JP2001524012A - 内在する医療装置の場所と向きを確定するシステムと方法 - Google Patents

内在する医療装置の場所と向きを確定するシステムと方法

Info

Publication number
JP2001524012A
JP2001524012A JP54854798A JP54854798A JP2001524012A JP 2001524012 A JP2001524012 A JP 2001524012A JP 54854798 A JP54854798 A JP 54854798A JP 54854798 A JP54854798 A JP 54854798A JP 2001524012 A JP2001524012 A JP 2001524012A
Authority
JP
Japan
Prior art keywords
magnet
magnetic field
sensors
location
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP54854798A
Other languages
English (en)
Other versions
JP2001524012A5 (ja
JP4091991B2 (ja
Inventor
ディヴィッド アール ヘイノー
クリストファー ピー ソモジー
ロバート エヌ ゴールデン
Original Assignee
ルーセント メディカル システムズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルーセント メディカル システムズ インコーポレイテッド filed Critical ルーセント メディカル システムズ インコーポレイテッド
Publication of JP2001524012A publication Critical patent/JP2001524012A/ja
Publication of JP2001524012A5 publication Critical patent/JP2001524012A5/ja
Application granted granted Critical
Publication of JP4091991B2 publication Critical patent/JP4091991B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3954Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI
    • A61B2090/3958Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI emitting a signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Magnetic Treatment Devices (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Electrotherapy Devices (AREA)

Abstract

(57)【要約】 患者内部に内在する医療装置に連結された磁石の位置を検出する装置は、各々が公知の状態でセンサーエレメントを配置した3組以上の磁気センサーを使用している。各センサーエレメントは、磁石によって発生された磁場強さを検出して3次元空間における磁石の向きを示すデータを提供する。本装置は、磁気双極子の場所と強さに計測磁場強さと磁場勾配とを関係付ける電気と磁気の基礎等式を使用している。本装置は、磁石の実際の場所と向きとを確定する為に反復プロセスを利用する。磁石の場所と向きの初期推定は、結果的に予測磁場値を発生させることに成る。予測磁場値は、磁気センサーによって与えられた実際の計測値と比較される。予測値と計測値との間の差に基づいて、本装置は、磁石の新しい場所を推定し、新しい予測磁場強さ値を算定する。この反復プロセスは、予測値が計測値と所望の許容度合以内で合致するまで続行する。その時点で、推定場所は、所定の許容度合以内で実際の値と合致する。2次元表示器は、検出器のハウジングに対する磁石の場所のインジケーションを提供する。表示器の深度インジケータ部は、患者の内部における磁石の深度の相対的又は絶対的インジケーションを提供する為に使用され得る。

Description

【発明の詳細な説明】 内在する医療装置の場所と向きを確定するシステムと方法 技術分野 この発明は、一般に患者の身体内部に内在する医療装置の場所を検出するシス テムと方法とに関し、より具体的には、内在する医療装置に組み込まれた磁石に よって発生される磁場の強さを検知する検出装置に関する。 発明の背景 患者の内部において医療チューブの場所を検出するのが重要に成っている例は 臨床医学には多数存在している。例えば、患者の口や鼻を通して供給チューブを 位置決めする場合、供給チューブの端が、患者の胃の内部に入っていき、それが 食道内で『カール・アップ』せずに、留まっていることが重要である。もし、供 給チューブの端が胃の内部で正しく位置決めされなければ、供給溶液が患者の肺 内部へ吸い込まれることに成ろう。供給チューブに加えて、食道の狭窄部を拡張 する医療チューブや、食道運動障害を持っている疑いのある患者の胃や食道内で の圧力波を計測するチューブや、食道における拡張蛇行静脈からの出血を制御す るために患者の胃や食道に入れられるセングスターケン−ブラックモア(Sengst aken-Blakemore)チューブや、ガスによる大腸の膨張を解放補助するために患者 の大腸内に入れる大腸減圧チューブや、患者の膀胱や尿管や腎臓内に入れる泌尿 器チューブや、転位心筋の血管移植のために心臓内に挿入されるレーザチューブ や、患者の心臓や肺動脈内に入れられる血管チューブを含む各種の他の医療チュ ーブも患者の身体内で正確な位置決めを必要としている。 現在、患者の身体内での医療チューブの場所は、ごく普通に、胸部又は腹部の X−線装置等の映像設備を使って検出される。しかし、そのような処置をするに は患者をX−線装置まで連れてくる必要があり、又は反対にX−線設備を患者の ところに運ぶ必要がある。このことは患者にとって不便でもあり、且つ費用がか かるものであり、また患者が繰り返し、また不意に供給チューブ等の医療チュー ブを取り外したり、それで繰り返し再挿入したり、X−線撮影する必要があるよ うな場合には特にストレスのかかるものである。 患者の内部で医療チューブの場所を検出しようとする従来の試みは、ほんの限 定的な成功しか収めていない。例えば、ベッツ氏等に付与された米国特許第5, 099,845号では、送信器がカテーテル内に配置されていて、また送信器の 周波数に調整された受信器が患者内でのカテーテルの場所の検出のために使用さ れている。しかし、このアプローチは、送信器を駆動するために外部又は内部の いずれかの電源を必要としている。外部電源は、衝撃又は感電死に関連した大き なリスクを与えることになり、また患者内部でカテーテルを位置決めする前に電 気接続を行う必要がある。電池等の内部電源は、比較的小さくなければならない し、また制限された時間しか送信器に電力を与えられるに過ぎない。このことは 、カテーテルの場所の長時間に渡る検出を不可能にするし、また電池の液漏れや 破損のリスク等、患者内部への電池の設置に関連した付加リスクを有している。 更に送信器は、比較的複雑であり、またその固有の働きをするために必要な能動 的な電子回路(カテーテルに対して内部の又は外部のいずれかの)や各種の線や 接続部を必要としている。最後に、送信器によって発生された信号は、異なった 身体組織や骨によって別々に異なった減衰が行われることになる。この減衰によ って、患者の身体内部でのカテーテルの場所に応じて送信器の信号の強さと周波 数における調節が必要と成る。 患者の内部における医療チューブの場所を検出する別の試みについて、グレイ ゼル氏に付与された米国特許第4,809,713号に開示されている。そこで は、電気式の心臓調整カテーテルは、調整カテーテルの尖端に配置された小形磁 石と患者の胸壁上に(例えば縫合されて)配置された大形磁石との間における引 き付け力によって患者の心臓内部壁に対して所定位置に保持されている。指標が 付され、ジンパルに支持された三次元コンパスが、大形磁石に対して最良の場所 を確定するために使用されている。コンパスの動きは、コンパスを小形磁石に向 かって指向させるために小形磁石と磁化されたコンパスポインターとの間で磁力 で発生されたトルクに依存している。しかし、このコンパスは、同時に地球の周 囲の磁場に自から向きを合わせようとする。このために、小形磁石と数センチメ ートルより遠く離れた磁化されたコンパスポインターとの間の力は、コンパスを 小形磁石に正確に向ける上で十分に強いものではない。更に、コンパスは大形磁 石の位置決めを助けるが、小形磁石の位置決め、従って調整カテーテルの位置決 めにX−線装置や超音波装置等の映像化設備の使用を今だ必要としている。 上記理由によって、在来技術の固有の問題を無くするような、患者の身体内で の医療チューブの場所の検出装置と方法の必要性が医療チューブ技術に存在して いる。医療チューブ装置及び方法は、数センチメートルから数十センチメートル に及ぶ距離で医療チューブを検出できるようにしなければならないし、内部又は 外部の電源を持った医療チューブを必要としてはならないし、また映像化設備で 医療チューブの位置決めを独自に証明する必要を無くしなければならない。 発明の大要 本発明は、内在した医療装置に組み込まれた磁石の位置を検出するシステムと 方法に具体化されている。本システムは、磁石から発生される磁場の強さとセン サーから磁石にかけての方向の関数として一組の信号を各々が発生する複数の磁 気センサーを有している。演算装置は、三次元空間における磁石の予測位置を算 定すると共に、その予測場所における磁石の磁場強さに関連した予測値を算定す る。その演算装置は、磁気センサーによって発生された信号を使って磁石の磁場 強さに関連した実際の値を算定すると共に、予測値と実際値との間の差に基づい て三次元空間における磁石の位置を確定する。本システムは、更に、磁気センサ ーによって発生された一組の信号に基づいて推定位置を発生する神経ネットワー クを有することができる。