。
The 11-point porous glass body used in the present invention can be easily manufactured from a borosilicate glass rod that can undergo phase separation, and can be made rich in SiO2 by, for example, heat-treating the glass rod under predetermined conditions. If the glass rod is separated into an acid-insoluble phase and an acid-easily soluble phase rich in alkali metal oxides and B203, and then treated with acid to elute the acid-easily soluble phase, it will have continuous pores. A rod-shaped porous glass body can be obtained.

本発明では分子スタッフィング法で公知のドーパントが
いずれも使用可能であるが、なかでも硝酸タリウム(T
47NO3)、硝酸セシウム(CsNO3)などが好ま
しい。ロッド状多孔質ガラス体にドーパン1−の溶液を
スタッフィングする工程には、公知の分子スタッフィン
グ法のそれがそのまま採用される。しかし、本発明のア
ンスタッフインク工程は、ドーパントを含まない溶媒の
みを使用する従来のアンスタッフィング工程とは相違し
て、スタッフィング工程で用いたドーパント溶液と同種
のドーパントをより低濃度で含有する溶液を使用する。
In the present invention, any dopant known in the molecular stuffing method can be used, but among them, thallium nitrate (T
47NO3), cesium nitrate (CsNO3), and the like are preferred. In the step of stuffing the rod-shaped porous glass body with a solution of dopane 1-, a known molecular stuffing method is employed as is. However, unlike the conventional unstuffing process that uses only a dopant-free solvent, the unstuffed ink process of the present invention uses a solution containing the same type of dopant at a lower concentration as the dopant solution used in the stuffing process. use.

この溶液にスタッフィングを終えたロッド状多孔質ガラ
ス体を浸漬することによって、多孔質ガラス体には第2
図(a)に破線で示されるような屈折率分布曲線を与え
るドーパントの濃度勾配が形成される。アンスタッフィ
ング工程で使用されるドーパント溶液の溶媒は、スタッ
フィング工程でのドーパント溶液の溶媒と同種であって
も異種であっても差支えないが、典型的にpへ は後述の実施例に示ず通り、スタッフィング工程では水
が、アンスタッフィング工程では低級アルコールの水溶
液がそれぞれドーパントの溶媒として使用される。そし
てアンスタッフィング工程の温度は、スタッフィング工
程のそれより低温であるのが通例である。
By immersing the stuffed rod-shaped porous glass body in this solution, the porous glass body has a second
A dopant concentration gradient is formed that provides a refractive index distribution curve as shown by the broken line in Figure (a). The solvent of the dopant solution used in the unstuffing process may be the same or different from the solvent of the dopant solution in the stuffing process, but typically p is , water is used as a solvent for the dopant in the stuffing process, and an aqueous solution of a lower alcohol is used in the unstuffing process. The temperature of the unstuffing process is usually lower than that of the stuffing process.

アンスタッフインク工程を終え、所定通りにドーパント
の濃度勾配が形成された多孔質ガラス体は、次いでプレ
シピデーシ」ン工程に移され、5℃に於けるドーパント
mWEWが0.5g/ ioo。
After the unstuffed ink process, the porous glass body in which a dopant concentration gradient has been formed as specified is then transferred to a precipitate process, where the dopant mWEW at 5°C is 0.5 g/ioo.

