JPH03141123A - Production of refractive index profile type optical element - Google Patents

Production of refractive index profile type optical element

Info

Publication number
JPH03141123A
JPH03141123A JP28089889A JP28089889A JPH03141123A JP H03141123 A JPH03141123 A JP H03141123A JP 28089889 A JP28089889 A JP 28089889A JP 28089889 A JP28089889 A JP 28089889A JP H03141123 A JPH03141123 A JP H03141123A
Authority
JP
Japan
Prior art keywords
refractive index
wet gel
optical element
index profile
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28089889A
Other languages
Japanese (ja)
Inventor
Minoru Inami
実 井波
Satoshi Noda
聡 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP28089889A priority Critical patent/JPH03141123A/en
Publication of JPH03141123A publication Critical patent/JPH03141123A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium

Abstract

PURPOSE:To enable production of an element having a large caliber in a short time by treating a wet gel containing a refractive index imparting metal component according to a specific method in producing a refractive index profile type optical element using a sol-gel method. CONSTITUTION:A metal component, e.g. titanium tetrabutoxide, for imparting a refractive index profile is added to a solution of a silicon alkoxide in an alcohol to carry out hydrolysis and form a sol, which is subsequently injected into a suitable cylindrical forming container and then allowed to stand to prepare a rodlike wet gel 1 having a shorter length (B) in the axial direction than that of the diameter (A). Masks 2 such as glass plates are then contact bonded to both end faces of the wet gel 1. In this state, the resultant assembly is immersed in a solution 3, e.g. hydrochloric acid, for dissolving and diffusing the metal component to impart a desired refractive index profile in the radial direction. The masks 2 are subsequently removed to dry and sinter the rodlike wet gel. Thereby, a refractive index profile type optical element is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学レンズなどの製造に適用されるゾル−ゲ
ル法による屈折率分布型光学素子の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a gradient index optical element by a sol-gel method, which is applied to manufacturing optical lenses and the like.

〔従来の技術〕[Conventional technology]

従来ロッド状ガラス体の径方向に屈折率分布を付与して
成る屈折率分布型光学素子の製造方法としては、ゾル−
ゲル法が用いられている。
Conventionally, a method for manufacturing a refractive index distribution type optical element in which a refractive index distribution is imparted in the radial direction of a rod-shaped glass body is a sol-type optical element.
A gel method is used.

この方法は、屈折率分布付与のための金属成分を含有す
るゾルを作製し、それを円筒状容器にいれてロッド状ウ
ェットゲルを作製した後、該ロッド状ウェットゲルを上
記金属成分を溶解・拡散し得る溶液に浸漬して所望の組
成分布即ち屈折率分布を与え、その後乾燥してドライゲ
ルとした後焼成することにより、ロッド状ガラス体(バ
ルク体)を得、更にその後膣ロッド状ガラス体を所望の
長さに切断、研磨して屈折率分布型光学素子を製造する
方法であった。
In this method, a sol containing a metal component for imparting a refractive index distribution is prepared, the sol is placed in a cylindrical container to prepare a rod-shaped wet gel, and then the rod-shaped wet gel is dissolved in the metal component. A rod-shaped glass body (bulk body) is obtained by immersing it in a diffusible solution to give a desired composition distribution, that is, a refractive index distribution, and then drying it to form a dry gel and firing it, and then a vaginal rod-shaped glass body. This was a method of manufacturing a gradient index optical element by cutting and polishing the material to a desired length.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、ゾル−ゲル法によるバルク体(ロッド状ガラ
ス体)の製造は、元来ゲルを破壊することなく収縮・乾
燥させる必要があるために、極めてゆっくりとした乾燥
を必要とするという弱点を持っている。そのため、大口
径の屈折率分布型光学素子を作製しようとすると、ロッ
ド状ウェットケルの径を大きくしなければならず、その
ため大口径化すればする程乾燥時間がさらに長くなると
いう問題点を有していた。
However, the production of bulk bodies (rod-shaped glass bodies) using the sol-gel method has the disadvantage of requiring extremely slow drying because it is necessary to shrink and dry the gel without destroying it. ing. Therefore, when attempting to fabricate a gradient index optical element with a large diameter, the diameter of the rod-shaped wet kel must be increased, which poses the problem that the larger the diameter, the longer the drying time. Was.