一実施例では、演算装置は、予測位置と磁場に関連し た予測値とを算定する反復プロセスを行って、予測値と実際値との間の差に基づ いて予測位置を変更する。反復プロセスは、予測値と実際値とが所定許容値以内 で相互に合致するまで続行する。本システムは、更に、三次元空間における磁石 の位置に関連したデータの目視表示器を有している。反復プロセスで、本システ ムは、先ず初期推定値を発生しなければならない。神経ネットワークは、磁気セ ンサーによって発生された信号に基づいてその初期推定値を発生させるのに使わ れよう。 一実施例では、表示器は、ハウジングに対して磁石の位置を表示する二次元表 示器となっている。その二次元表示器の深度インディケータ部は、ハウジングか らの磁石の距離の表示を行う。その表示器は、磁石についてハウジングをセンタ ーリングする際にケアーする人を助ける目視インディケータを備えることができ る。一実施例では、表示器は、ハウジングと一体的になっており、またハウジン グの下方の患者を見られるようにする透明部を有している。代わりに、表示器は 、計測装置に電気的に接続された外部表示器とすることができる。外部表示器に よって、磁石の位置に関連したデータは、螢光透視鏡やX−線装置やMRI等の 従来の映像化装置によって発生された患者の体内解剖の画像と組み合わせられよ う。 センサー自身は、ホール効果センサーやフラックス−ゲートセンサー、巻き芯 誘導センサー、スキィドセンサー、磁気抵抗センサー、核歳差運動センサーから 成る磁気センサーグループから選択される。 本システムは、更に、計測装置の場所を確定するためにディジタル化アーム等 の位置検出システムを備えることができよう。この実施例では、本装置の新しい 場所が位置検出システムによって突き止められるに従って、本装置は、ケアーす る人によって容易に動かされよう。位置検出システムによって与えられる位置デ ータに基づいて、較正演算装置は、磁石が存在していても本システムを再較正す ることになろう。この実施例では、磁石の作用は、新しい場所において磁気セン サーによって計測された実際の磁場に対する影響を算定することで減じられる。 その較正によって、磁気センサーによって計測された実際の磁場と磁石から生じ る実際の磁場への影響との間の差に基づいて新しい場所での地球の磁場の作用が 確定される。位置確定システムは、更に使用者に視認点を与えるためにも使用さ れる。磁石の検出に先立って、使用者は、位置検出システムを使用して一つの以 上の視認点を表示できよう。引き続いた操作で、磁石が患者内部に挿入されるに 従って、磁石の位置に関連したデータと共に所定の視認点が表示器上に示される ことに成る。これで、使用者は視認点によって記されたルートに沿ったカテーテ ルの挿入を監視できるようになる。 磁石は、その向きを表示する磁気双極子モーメントを有している。センサーは 磁気双極子モーメントを検出することができると共に、磁石の向き示すために表 示器上に目視インジケーションを与えることができる。 一実施例では、各センサーは、第1と第2と第3の直交状態に配置されたセン サーエレメントに対応した三次元において磁場強さを検出するために直交状態に 配置された第1と第2と第3のセンサーエレメントから構成されている。 図面の簡単な説明 図1は、公知の検出装置を使用して人の患者の身体内部に位置決めされた医療 チューブの端に固定された磁石の場所を示している。 図2は、公知の検出装置で使用されているx、y、zの磁気センサーの向きを 示している。 図3は、磁気センサーの一つの可能性の有る配列を図示した本発明の検出器の 頂面平面図である。 図4は、磁石の場所を確定するために図3の磁気センサー構成を使用して磁場 強さのベクトルの発生状態を示している。 図5Aは、磁石の場所を確定するために本発明に従って構成されたシステムの 例示的実施例の機能ブロック線図である。 図5Bは、従来の画像化システムと関連して磁石の場所を表示するために図5 Aのシステムの作動を図示した機能ブロック線図である。 図5Cは、検出器システムの場所を監視するために図5Aのシステムの実施例 を示している。 図6Aは、患者上の視認点場所を選定するために図5Cのシステムの使用状態 を示している。 図6Bは、選定された場所と磁石の場所の表示を示している。 図7Aは、磁石の場所を確定するために図5Aのシステムによって使用される フローチャートである。 図7Bは、図5Aのシステムの自動較正機能を図解したフローチャートである 。 図8Aは、図3の検出器によって使用される目視表示器の一実施例を示してい る。 図8Bは、図3の検出器と共に使用されるインジケータの代替実施例である。 図8Cは、図3の検出器と共に使用される表示器の、更に別の代替実施例であ る。 図8Dは、検出器からの磁石の距離を示す深度インジケータを備えた図3の検 出器の表示の更に別の代替実施例である。 図9は、図5Aのシステムの臨床テストの結果を図示したグラフである。 発明の詳細な説明 本発明は、医療チューブと、患者の身体内部で医療チューブの場所を検出する 装置及び方法を提供する。ここで使用されているように、要語の『医療チューブ 』とは、カテーテルや案内ワイヤ、医療器具(これらに限定はされないが)を含 む患者の身体内部に挿入されるいかなるタイプのチューブや装置をも意味してい る。例えば、カテーテルは、供給チューブ、泌尿カテーテル、案内ワイヤ、拡張 カテーテル及び鼻−胃チューブ、気管内チューブ、腹部ポンプチューブ、傷ドレ ン抜き、直腸チューブ、血管チューブ、セグスタケン−ブラックモアチューブ、 結腸減圧チューブ、pHカテーテル、能動性カテーテル、泌尿器チューブ等の品 目を含んでいる。案内ワイヤは、拡張器や他の医療チューブを案内し又は設置す るためにしばしば使用される。医療器具は、レーザや内視鏡や結腸内視鏡を含む ものである。要約すれば、患者身体内におけるいずれの異物の場所も、本発明に よる検出に適している手段であって、要語の『医療チューブ』内に包含されるも のである。 本発明は、医療チューブに組み込まれた永久磁石によって発生される磁場を検 知することで医療チューブの場所を検出する。ここで使用されているように、要 語の『組み込まれている』とは、医療チューブに永久的に固定されていること、 取り外し可能に取り付けられていること、又は密接していることを意味している 。一実施例では、供給チューブのように、磁石は医療チューブの端に組み込まれ ている。もう一つ別の実施例では、セングスタケン−ブラックモアチューブのよ うに、磁石は胃バルーンの上方の場所において医療チューブに組み込まれている 。もう一つ別の実施例では、セングスタケン−ブラックモアチューブのように、 磁石は、胃バルーンの上方の場所において医療チューブに組み込まれている。好 ましくは、磁石は小形で、円筒状で、回転可能に取り付けられた希土酸化物磁石 と なっている。両方共が単位体積当り高い磁場強さを発生するサマリウム・コバル トとネオジム鉄ホウ素のような希土酸化物磁石を、適当な磁石は含んでいる。寸 法に対して高い磁場強さを発生する磁石が好ましいのであるが、アルニコ(Al nico)やセラミックのようなより弱い磁石も使用されよう。 磁石は永久的なので、それは電源を必要としない。従って、磁石は、その磁場 を無期限に保持しており、それで内部又は外部の電源に関連した不利な点無しに 医療チューブの長期間に渡る位置決めと検出とができるようにする。特に電源の 使用を避けることで、電源使用に必要な望ましくない電気接続は回避される。か くして、患者に対する電気ショック(や患者に起こり得る感電死)のリスクは無 くなる。更に、磁石の静的磁場は、減衰せずに身体組織と骨を通過する。この特 性によって、本発明を使用して患者身体内部のどの場所においても医療チューブ を検出できるようになる。 患者身体内で医療チューブの場所をつきとめる一つの公知技術が米国特許第5 ,425,382号に説明されている。図1は、米国特許第5,425,382 号に説明された技術を図解している。尖端に永久磁石12を配置したチューブ1 0は、患者内部に挿入されている。図1に示された例では、チューブ10は、患 者の鼻に挿入され、食道を下がって胃に入っている。しかし、本システムは、他 のタイプのチューブと共に容易に使用され得よう。検出装置14が、地球の周囲 の磁場22に埋没されている間に2つの異なった距離18、20で磁石の静的磁 場強さ16を検知するために使用される。2つの異なった距離18、20で静的 磁場強さ16を計測することで、検出装置14は磁場勾配を確定する。検出装置 14が患者の身体の周りで移動されると、より大きくなったり、またより小さく なったりする磁場勾配が計測される。チューブ10は、最大強さが検出装置によ って表示されるまで検出装置14を動かすことで所在がつきとめられる。 米国特許第5,425,382号に説明されている検出装置14は、第1と第 2の磁気センサー24、26を各々使用している。その特許に説明されているよ うに、磁気センサー24、26は、各々磁場勾配を検出するフラックス−ゲート トロイダルセンサーから構成されている。代わりの磁場勾配検出システムが、米 国特許第5,622,169号に説明されている。図2は、この米国特許第5, 622,169号に説明されている磁気センサーの構成を図解している。磁気セ ンサー24、26は、各々3つの直交状態に配置されたフラックス−ゲートトロ イダルセンサーエレメントから構成されている。磁気センサー24は、x、y、 zの軸で各々図2に図示されている3つの直交方向における磁場強さを計測する ために直交状態に配置された磁気センサーエレメント24x、24y、24zか ら構成されている。同様に、磁気センサー26は、x、y及びzの方向における 磁場強さを各々計測する磁気センサーエレメント26x、26y、26zから構 成されている。センサー24、26を使用して、磁場勾配はx、y及びzの方向 で確定されよう。3方向における磁場勾配の計測で、磁石12の場所(図1を見 よ)は、従来のベクトル数学を使って容易に確定されよう。磁場勾配の数学符号 は、磁石12の磁気双極子の方向を表示している。 磁石と、従って医療チューブは、周囲の同質の磁場(例えば、地球磁場)の零 位調整検出のために、他方依然磁石によって発生される磁場強さの勾配を検出す るように幾何学的に構築された少なくとも2つの静的磁場強さセンサーを含んだ 公知の検出装置を使って検出される。 図1及び2に図解されている磁石検出装置は、2つのセンサーにおける磁場強 さの差に基づいて磁石の場所を検出するものである。