(溶媒)以下である溶媒に、5℃以下の温度で浸漬され
る。これによって多孔質ガラス体内のドーパントは細孔
内に析出1゛シめられると共に、ガラス体周辺部の細孔
内に存在するドーパントの一部はガラス体外へ溶出せし
められるので、ロッド状多孔質ガラス体には第2図(b
)の破線(実線は理想分布曲線である)で示されるよう
な屈折率分布を与え得るドーパントの*i勾配が付与さ
れるのである。このプレシピテーション工程で使用され
る溶媒、すなわち5℃に於(プるドーパント溶解度がo
、5g/ 10(Ig (溶媒)以下である溶媒どし9
− ては、メタノール、エタノールなどで例示される低級−
価アルコール及びアセトン、メチルエチルケトンなどで
例示されるケトンの1種もしくは2種以上が使用できる
ほか、これらと水又はメチルエーテル、メチルエチルエ
ーテル、エチルエーテルなどで例示されるエーテルどの
混合物も溶媒として使用可能である。ちなみに、ドーパ
ント溶解度が0.50/ 1000 (溶媒)より大き
い溶媒を使用した揚台には、ガラス体周辺部のドーパン
トの溶出速度が速くなりすぎ、細孔内にドーパントを析
出さけるのに必要時間だけ、ガラス体を当該溶媒に浸漬
しておくとガラス体周辺部の屈折率勾配が急になり、理
想分布から逸脱する。ガラス体を溶媒に浸漬する際の温
度は、5°C以下とすべきあって、5℃より高い温度で
浸漬した場合には、ガラス体内のドーパントの濃度分布
に乱れが生ずるので好ましくない。浸漬はガラス体内に
分布するドーパン1〜を細孔内に析出させるに必要な時
間だけ続けられるが、その浸漬時間は一般に多孔質ガラ
スロッド径(vn)の2乗x O,25〜1時間の範1
0− 囲にある。
(Solvent) Immersed in a solvent below at a temperature of 5°C or below. As a result, the dopant within the porous glass body is precipitated into the pores, and a portion of the dopant present in the pores around the glass body is eluted out of the glass body, resulting in a rod-shaped porous glass. Figure 2 (b) is on the body.
) is provided with an *i gradient of the dopant that can provide a refractive index distribution as shown by the broken line (the solid line is the ideal distribution curve). The solvent used in this precipitation step, i.e., the solubility of the dopant at 5°C
, 5g/10(Ig (solvent) or less) 9
− Examples of lower − such as methanol, ethanol, etc.
In addition to using one or more types of alcohols and ketones such as acetone and methyl ethyl ketone, a mixture of these with water or any ether such as methyl ether, methyl ethyl ether, ethyl ether, etc. can be used as a solvent. It is. By the way, if a lifting platform uses a solvent with a dopant solubility higher than 0.50/1000 (solvent), the elution rate of the dopant around the glass body will be too fast, and the time required to precipitate the dopant into the pores will be too high. However, if the glass body is immersed in the solvent, the refractive index gradient around the glass body becomes steeper and deviates from the ideal distribution. The temperature at which the glass body is immersed in the solvent should be 5° C. or lower; immersion at a temperature higher than 5° C. is not preferred because the dopant concentration distribution within the glass body will be disturbed. The immersion is continued for a period of time necessary to precipitate the dopanes distributed within the glass body into the pores, but the immersion time is generally 25 to 1 hour. Range 1
0- Surrounded by.

−に記のプレシピテーシ」ン工程を終えた多孔質ガラス
体は、溶媒から取出した後、分子スタッフインク法の常
法通り、これを乾燥して細孔内の溶媒を揮散せしめ、次
いで細孔がつぶれるまで焼成処理を施すことにより、目
的の屈折率勾配を右Jるロッド状ガラス体を得ることが
できる。
The porous glass body that has undergone the precipitating process described in - is removed from the solvent, and then dried to volatilize the solvent in the pores in the usual manner of the molecular stuff ink method. By performing the firing process until it collapses, it is possible to obtain a rod-shaped glass body with a desired refractive index gradient.

[実施例コ 重量%FS i 02−54.50 、B203 ・−
34,3fINa20・−5,20及ヒに2(>−6,
00(71)組成ヲ有するガラスを1450℃で3時間
溶解し、溶解中1時間撹拌を行なって鋳型に流し込み、
480°Cで2時間保持した後、炉内で放冷してガラズ
ブ1]ツクを得た。このブロックから直径4〜6mm、
長さ100mmのガラスロッドを複数本切り出し、各ロ
ッドを540℃で120時間熱処理して分相ざぜ、しか
る後これらを15NのIlIIM中100℃で12〜2
4時間処理して多孔質ガラスロッドを得た。
[Example weight% FS i 02-54.50, B203 ・-
34,3fINa20・-5,20 and 2(>-6,
A glass having a composition of 00(71) was melted at 1450°C for 3 hours, stirred for 1 hour during the melting, and poured into a mold.
After being held at 480°C for 2 hours, it was allowed to cool in a furnace to obtain Galazub 1]. From this block, the diameter is 4 to 6 mm,
A plurality of glass rods each having a length of 100 mm were cut out, and each rod was heat treated at 540°C for 120 hours to separate the phases, and then they were heated in 15N IlIIM at 100°C for 12 to 2 hours.
After treatment for 4 hours, a porous glass rod was obtained.