本発明は、上記問題点に鑑み、通常の光学レンズとして
用いられる大口径の屈折率分布型光学素子を短期間で製
造し得る、屈折率分布型光学素子の製造方法を提供する
ことを目的としている。
In view of the above-mentioned problems, the present invention aims to provide a method for manufacturing a gradient index optical element, which can produce a large diameter gradient index optical element used as a normal optical lens in a short period of time. There is.

〔課題を解決するための手段及び作用〕本発明による屈
折率分布型光学素子の製造方法は、ゾル−ゲル法による
屈折率分布型光学素子の製造方法において、屈折率分布
付与のための金属成分を含み且つ軸方向長が直径より短
いロッド状ウェットゲルをその両端面をマスクにより覆
った状態で金属成分溶解・拡散用溶液に浸漬して、その
径方向に所望の屈折率分布を付与し、その後前記マスク
を除去してから前記ロッド状ウェットゲルを乾燥・焼結
するようにしたことにより、ロッド状ウェットゲルの径
方向にのみ溶液の侵入を許しながらも、該ウェットゲル
の乾燥が軸方向から主として行なわれるようにしたもの
である。
[Means and effects for solving the problems] A method for manufacturing a gradient index optical element according to the present invention is a method for producing a gradient index optical element by a sol-gel method, in which a metal component for imparting a gradient index is used. A rod-shaped wet gel having an axial length shorter than the diameter is immersed in a solution for dissolving and diffusing metal components with both end faces covered with a mask to impart a desired refractive index distribution in the radial direction, After that, the mask is removed and then the rod-shaped wet gel is dried and sintered, thereby allowing the solution to enter only in the radial direction of the rod-shaped wet gel, while drying the wet gel in the axial direction. It was designed to be carried out mainly from the beginning.

以下、これらの点について詳細に説明する。These points will be explained in detail below.

ウェットゲルの乾燥時間は、ウェットゲル中の溶媒がゲ
ル外に放出されるための溶媒の移動距離に依存するので
、第2図(A )に示した如き長いロッド状ウェットゲ
ルでは、その乾燥時間はゲル径に依存することになる。
The drying time of a wet gel depends on the distance traveled by the solvent in the wet gel to be released outside the gel, so for a long rod-shaped wet gel as shown in Figure 2 (A), the drying time is will depend on the gel diameter.

しかし、第1図(A)に示した如き軸方向の長さが直径
より短いロッド状ウェットゲルを用いれば、その乾燥時
間はゲルの半径とは無関係に最短距離である軸方向の長
さの1/2に依存することになり、軸方向の長さが短い
程乾燥時間の短縮が可能となる。
However, if a rod-shaped wet gel with an axial length shorter than the diameter as shown in Figure 1 (A) is used, the drying time will be the shortest axial length, regardless of the radius of the gel. The shorter the length in the axial direction, the shorter the drying time becomes possible.

しかし、軸方向の長さが短いウェットゲルは、屈折率分
布付与のために金属成分溶融・拡散用溶液への浸漬を行
なう際に、ウェットゲル端面からの溶液の侵入、金属成
分の溶出・拡散が生じるため、目的の径方向の屈折率分
布が得られないという現象が生じてくる。
However, when a wet gel with a short axial length is immersed in a solution for melting and diffusing metal components to impart a refractive index distribution, the solution enters from the end face of the wet gel, and the metal components elute and diffuse. As a result, a phenomenon occurs in which the desired radial refractive index distribution cannot be obtained.