しかし、磁石の位置と向き に関連した付加データを提供するために異なったセンサー構成を備えた磁場検出 装置を構築することができる。本発明は、多数のセンサーアレーを使用した磁石 の検出技術と、3次元における磁石位置を正確につきとめることができる収斂ア ルゴリズムとに指向されている。本発明の例示的実施例は、図3に示された検出 器システム100で具体化されている。検出器システム100は、ハウジング1 02と、電力スイッチやリセットスイッチ等の制御スイッチ104と、表示器1 06とを有している。例示実施例では、表示器106は、2次元液晶表示器であ る。表示器106は、不透明な背景部を有するか、又は本検出器システム100 の表面の下方にケアをする人が皮膚を見られるようにする透明領域を有すること ができよう。後でより詳細に説明するように、外側の患者の視認点を見られるよ うにしているのは、本検出システム100を使ってカテーテルを設置する上で大 いに助けになる。代わりに、表示器106は、ビデオモニターのような外部表示 器とすることができよう。 更に、各々第1、第2、第3及び第4の磁気センサー108、110、112 、114がハウジング102内に搭載されている。好適な実施例では、静的磁気 センサー108−112は、ハウジング102内で最大限分離されるように隔設 されている。例示実施例では、磁気センサー108−112は、ハウジング10 2内に実質的に平面状態で配列されており、またハウジングの隅の近くに配置さ れている。 磁気センサー108−114の向きは、磁気センサー108−114が各々ハ ウジング102の隅近くの場所S1からS4に位置決めされている図4に示されて いる。図3及び4で説明されているシステム100は、磁気センサー108−1 14のために矩形構造を示しているが、本発明の原理はいずれの多センサーアレ ーにも容易に適用可能なものである。従って、本発明は、磁気センサーの特定の 物理的構成によっては限定されない。 例示の実施例では、磁気センサー108−114の各々は、図2に図示されて いるようにx、y及びzの方向において3次元計測を行うように直交状態で配置 された3つの独立した磁気検知エレメントから構成されている。磁気センサー1 08−114の検知エレメントは、各磁気センサーが同じx、y及びzの方向に おいて静的磁場を検出するように共通の原点に対して整合されている。これで、 磁気センサー108−114の各々によって3次元空間における磁場強さの検出 ができることに成る。その磁気センサー108−114の配列は、患者内部の3 次元空間において磁石の検出ができるようにしている。即ち、患者内部で磁石の 場所を突き止める他に、検出器システム100は深度情報を提供する。 磁気センサー108−114の構造は、具体化された応用に対して容易に変更 される。例えば、複数の磁気センサーが、脳内の磁石120の場所を検出するた めに患者の頭の周りに球状配列に構築されよう。更に、磁気検知エレメントは、 直交状態に配列される必要はない。例えば、磁気検知エレメントは、特定の応用 に適した平面的なアレー構成で又は他の都合の良い構成で(例えば、球状配列で )構築されよう。検出器システム100の満足のいく作動のためにただ必要なこ とは、検出器システムが解かれる方程式に存在している未知数程多くのデータ提 供 の検知エレメントを有していなければならないし、また磁気検知エレメントの場 所と向きを知らなければならないと言う事である。 この場合、3次元空間において磁石120の位置と向きを検出することが望ま しい。このことで、x、y及びzがハウジング102の中心のような原点に対し する3次元空間での磁石120の座標を表し、θがYZ面における磁石の角度向 きとなっていて、またφがXY面における磁石の角度向きとなっているようなx 、y、z、θ及びφと都合良く考えられ得る5つの末知パラメータを結果的に生 じることになる。かくして、検出器システム100によって使用されるモデルは 、8つの独立した計測値を必要とする8つの未知パラメータを有している。ここ で説明されている検出器システム100の例示実施例では、オーバサンプリング を行うために一組で12の磁気検知エレメントが使用されている。このことで、 結果的に信頼性と精度がより高まることになり、他方演算上の必要条件を合理的 レベルに維持している。 以下で提供される数学的説明は、x、y及びzの方向において直交状態で配置 された磁気検知エレメントを使用するデカルト座表系に対して最も容易に理解さ れ得よう。しかし、本発明は、そのような構成に限定されるものではないことは はっきり理解されなければならない。磁気検知エレメントのいかなる配列も、磁 気センサー108−114の場所と向きが知られている限り検出器システム10 0と共に使用され得よう。従って、本発明は、磁気検知エレメントの特定の構成 によって限定されるものではない。 図4に図解されているように、磁石120は、場所aに位置決めされている。 当技術分野で知られているように、磁石120は、ベクトルmによって代表され ている磁気双極子を有している。ベクトルmは、磁気双極子の強さと向きとを表 している。理想的条件の下では、磁気センサー108−114は、磁石120に よって発生された静的磁場を計測することができ、また単一の計測で場所aの磁 石の所在を確定することができる。しかし、地球の磁場や、磁石120の近傍近 くに存在するような迷い磁場や、磁気センサー108−114からの内部ノイズ や、増幅器等の磁気センサーに組み込まれた電子部品によって発生される内部ノ イズが存在しているので、『理想的』条件下て計測を行うことは実質的に不可能 になっている。いろいろな形のノイズが存在している中で磁石120に対する正 確な位置情報を提供するために、検出器システム100は、磁石120の場所と 向きを正確に読み取るように収斂する推定アルゴリズムへの入力値としての実際 のセンサー計測値に加えて、磁場強さに対する公知公式を使用している。 磁気センサー108−114からのデータを処理するために使用されるエレメ ントは、磁気センサー108−114がアナグロ回路140に接続されている図 5Aの機能ブロック線図に示されている。アナログ回路140の具体的形は、磁 気センサー108−114の具体的形に依存している。例えば、もし磁気センサ ー108−114が図2に示されたものと同様に、直交状態で位置決めされたフ ラックス−ゲートトロイダルセンサーであれば、アナログ回路140は、米国特 許第5,425,382号及び第5,622,669号で説明されているような 増幅器と積分器とを有することになろう。もう一つ別の例示実施例では、磁気セ ンサー108−114は、抵抗が磁場強さと共に変化する磁気抵抗エレメントか ら構成されている。各磁気センサー108−114は、x、y及びzの方向で静 的磁場を各々検知する3つの直交配置された磁気抵抗検知エレメントから構成さ れている。 しかし、磁気センサー108−114は、どんな形の磁気センサーでもよい。 限定はされないが、ホール効果センサー、フラックス−ゲートセンサー、巻き芯 誘導センサー、スキッドセンサー、磁気抵抗センサー、核歳作運動センサー等の 幾つかの異なったタイプの磁気センサーも本発明の実施に使用されよう。集積回 路の形の市販の磁場勾配センサーも本検出器システム100と共に使用される。 更に、磁気センサー108−114は、同じタイプのセンサーである必要はない 。例えば、磁気センサー108−112を或るタイプのセンサーとし、他方磁気 センサー114を別の違ったタイプとすることができよう。 アナログ回路140は、特定の形の磁気センサー108−114と作動するよ うな役割が与えられている。アナログ回路140の具体的設計は、当業者の知識 に良くあるものであり、ここでより詳しく説明する必要はない。 アナログ回路140の出力部は、アナログ−ディジタル変換器(ADC)14 2に接続されている。ADC142は、アナログ回路140からのアナログ出力 信号をディジタルの形に変換する。ADC142の作動は、当業者には良く知ら れており、ここではより詳しく説明する必要はない。本検出器システム100は 、更に、中央演算装置(CPU)146とメモリ148とを有している。例示実 施例では、CPU146はペンティアム(登録商標)等のマイクロプロセッサと なっている。メモリ148は、ROMとRAMの両方を含むことができる。AD C142やCPU146やメモリ148や表示器106等の各種の構成要素は、 共に母線システム150によって接続されている。当業者によって認識されてい るように、母線システム150は、一般的なコンピュータ母線システムとなって おり、データの他に電力と制御信号を搬送することになろう。 更に、推定演算器152が、図5Aの機能ブロック線図に示されている。後で より詳細に説明されるように、推定演算器152は、磁石120の推定位置(図 2を見よ)と磁気センサー108−114から引き出されたデータに基づいた磁 石120の計測位置との間で反復比較を行う。反復プロセスは、推定位置と計測 位置とが収斂するまで続行し、結果的に磁石120の場所a(図4を見よ)の正 確な計測値を得ることになる。推定演算器152は、好ましくは、メモリ148 に記憶され且つCPU146によって執行されるコンピュータ命令によって実行 されることに注目すべきである。しかし、明瞭にするために、図5Aの機能ブロ ック線図は、推定演算器152が独立した機能を実行するので、独立したブロッ クとしてその推定演算器152を図示している。代わりに、推定演算器152は 、ディジタル信号演算器(図示されていない)のような他の在来のコンピュータ の構成要素によって装備される。 検出器システム100では、磁石が点状の双極子源として扱われるように磁気 センサー108−114が磁石120の場所aから十分に遠く離れているものと 想定している。更に、地球の磁場のようなどんな非本質的な磁場の空間での変化 は、点状の双極子源の存在によって発生される不均一性に比較して小さいもので あると想定されている。しかし、幾つかの周囲条件下では、地球の磁場における 動揺が、近くの電気設備や、金属製の建物構造要素等の非本質的源泉によって惹 起されよう。後で詳しく説明されるように、検出器システム100は、そのよう な動揺を補償するように容易に較正される。 推定演算器152によって使われる等式は、電気と磁気に関連した物理学の基 本法則から容易に導かれる。