次にこれらの多孔質ガラスロッドそれぞれに、次表の条
件でスタッフインク処理、アンスタッフィック処理及び
プレシピテーション処理を施した後、相対温度20%以
下の雰囲気中で乾燥し、続いて各[1ツドを細孔がつぶ
れる温度まで加熱焼成して屈折率勾配を有するガラスロ
ッドを得た。尚、表中の比較例1及び2は、特開昭51
−126207号公報に教示された方法でアンスタッフ
インク処理を行なったものに相当する。
Next, each of these porous glass rods was subjected to stuff ink treatment, unstuffing treatment, and precipitation treatment under the conditions shown in the table below, and then dried in an atmosphere at a relative temperature of 20% or less, and then each [ A glass rod having a refractive index gradient was obtained by heating and firing one rod to a temperature at which the pores collapsed. In addition, Comparative Examples 1 and 2 in the table are
This corresponds to unstuffed ink processing performed by the method taught in Japanese Patent No. 126207.

こうして得られた各ガラスロッドについて、D線下で干
渉顕微鏡法により半径方向の屈折率分布を測定し、63
3nml−1e−Neレーザー光で光線追跡法により軸
上収差を測定した。結果を第1表及び第2表に示す。(
以下余白) 前2表から明らかな通り、本発明の方法で得られた実施
例1〜10のガラスロッドは、前掲の式(1)で表わさ
れる屈折率の理想分布(半径方向分布)に対し、ロッド
半径の90%まで標準偏差Sが2へ・5 x 10−5
の範囲にあって、理想分布とよく一致するのに反し、従
来技術による比較例1及び2のガラスロッドは、ロッド
半径の80%で既に標準偏差Sが10x 10−5を越
える。
For each glass rod obtained in this way, the refractive index distribution in the radial direction was measured by interference microscopy under the D line.
The axial aberration was measured by a ray tracing method using a 3 nml-1e-Ne laser beam. The results are shown in Tables 1 and 2. (
As is clear from the previous two tables, the glass rods of Examples 1 to 10 obtained by the method of the present invention have a difference with respect to the ideal distribution (radial distribution) of refractive index expressed by the above formula (1). , the standard deviation S becomes 2 up to 90% of the rod radius. 5 x 10-5
However, in the glass rods of Comparative Examples 1 and 2 according to the prior art, the standard deviation S already exceeds 10×10 −5 at 80% of the rod radius.

また、実施例1〜5及び比較例で得られたガラスロッド
の軸上収差の測定結果は第3図に示されるが、比較例1
及び2のガラスロッドは、第3図(f)および(q)か
ら明らかな通り、光線入射半径比0.6より周辺側で軸
上収差が急激に悪化する。このことは実質的にロッド状
レンズとして有効な領域が、光軸を中心とした面積36
%までの範囲にすぎないことを意味する。これに対し、
実施例1〜5のガラスロッドは、それぞれ第3図(a)
〜(e)で図示される通り、いずれも光線入射半径比0
.9まで軸上収差が±50μm以内にあり、ロンドのほ
ぼ全域がレンズとして活用し得ることが15− 解る。
Furthermore, the measurement results of the axial aberrations of the glass rods obtained in Examples 1 to 5 and Comparative Examples are shown in FIG.
As is clear from FIGS. 3(f) and 3(q), the axial aberrations of glass rods No. 2 and 2 rapidly worsen on the peripheral side from a light incident radius ratio of 0.6. This means that the effective area as a rod-shaped lens is approximately 36 mm around the optical axis.
It means only up to %. On the other hand,
The glass rods of Examples 1 to 5 are shown in FIG. 3(a), respectively.
As shown in ~(e), the ray incident radius ratio is 0 in both cases.
.. It can be seen that the axial aberration up to 9 is within ±50 μm, and that almost the entire Rondo can be used as a lens.