本発明は、以上の点を顧みなされたもので、ゾル−ゲル
法によるウェットゲル作製時に軸方向長が直径より短い
ロッド状ウェットゲルに設定し、次に屈折率分布付与の
ために金属成分溶融・拡散用溶液に浸漬する前に、ウェ
ットゲルとの密着性が良く且つ浸漬終了後の解離性が良
いと共に、ウェットゲル及び浸漬溶液に対し化学的に安
定な板状体などのマスクでウェットゲルの両端面を覆い
、その状態で浸漬した後、乾燥の際に該マスクを除去し
て軸方向からの乾燥を可能にし、乾燥時間を短縮し得る
ようにしたものである。
The present invention has been developed in consideration of the above points, and when producing a wet gel using the sol-gel method, a rod-shaped wet gel with an axial length shorter than the diameter is formed, and then a metal component is melted to impart a refractive index distribution.・Before immersing the wet gel in the diffusion solution, use a mask such as a plate that has good adhesion with the wet gel, has good dissociation properties after immersion, and is chemically stable against the wet gel and the immersion solution. After covering both end faces of the mask and immersing it in that state, the mask is removed during drying to enable drying from the axial direction and shorten the drying time.

ロッド状ウェットゲルは、その軸方向の長さが短い程乾
燥時間を短縮できるので、目的の光学素子の形状から計
算した最小の長さに設定することにより、生産性を最も
高くすることが可能となる。
The shorter the axial length of the rod-shaped wet gel, the shorter the drying time, so productivity can be maximized by setting it to the minimum length calculated from the shape of the desired optical element. becomes.

ウェットゲルのマスクとして板状体を使用するのは、ウ
ェットゲルが非常に多孔質であり、且つ常に液体が満た
されており、液中から大気中に出すだけで容易にクラッ
クが入るという特殊な物質であるためそれに対してマス
クを施す必要があることと、ウェットゲルを屈折率分布
付与のために強酸溶液中に浸漬するという過酷な条件下
での使用に耐えるようにしなければならないということ
の2つの条件を満足させるのに最適な物と考えられるか
らである。この方法は、従来のマスク剤の塗布や蒸着と
いう手段が使えぬウェットゲルに対しては、簡単で且つ
もっとも有効な方法である。
The reason for using a plate-like material as a mask for wet gel is that wet gel is extremely porous and is always filled with liquid, so it easily cracks when exposed to the atmosphere from the liquid. Because it is a substance, it is necessary to mask it, and the wet gel must be able to withstand the harsh conditions of being immersed in a strong acid solution to impart a refractive index distribution. This is because it is considered to be the most suitable material that satisfies the two conditions. This method is simple and most effective for wet gels that cannot be treated with conventional methods such as coating or vapor deposition of masking agents.

〔実施例〕〔Example〕

以下、図示した実施例に基つき本発明の詳細な説明する
Hereinafter, the present invention will be explained in detail based on the illustrated embodiments.

玉」」C1倦 屈折率分布付与のための金属成分としてチタンテトラル
ブトキシドを含むンランテトラメトキシドのメタノール
溶液をゾルとして調整し、内径50mmの円筒状ポリプ
ロピレン容器に高さ50mmまで上記ゾルを注入した後
放置して、第1図(A)に示した如(軸方向長Bが直径
Aよりも現いウェットゲルlを作製した。
A methanol solution of Nran tetramethoxide containing titanium tetral butoxide as a metal component for imparting a refractive index distribution was prepared as a sol, and the above sol was poured into a cylindrical polypropylene container with an inner diameter of 50 mm to a height of 50 mm. After that, a wet gel 1 was prepared as shown in FIG. 1(A), in which the axial length B was longer than the diameter A.