強さmの磁気双極子によって発生され、場所aに配 置され且つ場所sで計測される静的磁場Bは、次によって与えられる: その場合、‖s−a‖は行列数学で良く知られている母数値である(例えば、 ‖s−a‖2は平方母数である)。値a、m、s、Bは全てベクトル値であること に注目すべきである。要語の『静的磁場』とは、時間的に変化する電磁場又は交 播磁場とは反対に成るような磁石120によって発生される磁場を説明するため のものである。磁石120は、固定された一定の(即ち、静的な)磁場を発生さ せる。検出器システム100によって検出される磁場の強さは、磁石120と磁 気センサー108−114との間の距離に左右される。当業者は、磁石120が 患者内部で動かされるに従って、又は検出器システム100が磁石に対して動か されるに従って被検出磁場の強さが変化するものと認識できる。しかし、検出器 システム100と磁石120との間の相対移動は、必須ではない。検出器システ ム100は、たとえ検出器システムと磁石とが互いに対して移動していない時で も3次元空間での磁石120の場所と向きとを容易に確定することができる。 磁気センサー108−114からの値は、場所S1−S4での磁場Bの強さを 各々確定するために等式(1)で使用される。距離に伴った磁場Bの変化は、s に対するBの導関数であるBの勾配G(s)として定義される。勾配G(s)は 、等式(1)から導かれる3×3行列によって表され、次の形で表現される。 その場合、Tは配置行列であり、Iは次の形を有した3×3の単位行列である: 等式(1)は、値B、m、sが与えられれば値aに対して直接解かれることに なる点に注目すべきである。しかし、そのような計算は、解くことが難しくなり 、かなりの演算学力が必要となろう。後で説明する反復推定プロセスは、場所a を推定し、且つ推定された場所に配置された磁石120から生じるような予測さ れたり又は推定される磁場を、磁気センサー108−114によって計測される 実際の計測磁場と比較することで磁石120の場所aと向きを確定する。反復プ ロセスは、予測磁場が計測磁場に緊密に合うまで制御された状態で推定場所を変 えていく。その時点で、推定場所と向きは、磁石120の実際場所aと向きに合 致する。そのような反復プロセスは、等式(1)を使って直接的に場所aに対し て解くように要請される外延的なコンピュータ上の計算を必要とせずに、検出器 システム100によって非常に素早く実行される。予測磁場と実際の計測磁場と の間の差は、磁石120の場所aを量的に確定するために使用されるようなエラ ー、又はエラー関数となっている。エラー関数は、磁石120の推定場所をより 正確にするために反復プロセスで使用される。勾配G(s)を示している等式( 2)は、推定場所におけるエラーの大きさと向きとを確定するために推定演算器 152(図5Aを見よ)によって使用される。かくして、等式(1)は、予測値 を発生するために使用され、また等式(2)は、磁石120の推定位置をどのよ うに変えるかを推定するためにエラー結果を使う。 磁場強さBは、磁気センサー108−114によって場所S1−S4の各々にお いて各々計測される。ただ4つの磁気センサーが図3から図5Aに図示されてい るだけであるが、i=1からnの場合には、磁気センサーの各々は点siでB(si )の計測値を提供するようにnのセンサーに計測がまとめられ得よう。推定演算 器152は、量△ij(計測)=B(si)−B(sj)を計算する。この計算は、 磁気センサーiから磁気センサーjへの勾配の尺度を与えてくれると共に、更に 磁気センサーiと磁気センサーjにおいて一定(即ち、勾配=0)と成っている 地球磁場の作用を帳消しにする。推定演算器152は、更に、等式(1)から予 測値△ij(予測)を計算する。値aに対する推定は、計測値△ij(計測)と予測値△ij (予測)とが可能な限り緊密に合致するまで調節される。例えば、検出器システ ム100は、当初は、磁石120の場所aがハウジング102の下方で中心がと られていると想定でき得よう。この推定された場所に基づいて、推定演算器15 2は、もし磁石120が実際に推定場所に在ったならば結果的に生じることにな る各磁気センサー108−114における磁場強さに対して予測値を算定する。 例示実施例では、磁気センサー108−114の各々の検知エレメントは、iが 1からnに等しい場合に、磁場強さの値Bxi、Byi、Bziに結果的に成る3つの直 交方向における磁場Bの尺度を与えてくれる。同様に勾配G(s)は、更に、3 つの直交方向の各々に対しても算定される。 推定演算器152は、更に、磁気センサー108−114の各々からの計測磁 場強さの値を使用し、△ij(予測)を△ij(計測)と比較する。△ij(予測)と△ij( 計測)との間の差に基づいて、推定演算器152は、磁石120(図4を見よ) に対して新しい推定場所を発生し、△ij(予測)が△ij(計測)に緊密合致するまで 予測プロセスを繰り返す。 △ij(予測)と△ij(計測)との間の合致度合は、△ij(予測)と△ij(計測)との間 の差の二乗の和から構成され且つ次にコスト関数の値を最小にする非線形の反復 最適化アルゴリズムを使用したコスト関数によって計測され得よう。コスト関数 の必要勾配は、上記の等式(2)を使って算定される。神経ネットワーク等の多 くの異なった公知のコスト関数及び/若しくは最適化技術は、△ij(予測)と△ij (計測)の間の所望の合致度合を達成するために推定演算器152によって使用さ れ得よう。 推定演算器152によって実行される反復計測プロセスは短時間で行われる。 一般的な計測サイクルは、秒の端数で実行される。チューブと組み込まれた磁石 120とが患者の内部で移動されるにつれて、磁石の場所と向きが変化すること になる。しかし、計測サイクルが非常に短いので、磁石の位置と向きにおける変 化は、いかなる所定の計測サイクル中でも非常に小さくなり、かくして磁石が患 者内部で移動されるに従って、又はハウジング102が患者の表面上で移動され るに従って磁石のリアルタイムな追跡を促進する。 上記で説明されているように、推定演算器152は、磁石の推定位置と磁石の 計測位置との間で反復比較を実行する。最初の推定場所は、ランダム選定や、最 も強い初期読取り値を持った検知エレメント108−114の下への配置や、又 は例えば、磁石120の場所aがハウジング102の下方に中心が取られている と検出器システム100が、最初に推定する等の幾つかの可能な技術によって導 かれ得よう。しかし、図5Aに示されているように、神経ネットワーク154を 使用して磁石120の場所aをより正確に最初に推定することは可能である。神 経(ニューラル)ネットワーク154は、好ましくは、メモリ148に記憶され 且つCPU146によって実行されるコンピュータ命令によって実行されること に注目すべきである。しかし、明瞭化のために、図5Aの機能ブロック線図では 、神経ネットワーク154が独立機能を実行するので、独立したブロックとして 神経ネットワーク154を図示している。代わりに、神経ネットワーク154は 、ディジタル信号演算器(図示されていない)のような他の従来のコンピュータ 構成要素によって装備される。 神経ネットワークは、大量のデータを受信して処理できると共に、学習処理に よってどのデータが重要であるかを確定することができる。神経ネットワークの 作動は、一般に当業界では知られており、従ってここでは特定の応用に対しての み説明する。即ち、初期位置推定を行う神経ネットワーク154の作動を説明す る。 神経ネットワーク154は、学習モードと作動モードとを有している。学習モ ードでは、神経ネットワーク154に磁気センサー108−114からの実際の 計測データが与えられる。磁気センサー108−114の各々は、3つの異なっ た検知エレメントを有しているので、合計で12のパラメータが神経ネットワー ク154への入力値として用意される。12のパラメータに基づいて、神経ネッ トワーク154は磁石120の場所と向きとを推定する。神経ネットワーク15 4は、次に磁石120の実際の場所と向きを示すデータが与えられる。このプロ セスは、12のパラメータに基づいて神経ネットワーク160が磁石120の場 所と向きとを正確に推定する『学習』を行うように多数回繰り返される。この場 合、上記の学習プロセス(例えば、12のパラメータを用意し、場所を推定し、 実際の場所を提供する)は1,000回繰り返された。神経ネットワーク154 は、一組の12個のパラメータに対して最良の推定位置を学習する。検出器シス テム100の使用者は神経ネットワーク154を学習モードで操作する必要がな いことに注目すべきである。むしろ、学習モードプロセスからのデータは、検出 器システム100と一緒に用意されるものである。正規の作動では、神経ネット ワーク154は作動モードのみで使用される。 作動モードでは、磁気センサー108−114からの12個のパラメータが、 神経ネットワーク154に与えられ、それで磁石120の場所と向きとの初期推 定を行う。本発明者によって実施された実験に基づくと、神経ネットワーク15 4は、約±2cm以内で磁石120の場所の初期推定を行うことができる。その ように正確な初期推定ができると、磁石120の場所aを正確に確定するために 推定演算器152の必要とする反復回数を減らすことになる。もし磁石120の 場所aが検出器システム100から十分に遠く離れていれば、磁気センサー10 8−114は非常に低い信号レベルを与えることになる点に注目すべきである。 従って、神経ネットワーク154は、パラメータ(磁気センサー108−114 からの12個の入力信号)が最低の限界値より高く成るまでは初期推定を行なは ず、従って信頼性のある信号を提供することができる。 正確な推定値が与えられれば、推定演算器152は上述の反復プロセスを実行 でき、±1mm以内で磁石120の場所aを確定できる。本検出器システム10 0を使って実行された臨床研究では、本検出器システム100の満足のいく作動 を実証した。それら臨床研究について以下に説明する。 本検出器システム100は、更に外部表示器(図示されていない)上に磁石の 画像を表示できるようにするために図5Aに示された表示インタフェース156 を有している。当業者は知っているように、CPU146やメモリ148等の本 検出器システム100の多くの構成要素は、従来のコンピュータ構成要素となっ ている。