[効 果] 以上詳述して来た通り、本発明の方法によれば、理想分
布にほぼ一致する屈折率勾配を有し、しがも軸上収差特
性に優れた[lラド状ガラス体を製造づることができる
。従って、本発明は各種のロッド状レンズの累月となり
得るロンド状ガラス体の製造法として、その工業的価値
は極めて大きい。
[Effects] As described in detail above, according to the method of the present invention, a [lrad-shaped glass body] which has a refractive index gradient that almost matches the ideal distribution and has excellent axial aberration characteristics. can be manufactured. Therefore, the present invention has extremely great industrial value as a method for manufacturing a rond-shaped glass body that can be used as a lens for various rod-shaped lenses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は従来法で製造したガラス[1ツドAの半
径方向の屈折率分布を示し、第1図(b)は同じくガラ
ス[IラドAの軸上収差を示す。第2図(a)は本発明
のアンスタッフインク工程を終えた多孔質ガラスロッド
をそのまま乾燥、焼成した場合に得られる半径方向の屈
折率分布を示し、第2図(b)は本発明の方法に従って
プレシビテーション工程を終えた多孔質ガラス[1ツド
を乾燥、焼成して得られる半径方向の屈折率分布を示J
゛。 第3図(a)〜(e)はそれぞれ実施例1〜5で得たガ
ラスロッドの軸上収差を示し、第3図(f) 16− 及び(g)は比較例1及び2で得たガラスロッドの軸−
L収差を示ず。 出 願 人 株式会社 保 谷 硝 子代 理 人 朝
 倉 正 幸 17− ((IJ/J)U kwy 特開昭GO−186424(7)
FIG. 1(a) shows the refractive index distribution in the radial direction of glass [Irad A] manufactured by a conventional method, and FIG. 1(b) similarly shows the axial aberration of glass [Irad A]. FIG. 2(a) shows the radial refractive index distribution obtained when the porous glass rod that has undergone the unstuffed ink process of the present invention is dried and fired as it is, and FIG. 2(b) shows the refractive index distribution of the present invention. The refractive index distribution in the radial direction obtained by drying and firing the porous glass that has undergone the precivitation process according to the method
゛. Figures 3(a) to (e) show the axial aberrations of the glass rods obtained in Examples 1 to 5, respectively, and Figures 3(f) and (g) show the axial aberrations of the glass rods obtained in Comparative Examples 1 and 2. Glass rod axis
Shows no L aberration. Applicant Yasutani Glass Co., Ltd. Managing Director Masayuki Asakura 17- ((IJ/J) U kwy JP-A-Sho GO-186424 (7)

Claims (1)

【特許請求の範囲】[Claims] 1 ロンド状多孔質ガラス体の内部にドーパン1〜の溶
液を浸透(スタッフィング)させた後、細孔内のドーパ
ントの一部をガラス体から溶出(アンスタッフインク)
させてガラス体内に分布するドーパントに濃度勾配を形
成させ、しかる後ドーパントを細孔内に析出さけてから
ガラス体を乾燥し、次いでこれを焼成して細孔をつぶす
ことからなる屈折率勾配を有するロッド状ガラス体の製
法に於いて、スタッフィングさせたガラス体をスタッフ
ィングに用いたドーパント溶液より低1度で同種のドー
パントを金石する溶液に浸漬することによってアンスタ
ッフインクを行ない、しかる後アンスタッフインクされ
たガラス体を5℃に於番プるドーパント溶解度が0.5
q/ 100G (溶媒)以下であるr8媒に5°C以
下の温度で浸漬づることにより細孔内でのドーパン1〜
の析出を行わせることを特徴とする前記の屈折率勾配を
有するロッド状ガラス体の製法。
1 After infiltrating (stuffing) the solution of dopant 1 to inside the rond-like porous glass body, a part of the dopant in the pores is eluted from the glass body (unstuffed ink).
A refractive index gradient is created by allowing the dopant distributed within the glass body to form a concentration gradient, then precipitating the dopant into the pores, drying the glass body, and then firing it to collapse the pores. In the method for manufacturing a rod-shaped glass body, unstuffing is performed by immersing the stuffed glass body in a solution containing the same type of dopant at a temperature lower than the dopant solution used for stuffing, and then unstuffed. When the inked glass body is heated to 5°C, the dopant solubility is 0.5.
q / 100G (solvent) or less by immersing in r8 medium at a temperature of 5°C or less, dopan 1~
1. A method for producing a rod-shaped glass body having a refractive index gradient as described above, which comprises causing the precipitation of.
JP59041409A 1984-03-06 1984-03-06 Manufacture of glass rod having refractive index gradient Granted JPS60186424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59041409A JPS60186424A (en) 1984-03-06 1984-03-06 Manufacture of glass rod having refractive index gradient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59041409A JPS60186424A (en) 1984-03-06 1984-03-06 Manufacture of glass rod having refractive index gradient