次に得られたウェットゲルlを容器から取り出し、第1
図(B)に示した如くウェットゲルlの両端面に直径5
0mmのガラス板から成るマスク2を圧着し、その状態
を保持しつつ塩酸3中に浸漬してチタンの溶出によるチ
タンの濃度分布付与を行った。浸漬終了後、圧着してい
たガラス板2を取り外し、60°Cで7日間乾燥させて
ドライゲルを得た。その後、焼成して直径20.6mm
のロッド状ガラス体(バルク体)4を得た。前記ロッド
状ガラス体4の径方向の屈折率分布は、第1図(C)に
示した如く、端面においても内部においても同じように
制御されていた。
Next, take out the obtained wet gel l from the container and
As shown in Figure (B), a diameter of 5 mm is attached to both end surfaces of the wet gel l.
A mask 2 made of a 0 mm glass plate was pressure-bonded and, while maintaining that state, was immersed in hydrochloric acid 3 to impart a titanium concentration distribution by elution of titanium. After the immersion was completed, the glass plate 2 that had been crimped was removed and dried at 60°C for 7 days to obtain a dry gel. After that, it is fired to a diameter of 20.6mm.
A rod-shaped glass body (bulk body) 4 was obtained. The refractive index distribution in the radial direction of the rod-shaped glass body 4 was controlled in the same way both at the end face and inside the rod-shaped glass body 4, as shown in FIG. 1(C).

比較例として、ロッド状ウェットゲル作製時に内径50
mmの容器に深さ100mmまでゾルを入れて第2図(
A)に示した如く軸方向長B′が直径A′よりも長いウ
ェットゲル1′を作製し、マスク2を両端面に圧着せず
にそのまま、塩酸3中に浸漬したものについて乾燥を行
ってみたところ、ドライゲルになるまでの乾燥時間が2
0日間と長時間を要し、而もガラス体4′作製後の屈折
率分布は、第2図(C)に示した如く端面において乱れ
を生じていた。
As a comparative example, when producing a rod-shaped wet gel, the inner diameter was 50 mm.
Pour the sol into a mm container to a depth of 100 mm and prepare as shown in Figure 2 (
As shown in A), a wet gel 1' whose axial length B' is longer than the diameter A' was prepared, and the mask 2 was immersed in hydrochloric acid 3 without pressure bonding to both end faces, and then dried. From what I saw, the drying time to become a dry gel was 2.
It took a long time, 0 days, and the refractive index distribution after manufacturing the glass body 4' was disturbed at the end face as shown in FIG. 2(C).

以上、上記に示すように、マスク2をすることにより正
確な屈折率分布制御が可能となり、又ウェットゲル1を
薄(作製することにより乾燥時間の大幅な短縮がなされ
ることが確認された。
As shown above, it has been confirmed that by using the mask 2, accurate control of the refractive index distribution becomes possible, and by making the wet gel 1 thinner, the drying time can be significantly shortened.

星2’i[g!皿 第1実施例と同様な方法で作製した直径60mmで軸方
向の長さ50mmのロッド状ウェットゲルlの両端面に
フィルム状のテフロン(登録商標)から成るマスク2を
圧着し、その状態を保持しつつ塩酸3中に浸漬してチタ
ンの濃度分布付与を行った。その後、60°Cで7日間
乾燥後、そのドライゲルを焼成し、直径20.4mmの
ロッド状ガラス体4を得た。
Star 2'i[g! A mask 2 made of film-like Teflon (registered trademark) was crimped onto both end surfaces of a rod-shaped wet gel l having a diameter of 60 mm and an axial length of 50 mm, which was prepared in the same manner as in the first embodiment. While holding the sample, it was immersed in hydrochloric acid 3 to impart a titanium concentration distribution. Thereafter, after drying at 60° C. for 7 days, the dry gel was fired to obtain a rod-shaped glass body 4 having a diameter of 20.4 mm.

この場合、前記ガラス体4の径方向の屈折率分布は、端
面においても内部においても同じように制御されていた
In this case, the radial refractive index distribution of the glass body 4 was controlled in the same way both at the end face and inside.