同様に、表示インターフェイス156は、本検出器システムの画像をP C表示器や、ライブ画像モニター168(図5Bを見よ)等の他のモニター上に 示すことができるようにする従来のインタフェースとすることができよう。 外部の表示器の一長所は、ハウジング102が患者に対して一定位置を維持で きる点である。この実施例では、4つの磁気センサー108−114は、磁気セ ンサーアレーを形成するためにハウジング102内全般に渡って一様に配分され る多数のセンサー(例えば16個のセンサー)で代替されよう。磁石120がハ ウジング102に対して動かされるに従って、その動きは、3個以上の磁気セン サーによって検出され、磁石の位置は算定され、外部表示器上に示される。この 実施例では、使用者はハウジングを再配置する必要が無く、ただ磁気センサーア レーが磁石120の位置を追跡できる外部表示器をただ見るだけでよい。 外部ビデオ表示器のもう一つ別の長所は、本検出器システム100によって発 生された画像を従来の技術によって発生された画像データと結合できる能力を有 している点である。例えば、図5Bは、螢光透視法システム160と組み合わさ った本検出器システム100の作動を図解している。その螢光透視法システム1 60は、螢光透視鏡ヘッド162と、螢光透視画像処理器164と、記憶された 画像モニター166とライブ画像モニター168とを有した画像記憶システムと を備えた従来システムとなっている。更に、従来のビデオカセットレコーダ17 0は螢光透視法システム160によって発生された画像と、本検出器システム1 00によって発生された画像とを記録することができる。螢光透視法システム1 60の作動は、当業界では知られており、ここではより詳しくは説明しない。 本検出器システム100は、公知の空間関係を取って螢光透視鏡ヘッド162 に固定状に取り付けられている。患者のただ一枚の『スナップショット』画像が 螢光透視法システム160を使って得られ、例えばライブ画像モニター168上 に表示される。磁石120(図4を見よ)を収容したカテーテルが患者内に挿入 されるに従って、本検出器システム100は、上述のように磁石120の場所a を検出し、患者のスナップショット画像に加えてライブ画像モニター168上に 磁石の画像を映写することができる。このように、使用者は、有利なことには、 本検出器システム100によって与えられた実際画像データと組み合わされ、螢 光透視法システム160によって与えられたスナップショット螢光透視画像を利 用することができる。 本発明のこの局面の満足のいく作動のためには、螢光透視法システム160と 本検出器システム100との間で固有の整合を行う必要がある。この整合、又は 『見当合わせ』は、放射線不透過マーカーが、本検出器システム100の隅と整 合される患者の胸部上に放射線不透過マーカーを設置することによって達成され る。螢光透視法システム160がスナップショット画像を発生すると、本検出器 システム100の隅は、放射線不透過マーカーによってライブ画像モニター16 8上に表示される。本検出器システム100を使用して画像重ね合わせを行う長 所は、患者が螢光透視法システム160からの放射線にほんの瞬間的に晒される に過ぎない点である。その後、スナップショット画像は、そのスナップショット 画像の頂面上へ上乗せされた本検出器システム100からのデータと共に表示さ れる。このプロセスは螢光透視法システム160に対して説明してきたが、当業 者は、本発明がX−線や、磁気共鳴映像法(MRI)、陽電子放射断層撮影法(P ET)等を用いたいずれの画像案内手術法にも適用できることが理解できよう。 地球磁場も、磁気センサー108−114によって検出される。しかし、地球 磁場がハウジング102に渡って一定であると仮定すると、磁気センサー108 −114からの読取り値に対する地球の磁場の影響は同じになる。磁気センサー 108−114の内のいずれか2つの間に差信号を発生することで、地球の磁場 の作用は効果的に帳消しされる。しかし、上で説明したように、設備や病院ベッ ドのレールや、金属製の建物構造要素等の金属構成要素によって惹起される地球 磁場の動揺や不均一が存在することがある。そのような干渉構成要素は予見不可 能な特性を持っているために、本検出器システム100の独特の作動は較正を必 要としている。本検出器システム100は、図5Aに示されている較正演算器1 58を使って地球磁場において局部集中された動揺を補償するために容易に較正 される。較正演算器158は、好ましくは、メモリ148に記憶され且つCPU 146によって実行されるコンピュータ命令によって実行されることに注目すべ きである。しかし、明瞭にするために、図5Aの機能ブロック線図は、較正演算 器158が独立機能を実行するので、独立したブロックとして較正演算器158 を図解している。代わりに、較正演算器158は、ディジタル信号処理器(図示 されていない)等の他の従来のコンピュータ構成要素によって装備される。 最初の較正は、磁石120が患者内部に挿入される以前に実施される。かくし て、最初の較正は、磁石120によって発生される磁場が存在してい無いところ で行われる。計測は、本検出器システム100を使って実施される。地球磁場に 何ら動揺の無い理想的な条件下では、磁気センサー108−114によって発生 される信号は同じものとなる。即ち、x方向に向けられた検知エレメントの各々 は、同一の読み取りを行うことになるが、他方y方向に向けられた検知エレメン トの各々も同一の読み取りを行い、またz方向に向けられたエレメントの各々も 同一の読み取りを行うことになる。しかし、通常の作動条件下では、地球磁場に は局部集中された動揺が存在することになろう。これらの周囲条件下では、磁気 センサー108−114の各検知エレメントによって発生された信号は、全て地 球の磁場の検出に基づいて或る異なった値を有している。磁気センサー108− 114の内のいずれかの2つの読取り値は、差別的に結合され、それで理論的に 地球磁場を帳消しにすることになる。しかし、地球磁場における局部集中によっ て、読取り値に組み合わされる相殺値か存在するかも知れない。 較正演算器158は、磁気センサーの各々と組み合わされる相殺値を確定し、 計測サイクル中にその相殺値の補償を行う。即ち、磁気センサー108−114 の各々に対する相殺値は、ADC142(図5Aを見よ)によって発生される読 取り値から減算される。かくして磁気センサー108−114の内のいずれか2 つの間の差異に基づく読取り値は、磁石120が導入される以前に零となる。そ の後、磁石120が導入されるに従って、磁気センサー108−114からの差 異の読取り値は、磁石120によって発生される静的磁場によって零以外の値を 取ることになる。もし、本検出器システム100が、図5Bに示されているよう に静止していれば、金属設備や建物構造要素等の外部物体によって惹起される局 部集中された動揺を含む地球磁場の作用を相殺するには一回の較正プロセスだけ で十分である。 しかし、或る実施例では、患者の表面に渡って本検出器システム100を動か すことが望ましい。本検出器システム100が、患者上の新しい位置へ動かされ ると、地球磁場における局部集中された動揺は、その局部集中された動揺の作用 が最早完全に相殺され得ないので、本検出器システム100の精度に劣化を起こ すことになる。しかし、較正演算器158は、磁石120が存在していても、本 検出器システム100の連続した自動的な再較正をできるようにしている。この ことは、本検出器システム100がディジタル化アーム180に固定取り付けさ れている図5Cに図解されている。ディジタル化アーム180は、3次元での動 き可能と成っている従来の構成要素から構成されている。ディジタル化アーム1 80は、都合良くは、患者のベッド横に取り付けられる。好適な実施例では、本 検出器システム100は、ディジタル化アーム180の3次元の動きが本検出器 システム100のx軸、y軸及びz軸に各々対応するように方向付けされてディ ジタル化アーム180に取り付けられている。使用者が本検出器システム100 を動かすと、ディジタル化アーム180は、本検出器システム100の位置を正 確に追跡し、位置を表示するデータを発生する。本検出器システム100は、そ れが動くにつれて磁石120によって惹起される計測磁場における変化を算定す るためにこのデータを利用する。このようにして、磁石120の局部集中作用が 除去され、本検出器システム100の新しい位置での地球磁場の局部上の動揺が 結果的に計測で示されることに成る。 自動再較正プロセスは、一般に患者の腕に差し込まれて静脈系を介して心臓内 まで通される周辺から挿入される中央カテーテル(PICC)のような場合に特 に有効である。従来の技術を使って、外科医は、一般的にカテーテルが挿入され る予想ルートに渡ってマークするために患者の胸部上にマークを設置していく。 本発明がなければ、外科医は、カテーテルを手探りで挿入して、例えば螢光透視 鏡を使ってその場所を確かめなければならない。しかし、本検出器システム10 0は、外科医がPICCの設置を追跡できるようにするものである。 上記の例では、本検出器システム100は、PICCが最初に挿入される患者 の腕の上に配置される。最初の較正(磁石120の無い状態で)に引き続いて、 本検出器システム100が較正され、幾分かの局部集中された動揺がある地球磁 場の作用を補償する。磁石120が挿入されると、本検出器システム100は、 前に説明したように磁石の場所aを検出して表示する。外科医がPICC(磁石 120が取り付けられた状態で)を挿入する際には、本検出器システム100を 配置し直して、それでPICCの進行を追跡することが望ましいであろう。ディ ジタル化アーム180を使って、外科医は本検出器システム100を新しい場所 へ配置し直す。例えば、本検出器システム100がy方向に6インチ、x方向に 3インチ動かされ、z方向には動かされていないと仮定する。本検出器システム 100の新しい場所に基づき且つ上記の技術を使って、推定演算器152(図5 Aを見よ)は、磁石120によって、新しい場所での磁場を算定することができ る。磁石120から結果的に生じる影響が新しい場所での磁場に与えられれば、 磁石120の作用を減じ去ることができる。磁石120からの磁場が無ければ、 残っている又は『残留』している磁場は、地球磁場に帰するものと想定される。 