Publications (2)

Publication Number Publication Date
JPS60186424A true JPS60186424A (en) 1985-09-21
JPS6227012B2 JPS6227012B2 (en) 1987-06-11

Family

ID=12607556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59041409A Granted JPS60186424A (en) 1984-03-06 1984-03-06 Manufacture of glass rod having refractive index gradient

Country Status (1)

Country Link
JP (1) JPS60186424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277525A (en) * 1987-05-08 1988-11-15 Nippon Sheet Glass Co Ltd Production of optical glass
WO2003035564A3 (en) * 2001-10-24 2003-07-31 Inst Nat Optique Optical fibre and preform as well as their manufacture from phase-separated glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277525A (en) * 1987-05-08 1988-11-15 Nippon Sheet Glass Co Ltd Production of optical glass
JPH0527575B2 (en) * 1987-05-08 1993-04-21 Nippon Ita Garasu Kk
WO2003035564A3 (en) * 2001-10-24 2003-07-31 Inst Nat Optique Optical fibre and preform as well as their manufacture from phase-separated glass
US7058269B2 (en) 2001-10-24 2006-06-06 Institut National D'optique Reconstructed glass for fiber optic applications

Also Published As

Publication number Publication date
JPS6227012B2 (en) 1987-06-11

Similar Documents

Publication Publication Date Title
AU652351B2 (en) Quartz glass doped with rare earth element and production thereof
US4110093A (en) Method for producing an impregnated waveguide
US6711918B1 (en) Method of bundling rods so as to form an optical fiber preform
US4225330A (en) Process for producing glass member
US4302231A (en) Method of producing a glass article having a graded refractive index profile of a parabolic nature
JPS58145634A (en) Manufacture of doped glassy silica
JPS58199747A (en) Manufacture of glass body having gradient of refractive index
JPS6021928B2 (en) Glass product manufacturing method
US4236930A (en) Optical waveguide and method and compositions for producing same
US4188198A (en) Joint doping of porous glasses to produce materials with high modifier concentrations
JPH05350B2 (en)
JPS60186424A (en) Manufacture of glass rod having refractive index gradient
US4299608A (en) Joint doping of porous glasses to produce materials with high modifier concentrations
NL8103898A (en) METHOD FOR MANUFACTURING A STANDARD BASIC MATERIAL FOR AN OPTICAL TRANSMISSION FIBER AND THE FIBER OBTAINED WITH THIS BASIC MATERIAL
US4319905A (en) Method of leaching glass preforms
KR0163195B1 (en) Quartz glass doped with rare earth element and production thereof
US6845634B2 (en) Method for fabricating thallium-doped GRIN lens
JPH05306126A (en) Distributed index optical element and its production
JP3556420B2 (en) Optical filter and manufacturing method thereof
JPS62858B2 (en)
JPS6177629A (en) Production of spherical lens having refractive index distribution
CA1150737A (en) Optical waveguide and method and compositions for producing same
Huang et al. Radial gradient-index glass prepared by the sol-gel process
US4362542A (en) Method of producing a strong optical fiber
JPS6121173B2 (en)