尚、上記各実施例ではマスク2としてガラス板又はテフ
ロンフィルムを用いる例を示したが、塩酸3やウェット
ゲルlに対して化学的に安定な素材であってウェットゲ
ルlの端面との接触性がよいものであれば何でも良く、
例えばサランラップ(登録商標)、ポリプロピレン板、
ニッケル板。
In each of the above embodiments, a glass plate or a Teflon film is used as the mask 2, but it is a material that is chemically stable against hydrochloric acid 3 and wet gel 1 and has good contact with the end surface of wet gel 1. Anything is fine as long as it is good,
For example, Saran Wrap (registered trademark), polypropylene plate,
nickel plate.

ハステロイ板などもマスクとして使用可能である。Hastelloy plates can also be used as masks.

1工叉豊亘 第1実施例と同様な方法で作製したゾルを適当な容器に
注入し、第3図(A)に示すような凸レンズ状ウェット
ゲル5を作製した。
A convex lens-shaped wet gel 5 as shown in FIG. 3(A) was prepared by pouring a sol prepared in the same manner as in Example 1 into a suitable container.

次に得られたウェットゲル5の両凸型曲面に密着するよ
うな形状に加工されたテフロ、ンブロックから成るマス
ク2′を該両凸型曲面に密着させ、その状態を保持しつ
つ塩酸3中に浸漬してチタンの濃度分布付与を行った。
Next, a mask 2' made of Teflon block processed into a shape that tightly adheres to the biconvex curved surface of the obtained wet gel 5 is brought into close contact with the biconvex curved surface, and while maintaining that state, hydrochloric acid 3 The titanium was immersed in the liquid to give it a titanium concentration distribution.

浸漬終了後、マスク2′をウェットゲル5より取り外し
し、60°Cで7日間乾燥してドライゲルを得た。その
後、焼成して直径20.8mmの両凸型のガラス体6を
得た。前記ガラス体6の径方向屈折率分布は、第3図(
B)に示すようなものであった。
After the immersion, the mask 2' was removed from the wet gel 5 and dried at 60°C for 7 days to obtain a dry gel. Thereafter, it was fired to obtain a biconvex glass body 6 with a diameter of 20.8 mm. The radial refractive index distribution of the glass body 6 is shown in FIG.
It was as shown in B).

この実施例において、両凸型曲面を有したウェットゲル
5を用いる例を示したが、凹面をはじめ非球面をも含む
種々の形状を有するウェットゲルを用いることにより、
特殊な三次元屈折率分布を付与することも可能である。
In this example, an example was shown in which a wet gel 5 having a biconvex curved surface was used, but by using wet gels having various shapes including a concave surface and an aspheric surface,
It is also possible to provide a special three-dimensional refractive index distribution.

尚、上記各実施例においては、金、属成1分の溶出する
ことにより屈折率分布を付与することも可能であること
は言うまでもない。
It goes without saying that in each of the above embodiments, it is also possible to provide a refractive index distribution by eluting one portion of gold or a metallic component.

〔発明の効果〕〔Effect of the invention〕

本発明による屈折率分布型光学素子の製造方法は、大口
径化した光学素子の製造時間が乾燥時間の短縮により大
幅に削減されるという実用上重要な利点を有している。
The method for manufacturing a gradient index optical element according to the present invention has an important practical advantage in that the manufacturing time for an optical element with a large diameter can be significantly reduced by shortening the drying time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による屈折率分布型光学素子の製造方法
の第1及び第2実施例並びにそれらによって作製された
光学素子の屈折率分布を示す図、第2図は比較例及びそ
れによって作製された光学素子の屈折率分布を示す図、
第3図は第3実施例及びそれによって作製された光学素
子の屈折率分布を示す図である。 ■・・・ロッド状ウェットゲル、2,2′・・・マスク
、3・・・塩酸、4・・・ロッド状ガラス体、5・・・
凸レンズ状ウェットゲル、6・・・両凸型ガラス体。 、IP2区 (A) (B) (C) (A) (B) 才3図 (A) (B)
FIG. 1 is a diagram showing the first and second embodiments of the method for manufacturing a gradient index optical element according to the present invention and the refractive index distribution of the optical element manufactured using the method, and FIG. 2 is a diagram showing a comparative example and the refractive index distribution of the optical element manufactured using the method. A diagram showing the refractive index distribution of the optical element,
FIG. 3 is a diagram showing the refractive index distribution of the third example and the optical element manufactured thereby. ■... Rod-shaped wet gel, 2, 2'... Mask, 3... Hydrochloric acid, 4... Rod-shaped glass body, 5...
Convex lens-shaped wet gel, 6...biconvex glass body. , IP2 area (A) (B) (C) (A) (B) Age 3 figure (A) (B)