残留読取り値は、最初の較正に対して上述されたように処理され、それによって 本検出器システム100を再度零にするか再度較正し、新しい場所での局部集中 された動揺を含む地球磁場に対して補償を行う。この再度の較正に引き続いて、 計測サイクルは初期化されて、磁場の計測結果はただ磁石120の存在によって 得られるものとなろう。 使用者は、いずれの時点でも本検出器システム100を手動で再較正できる。 しかし、上述の技術の長所は、本検出器システム100が使用される際に本検出 器システム100が連続したベースで自動的に再較正される点である。ディジタ ル化アーム180は、本検出器システム100の位置の連続した読取りを行い、 かくして本検出器システム100の場所を正確に追跡できるようにしている。本 検出器システム100が動くに従って、それは常に再較正され、地球磁場に対し て再補償を行う。上記例では、病院ベッドのレール等の外部影響が計測精度にお ける劣化の惹起を心配をしないで、PICCが心臓内に挿入されるような動きに 従うように随意的に本検出器システム100は動かされ得る。再較正システムが ディジタル化アーム180との関連で上述されたが、他の位置検出システムも容 易に使用され得るものと認識される。 アセンションテクノロジー(Ascension Technology)&ポルヘマス(Polhemus) によって製造され、『鳥追跡器』として知られているシステムは、6度の自由度 で計測し、5フィートの距離で1/2インチ以内の正確な計測を行い、5フィー トの距離で1/2度以内の旋回情報を提供するセンサーアレーから構成されてい る。鳥追跡器で使用されている検知エレメントは、ハウジング102に取り付け られ、またハウジングの位置が市販されているシステムを使って追跡される。同 様に、『3次元追跡器』として知られているポルヘマス装置は、ディジタル化ア ーム180を必要とせずに同様な場所計測を行う。 例えば、ディジタル化アーム180を使用して位置追跡するもう一つ別の用途 は、表示器上で示されるディジタル化された視認点を外科医が用意できるように するものである。カテーテルの挿入を補助する一般的な外科技術は、カテーテル が辿るルートを推定する視認点を患者の表面上に設置するようになっている。例 えば、従来の技術では、電気ペースメーカの線の挿入を補助する視認点として、 外科医はマーカペンで患者の胸部上に一連の×印を設けるようにしている。本発 明の原理によって、ディジタル化アーム180は、外科医によって特定された視 認点を電子的に記録するために使用される。本発明のこの局面は、コンピュータ 入力スタイラス182や他の電子入力装置がディジタル化アーム180に搭載さ れている場合の図6Aに図解されている。コンピュータスタイラス182は、本 検出器システム100に取り付けられるか、又は例えば、本検出器システム10 0の中心に相当した位置でディジタル化アーム180に取り付けられよう。磁石 120を備えたカテーテルの挿入に先立って、外科医は、一連の×印によって図 6Aに示されている視認点を電子的に発生するためにディジタル化アーム180 とコンピュータスタイラス182を利用することができる。コンピュータスタイ ラス182は、患者に電子的に『視認点を設ける』が、しかし患者に何ら実物の マークを設ける必要がない点に注目すべきである。心臓のペースメーカの線が挿 入される上記例では、外科医は、ペースメーカ線が挿入されるルートに従って、 首から心臓にかけて一連の電子視認点を設けることができよう。各視認点では、 ディジタル化アーム180は、外科医によって付標された位置を記録する。その 後に続いた操作で、磁石120付きのカテーテルが患者内部に挿入されると、デ ィジタル化アーム180は、外科医によって予じめ付標された視認点に対して磁 石120の場所を書き留める。視認点は、矢印で示されている磁石120の位置 と共に、図6Bに示された外部表示器184上に示されている。外科医が磁石1 20を挿入すると、その進行は、磁石120が視認点1から視認点2へ、視認点 3へ等と通っていくように外部表示器184上に示される。この技術で、外科医 は予期されたルートからの外れを容易に検出することができる。例えば、もしカ テーテルと磁石120が不意に異なった血管内に反れれば、外科医は容易に付標 通路からの外れに注目し、素早くその問題を認識することになろう。カテーテル と磁石120は、視認点の付された通路に従って引き込まれ、再挿入されるであ ろう。 本検出器システム100の一般的な作動は、図6Aのフローチャートに図解さ れている。開始200では、磁石120(図4を見よ)が患者内に挿入される。 工程201では、本システムは、初期較正を受ける。例示実施例では、磁石12 0が導入される以前に初期較正が実施される。かくして、本システム100は、 磁石120からの影響が何らない状態で局部集中された動揺を含む地球磁場の作 用の補償を行う。代わりに、磁石120によって惹起される磁場の作用を知って 且つ自動再較正プロセスとの関連で上述したように相殺できるように、ハウジン グ102に対して知られた箇所に磁石120は位置決めされ得よう。即ち、その 知られた箇所における磁石120によって惹起される計測磁場への影響は、計測 された読取り値から引かれ、結果的に生じた残留値は地球磁場にのみ起因するこ とに成る。初期較正に引き続いて、工程202では、本検出器システム100は 、磁気センサー108−114からセンサー値を計測する。工程204では、推 定演算器152(図5Aを見よ)は、磁石120の場所aと向きとの初期推定値 を算定する。その初期推定値は、工程208からのセンサー位置データと、工程 209からの磁石較正データとを含んでいる。工程208で算定されたセンサー 位置データは、選定された原点に対する磁気センサー108−114の各々の位 置に関連したデータを提供する。例えば、一方の磁気センサー(例えば磁気セン サー108)は、他方の磁気センサー(例えば磁気センサー110−114)の 相対位置を確定する目的のために、数学上の原点として任意に選定されよう。そ の共通原点は、数学の計算目的の為の基準フレームを提供してくれる。前に説明 されたように、磁気センサー108−114は、各磁気センサーが同じx、y及 びzの方向における磁場を計測するように共通した原点に対して整合されている 。当業者が認め得るように、いずれの選択された原点も本検出器システム100 と共に満足裏に使用される。 工程209で導かれた磁気較正データは、一般に、磁石メーカによって提供さ れるものであり、磁気双極子m(図4を見よ)の強さに関連したデータと、磁石 120の寸法及び形状とを有している。計測されたセンサー値、センサー位置デ ータ及び磁石較正データは、工程204における推定演算器152(図5Aを見 よ)への入力として提供される。 例示実施例では、場所aの初期推定値は、工程202で導かれた計測センサー 値に基づいて神経ネットワーク154(図5Aを見よ)によって提供される。前 に説明したように、神経ネットワーク154は、信頼性のある初期推定値を確認 するために磁気センサー108−114から最小値を求めるであろう。神経ネッ トワーク154は、磁石の場所と向きの初期推定値を提供する。 工程210では、推定演算器152(図5Aを見よ)は予測センサー値を算定 する。上述のように、これは、3つの直交方向x、y、zの各々における磁気セ ンサー108−114の各組合わせに対して計測値△ij(予測)を必要とする。工 程212では、推定演算器152は予測センサー値(即ち△ij(予測))を計測セ ンサー値(即ち、△ij(計測))と比較する。決定216では、推定演算器152 は予測センサー値と計測センサー値とが所望の許容度合以内で合致しているかど うかを確定する。もし、予測センサー値と計測センサー値とが緊密に合致してい なければ、決定216の結果はNO(否定)である。その場合、推定演算器15 2は、工程218で磁石の場所aと向きの新しい推定値を算定する。磁石120 の新しい推定場所aの算定に引き続いて、推定演算器152は磁石場所と向きの その新しい推定値を使って新しい組の予測センサー値を算定するために工程21 0に戻る。推定演算器152は、緊密合致が達成されるまで、磁石120の推定 場所aと向きを調節し且つ予測センサー値を計測センサー値と比較するこの反復 プロセスを続行する。予測センサー値と計測センサー値との間の緊密な合致が達 成されると、決定216の結果はYES(肯定)である。その場合、工程220 では、本検出器システム100は表示器106(図3A、3B及び4を見よ)上 に磁石の場所aと向きとを表示できる。統計上のデータに基づいて確信値を算定 することは当業界では公知であり、ここでは詳細に説明する必要はない。工程2 20での場所と向きのデータの表示に引き続いて、本検出器システム10 0は工程202に戻り、新しい組の計測センサー値についてのプロセスを反復す る。もし、コスト関数が余りにも高ければ、緊密な合致は決定216では達成さ れないであろう。そのような状況は、例えば、外来磁場が存在していると生じる 。実際には、緊密な合致は1−2の範囲のコスト関数(cost function)を有する と共に、不正確な局部的極小値に対する最小コスト関数はより大きな度合のオー ダとなっていることが確定されている。もし、緊密な合致が達成されなければ、 (即ちコスト関数が余りにも大きければ)、本検出器システム100は、新しい推 定場所で改めて計測プロセスを開始できるか、又は受け入れ不可能な程高いコス ト関数を示すエラーメッセージを発生することができる。 図7Bのフローチャートは、もし自動再較正が本検出器システム100内部で 実行される場合に、較正演算器158によって実行される工程を図解している。 この実行では、工程220の完了に引き続いて本システム100は、図7Bに示 されている工程224へ随意的に移行でき、そこで較正演算器158は、本検出 器システム100の現在の場所を示す位置データをディジタル化アーム180( 図5Cを見よ)から得るようになっている。本検出器システム100の新しい場 所と磁石120の公知の場所aが与えられると、較正演算器158は磁石から生 じる磁場を算定し、磁石の作用を工程226における現在の計測値から減じるこ とになる。このプロセスの結果として、磁気センサー108−114(図5Aを 見よ)によって計測された残っている残留値は、局部集中された動揺を含んだ地 球磁場の作用に依るものである。 