Claims (1)

【特許請求の範囲】[Claims] ゾル−ゲル法による屈折率分布型光学素子の製造方法に
おいて、屈折率分布付与のための金属成分を含み且つ軸
方向長が直径より短いロッド状ウェットゲルをその両端
面をマスクにより覆った状態で金属成分溶解・拡散用溶
液に浸漬してその径方向に所望の屈折率分布を付与し、
その後前記マスクを除去してから前記ロッド状ウェット
ゲルを乾燥・焼結することを特徴とする屈折率分布型光
学素子の製造方法。
In a method for manufacturing a gradient index optical element using a sol-gel method, a rod-shaped wet gel containing a metal component for imparting a refractive index distribution and having an axial length shorter than the diameter is covered with a mask on both end surfaces. It is immersed in a solution for dissolving and diffusing metal components to impart a desired refractive index distribution in the radial direction.
A method for manufacturing a gradient index optical element, characterized in that the mask is then removed, and then the rod-shaped wet gel is dried and sintered.
JP28089889A 1989-10-27 1989-10-27 Production of refractive index profile type optical element Pending JPH03141123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28089889A JPH03141123A (en) 1989-10-27 1989-10-27 Production of refractive index profile type optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28089889A JPH03141123A (en) 1989-10-27 1989-10-27 Production of refractive index profile type optical element

Publications (1)

Publication Number Publication Date
JPH03141123A true JPH03141123A (en) 1991-06-17

Family

ID=17631483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28089889A Pending JPH03141123A (en) 1989-10-27 1989-10-27 Production of refractive index profile type optical element

Country Status (1)

Country Link
JP (1) JPH03141123A (en)

Similar Documents

Publication Publication Date Title
US4061486A (en) Process for the manufacture of optical bodies with refractive index gradients
US4686195A (en) Method and composition for the manufacture of gradient index glass
US4684385A (en) Method for the manufacture of glass bodies
JPH03141123A (en) Production of refractive index profile type optical element
JPS63236732A (en) Method for ion exchange treatment of glass
US5244844A (en) Method of manufacturing gradient index optical elements
JP3112473B2 (en) Method of manufacturing refractive index distribution type optical element
JPS63307124A (en) Production of refractive index distributed type lens
JPS6042239A (en) Manufacture of glass body having refractive index distribution
JP3523748B2 (en) Method for producing refractive index distribution type glass
JPS62230625A (en) Production of glass article having refractive index distribution
JP3153814B2 (en) Method of manufacturing refractive index distribution type optical element
JPH0788224B2 (en) Method of manufacturing gradient index lens
JPH05306126A (en) Distributed index optical element and its production
JPH02204335A (en) Production of quartz glass body having refractive-index distribution
JPS6033512A (en) Production of optical element
JPH0238337A (en) Glass material for forming and production thereof
JPS63195132A (en) Production of light-transmission glass material
JPS63103832A (en) Production of refractive index distribution-type lens
JPS63277525A (en) Production of optical glass
JPH06321562A (en) Production of optical element having refractive index distribution
JPH07330345A (en) Production of lens
JPH01282132A (en) Production of optical element
JPH01257139A (en) Production of optical glass
JPH01231002A (en) Production of optical element