工程228では、この残留値は、新しい場所での地球磁場の作用を補償するべ く本検出器システム100を再び零にするために使用される。再較正プロセスに 引き続いて本検出器システム100は、図7Aに示されている工程202に戻り 、新しい場所での作動のために再較正された本検出器システム100によってそ の新しい場所における付加計測サイクルを実行する。 図7Aのフローチャートに図解されている自動再較正プロセスは、本検出器シ ステム100を自動的に且つ連続的に再較正する点に注目すべきである。しかし 代替実施例では、較正演算器158は、ただもし本検出器システム100が所定 量だけ動かされたならば、再較正プロセスを行う。これで、本検出器システム1 00が動かされなかった場合に、不必要な再較正を防ぐ。 反復推定プロセスは、上述のように、異なった対の磁気センサー108−11 4によって与えられた磁気強さBの差を使っている。代わりに、本検出器システ ム100は、計測された磁場勾配値Gを使用できる。この実施例では、等式(2 )は、Bの計測値に適合するための反復プロセスに関しては、上述のように計測 値に適合され得る。図7Aのフローチャートに関して、工程202は、対の磁気 センサー108−114に関する勾配値を提供してくれる。例えば、磁場勾配計 測値は、磁気センサー114によって計測された磁場を残っている磁気センサー 108−112の各々によって計測された磁場に対して使って算定される。工程 204では、推定演算器152は、磁石の場所と向きの初期推定値を確定し、工 程210では、等式(2)を使って予測センサー値を算定する。工程212では 、計測センサー値は上述のコスト関数等の従来の技法を使って予測センサー値と 比較される。反復プロセスは、計測センサー値と予測センサー値とが所定の許容 度合以内で合致するまで続行する。 更に別の代替技術では、本検出器システム100は、計測データを使用して直 接aに対する等式(2)を解くようになっている。直接解くアプローチでは、G が正の固有値を持った対称行列となっていると言う事実を利用している。行列G の固有値と固有ベクトルとは、場所aとmに対して直接解答するために算定され 、代数的に利用される。この場合、mの大きさが、しかし方向ではないが、知ら れていることを想定している。実際には、大きさmは、メーカによって磁石較正 データが与えられているので公知である。この技法は、磁気双極子の向きを確定 するのに追加の磁気センサーを必要とすることに注目すべきである。数学上、磁 気双極子の向きは、+又は−の符号で示される。磁場強さBの計測のみを必要と する追加の磁気センサーは、数学関数の符号を確定するのに使用される。更に、 磁石120の場所aを確定するのに、これら各種の技法の組合わせが本検出器シ ステム100によって使用されよう。 尚さらに別の代替例では、磁気センサー108−114によって形成される多 検出器アレーに関して磁気双極子mの位置を追跡するために、カルマンフィルタ ーが上記等式(1)と(2)と共に使用される。当業者には分かっているよう、 カルマンフィルターは、統計的信号処理と最適推定法を利用した統計的予測フィ ルターである。1988年にボストンのアカデミック出版社からのY.バーシャ ロム(Y.Bar-Shalom)氏と、P.E.フォートマン(Fortmann)氏による『追跡 とデータ結合』等の多数の教科書がカルマンフィルターの理論と操作について詳 述している。上述の個々の技法に加えて、これらの技法のいずれか又は全てを各 センサーのタイプのコスト関数の合計のように、組み合わせて使用することがで きる。例えば、△ij(予測)と△ij(計測)の間の差は、或る許容値以内で合致する ことが必要とされる。もし、全ての差値がその許容値にかなうような解答を多数 の数学的技法で明らかにできなければ、その場合、表示器106(図5Aを見よ )を使ってエラーがオペレータに信号で知らされる。各センサー計測でのエラー が独立していて小さいものと仮定すると、場所aの推定における不確実さは、例 えばクラマー−ラオ(Cramer-Rao)結合を使って算定される。計測技法間の冗長 度は、有利なことには、本検出器システム100によって利用される。そのよう な冗長性は、生物医学の応用に大いに望ましいことである。 図3は、磁気センサー108−114の特別構成に対する本検出器システム1 00の作動について図解している。しかし、上述の技法は、実質的にいずれもの 一定の構成のセンサーにも普遍化され得るものである。磁気双極子mの強さは知 られていると想定して、G(s)とB(s)を計測するのに最少の一つの勾配セ ンサーか、又は8個の磁場センサーが必要とされる。磁気センサーは、比較的随 意的に構成され、かくして器具設計及び/若しくは他の信号又はノイズに対する 考慮に基づいてハウジング102(図3Aと3Bを見よ)内の所定場所に容易に 位置決めされよう。 磁気センサー108−114は、地球の磁場の知られている強さを使って較正 される。何ら不均一な磁場が無い状態では(いずれの強い磁気双極子からも離れ ていれば)、全てのセンサー108−114の内のXセンサーエレメントが同時 に読み取られる。同様に、全てのYセンサーエレメントとZセンサーエレメント も同時に読み取られる。いずれの構成でも、各直交方向に対する磁場強さ(即ち Bx、By及びBz)の平均的な読み取り値の二乗の和は一定であるべきである。地球 の磁場の一定値は、従来の代数学と最小二乗法の適合化方法を使って各磁気 センサーに対して適当な較正を確定するために使用される。 代替の較正技法は、磁気センサー108−114に対して一つ以上の場所に設 置される公知強さの小形磁石を使うようにしている。各磁気センサーに対して適 当な較正係数を確定するために、一箇所以上の各場所で計測が行われる。電磁か ごやヘルムホルツかご等を使う他の技法も磁気センサー108−114の較正の ために使用されよう。 表示器106(図3を見よ)は、ハウジング102に対する磁石120の位置 をグラフ表示する。図8Aから8Dは、磁石120(図4を見よ)の場所aを示 すために、本検出器システム100によって使用される異なった技法の幾つかを 図解している。図8Aに示された実施例では、表示器106は、ハウジング10 2に対する磁石120の場所aを示すために円250と一対の直交線252a、 252bとを使用している。直交線252a、252bは、何時磁石120が本 検出器システム100の下方で中心が取られるかを確定するのを補助するために ケアする人に目視インジケータを提供する。 図8Bに示されている代替実施例では、直交線254a、254b等の一定の インジケータ254は、表示器106の中心部上で十字線を形成している。円2 50や他のインジケータが、ハウジング102に対する磁石120の場所aの目 視インジケータを提供するために使用されている。円250は、磁石120が本 検出器システム100の真下に中心が取られている時に表示器106の中心部の 十字線に中心が合わされる。 図8Cに示されたなお更に別の実施例では、表示器106は、磁石120の場 所aの目視インジケータを提供するために、矢印260等の異なったインジケー タを提供している。矢印260は、更に、磁石120の向きを示すためにも使用 されよう。 患者の表面からの磁石120の深さは、いろいろな具合に表示器106上に示 される。例えば、表示器106の一部分106aは、図8Dに示されているよう に、棒グラフを使って磁石120の深さの目視インジケータを提供している。し かし、表示器106の深度インジケータ部106aは、更に、センチメートル等 の絶対単位や、又は相対単位で磁石106の深さについての数字読取り値を提供 することができる。 かくして、本検出器システム100は、3次元空間での磁石120の場所aを 確定し、深度インジケータを含んでいて磁石の場所を容易に読み取られる目視イ ンジケータと、磁気双極子の向きとを与えてくれる。ハウジング102が矩形ハ ウジングとして図示され、磁気センサー108−114が該ハウジング102内 部に等間隔で分布されているが、矩形状は、ケアする人によって把持するのが容 易になるように選択された。しかし、ハウジング102は、どんな形状でも寸法 でも取ることができる。更に、表示器106は、液晶表示器として図示されてい るが、点マトリックス表示器等のいずれかの都合の良い2次元表示器とすること もできる。かくして、本発明は、ハウジング102の特定の寸法又は形状によっ て、又は表示器102の特定タイプによっては限定されない。更に、本検出器シ ステム100は、いろいろな異なった磁気センサーと共に満足するように作動で きる。かくして、本発明は、本検出器システム100で採用される磁気センサー の特定の数やタイプによって限定されることは無い。臨床研究 本検出器システム100の作動について、患者の内部に挿入された磁石120 に関連した静的磁場の検出に対して説明してきた。本検出器システム100の信 頼性は、臨床研究でテストされ、その結果を以下に説明する。以下に詳しく説明 するように、磁石の場所は、本検出器システム100を使って確定され、引き続 き従来の螢光透過法の計測を使って証明された。臨床研究の最初の結果は、計測 システム100によって検出された場所において比較的大きいエラーを示してい るが、これらエラーは、本検出器システム100と螢光透視システムとの不正確 な整合によって惹起されたものと信じられている。かくして、エラーは、本検出 器システム100における生来的な不正確さよりはむしろ不整合によるものであ る。更に信号処理ソフトウェアを改定して、以下に説明するように、臨床研究に おける後の計測においてより高い信頼性を生んだ。 本検出器システム100の一応用では、心臓内へのカテーテルの挿入に対する ものである。大静脈の下半分において右心房の真上に周辺部挿入中央カテーテル (PICC)を位置決めするのは本検出器システム100の重要な応用である。 現在のところ、施術者は、外部解剖視認点を計り、カテーテルをその計られた深 さまで挿入することでこの種の仕事を手探りで実施している。挿入の成功又は失 敗は、数日間でき得ない胸部X線写真を得るまでは判らない。本検出器システム 100は、『手探り』設置に対する可能な解決策として動物をモデルとして評価 されていた。 従来の螢光透視法と比較してその精度をテストするために、本検出器システム 100を使って44箇所の位置確認が実施された。本検出器システム100は、 磁気で付標されたPICCの場所を平均で0.4cm以内で且つ0.2から1. 25cmの範囲以内で突き止めた。本検出器システム100は、更に、難しい挿 入を行っている間に、PICC尖端の経路と向きについての貴重なリアルタイム の情報を与えてくれた。本検出器システム100は、外部視認点に対して磁気で 付標されたPTCCを正確に場所確認して、それでカテーテル挿入を補助するそ の能力を実施証明した。本検出器システム100によって与えられる計測能力は 、PICCの設定や他の医療装置の設定についてのX線撮影による確認の必要性 を低減又は無くし、また点滴治療におけるカテーテルに関連した問題を減じるこ とで臨床成果を改善し、健康維持コストを低減する潜在的可能性を有している。導入 PICCカテーテルは、患者の腕の周囲の静脈に差し込まれ、右心房上方約2 cmの点まで大静脈内に通される。PICCを導入する現在の方法は、差し込み 点から患者胸部の右胸骨の第3肋間空間までの距離を計測し、この計測値に等し い深さまでOICCを挿入するものである。カテーテルは、点滴や採血や輸血の ために長期間(2週間から6ケ月)に渡って静脈内アクセスを必要とする患者に 対して使用される。現在、PICCは、看護婦によって外来患者や家庭内処置で 用いられているが、しかし、カテーテルは、使いにくくて比較的高価で数日間治 療を遅らせるX線撮影によってその場所が確認されるまでは点滴や採血には使用 できない。動物モデル 飼い慣れされた雑種の豚がこの研究のために動物モデルとして使用された。豚 は、人間の心臓血管系について許容されたモデルであり、それらは、人間におけ る大静脈に類似している頭部大静脈に対して許容可能な経路を与えてくれる頭部 静脈を、それらの胸部の枝状突出部に有している。本研究に先立って、成された 死体解剖では、右胸骨の第2肋間空間が、頭部大動脈における右心房上方2cm の点の場所確認にとって良好な外部視認点となっていることが示めされた。その 研究で、更に脊椎大静脈までの胸壁は、約30kgの体重の動物では8.5cm から10cmの範囲の距離をとっていることが実地証明された。この距離は、類 似した処置において人間での距離に類似している。この最後のファクターは、本 検出器システム100が、本研究で使用されている最小の磁気付標されたカテー テルの場所を特定する上で約10cmを距離限度としているので重要な事である 。磁石で付標されたPICC 市場で入手可能なPICCカテーテルと導入器は、カテーテル尖端に一つ以上 の小形の円筒状(NdFeB)磁石を設置し、カテーテルの端を滅菌していない 医療級シリコン接着剤でシールすることで改造された。2種類のカテーテル寸法 が使用された。より小さい寸法のカテーテル(4Frの65cm長さ)は、3つ のN−40でNiメッキされた0.8mm×2.5mmの磁石を収容し、大形カ テーテル(5Fr、65cm長さ)は、2つのN−40でNiメッキされた1. 0mm×2.5mmの磁石を収容していた。各磁気チップ付きカテーテルの磁場 強さは、3,129ミリガウス/cm3であった。磁場検出器 検出器システム100について2つの異なった改訂版が本研究で使用された。 ベンチ搭載型の実施可能システムは、44箇所の場所特定に使用され、手持ち型 の原型が28箇所の場所特定に使用された。手持ち型装置は、4つの磁場センサ ー(例えば、磁気センサー108−114)を制御ボタンとそれらの関連電子部 品と共にプラスチックケース内に搭載していた。演算ハードウェアとソフトウェ アと電力供給部とを有した周辺装置も、検出器システム100の手持ち型改訂版 と共に使用された。3つの異なったソフトウェアシステムを備えた一つの手持ち 型装置が使用された。8箇所の場所特定がソフトウェアの改訂版5.0で実施さ れ、16箇所の場所特定がソフトウェアの改訂版5.1で実施され、4箇所の場 所特定がソフトウェアの改訂版5.2で実施された。以下に説明するように、手 持ち型の原型に対するソフトウェアの早期改訂版は、重要なソフトウェアのデバ ックと較正を必要とした。より信頼性の高い計測がソフトウェアの改訂版5.2 で得られた。 検出器システム100のベンチ搭載型の改訂版は、プレキシガラス台上に4つ の磁場センサー(例えば磁気センサー108−114)をそれらの関連電子部品 と共に搭載して構成されている。検出器システム100のベンチ搭載型の改訂版 は、3次元で磁石の位置と向きを算定し且つ磁石を尖端に付けたカテーテルを示 す画像の形で従来のPCモニター上に情報を表示するためにソフトウェアが使用 されているパーソナルコンピュータ(PC)に接続されていた。モニター上の位 置を被験体の外部解剖上の位置と相関させるために整合格子がプレキシガラス合 上とPCモニター上とに設置された。臨床処置 本研究は、9匹の健康な約25kgの体重の飼い慣らされた雑種の豚で実施さ れた。各被験体は、処置に先立って完全に麻酔がかけられ、処置の直後に安楽死 された。麻酔の開始後、各験体は4つのシーケンシャルなカテーテル処置を受け た。被験体は、静脈アクセスが腕の下を切り込んで行われた後に差し込み点から 所望の外部視認点まで外側で計測された。一本の4Fr.の磁石付きPICCが 、右頭部静脈に導入器を介して2回差し込まれ、また一本の5Fr.の磁石付標 されたPICCが左頭部静脈に導入器を介して2回差し込まれた。各カテーテル は中央鎖骨の頭静脈の場所に設置され、磁気付標された尖端の位置は、各場所に おいて一つのモデルの検出器システム100によって確定され、結果的に動物当 り合計8箇所の場所特定を行った。 カテーテルの場所は、螢光透視法で確認され、また検出器システムの凡その精 度/螢光透視法の場所特定における相関が、螢光透視鏡に取り付けられた治具を 使って螢光透視鏡を検出器システム100と整合させることで確定された。検出 器システム100の両改訂版が、網目状アームによってカテーテルの挿入に先立 って被験体上に位置決めされ、従来のディジタル水準器を使って螢光透視鏡治具 に対して1度以内に水平が出された。検出器システム100のベンチ搭載型改訂 版では、整合棒が治具の中心を通して設置され、PCモニター上の格子に対応し たプレキシガラス台上の格子に渡って整合された。検出器システム100の手持 ち式の原型改訂版では、紙のマークがスクリーン上の見取り表を覆って設置され 、整合棒が紙マークと整合された。 電子的に捕捉された螢光画像は、検出器システム100によって確定された位 置と磁石体の中心とから螢光透視法によって確定されるように検出エラーを推定 するために市販の製図プログラムで分析された。この計測は、伝統的な推定法と 考えられている。磁石尖端の画像は、画像の尺度を確定するための基準として使 用され、また尖端は研究中に角度が付され得た。角度を付けた尖端は、実際より も大きな拡大率で画像の尺度を取り、かくして計測されたエラーを拡大する。こ の作用は、磁石尖端が各螢光透視画像では比較的平坦に見えるので、マイナーな ものと思われる。カテーテル位置の主観的な推定が、計測を行う外科医によって 成された。結果 検出器システム100のベンチ搭載型の改訂版は、全ての場所特定中にうまく 機能したが、しかし最初の12本の挿入は、検出器システム100に対する螢光 透視境の治具を整合させるのが難しく複雑であった。その最初の12本の挿入で は、治具を整合するのに使用された整合棒は真っ直ぐであると想定していたが、 しかし整合棒が或る角度に保持され得ることが示され、場所特定の計測エラーに 影響した。12本目の挿入後には、整合棒の配置はそれが真っ直ぐにぶらさがら れるように変更された。また16本目の挿入後には、整合棒を真っ直ぐに保つた めに中空のプレキシガラスのシリンダが治具台に付加された。これらの変更に続 いて、検出器システム100は、より一貫した正確な結果を与えてくれた。 磁石付標されたPICCは、PICCに付随した挿入キットに用意された導入 器を介して豚の頭大静脈に容易に挿入された。検出器システム100は、難しい PICCの挿入中に2回調査を助けた。一つの場合は、検出器システム100は 、カテーテルが頭大静脈内で自ずと二重に折り返したのを示し、カテーテルは画 像の向きが直ったのを示すまで引かれ、カテーテルは正しく挿入された。第2の 場合、PICCを左頭部の静脈から外側の頸静脈内に通すのは、この接続部で急 角度になっているために難しかった。これは螢光透視法を使って引き続いて証明 された。外科医は、カテーテルが解剖学的に適正な方向に向くのが明らかになる までカテーテルの捩じり、挿入及び引きを行うために検出器システム100から のリアルタイムのフィードバックを使用した。カテーテルの尖端が鋭い角度を通 過すると、それは容易に挿入された。 検出器システム100の手持ち式原型の改訂版からの結果は、ソフトウェアと 較正手順が変わり且つ場所特定結果が相応して変わったので、このレポートには 含まれていない事に注目すべきである。 PICC尖端の設定の精度は、検出器システム100によって確定される磁石 付標された尖端の実際の場所から螢光透視法で確定されるカテーテル尖端の実際 の場所までの距離を計測することで確定された。44箇所の場所設定が、中央鎖 骨の頭部大静脈の位置で実施され、またこれらの場所での計測エラー間の有意味 な差は無かった(P=0.90)。検出器システム100のベンチ搭載型改訂版を 使った6匹の動物での44個所での場所特定に対する平均計測エラーは、±0. 29cmの標準的な偏差によって0.40cmであった。検出器システム100 のベンチ搭載型改訂版の結果は、図9に示されている。計測エラーは0.02c mから1.25cmに及んだが、0.6cmより大きなエラーを伴った6箇所の 場所特定の内から5つが、最初の12の設定で実施された。上述したように、早 期の設定は、螢光透視鏡の治具を検出器システム100に整合させるのが難しか ったために複雑であった。図9から容易に明かになるように、整合の困難さは場 所特定数が12を過ぎてから解決され、結果的に計測エラーを低減した。結論 最初の8箇所の場所特定後には、外科医は他の観察者から何らインプットを得 ないで螢光透視法によってカテーテル尖端の解剖学的位置を確定するように依頼 された。磁石付き尖端のPICCが、検出器システム100のベンチ型改訂版を 使って設定された後は、PICCが全ての場所特定で所望の位置に在ったことを 外科医は確認した。 PICCの設定において外部の解剖視認点を使用することで、ヘルスケアの提 供者が、家庭処置から外来患者病院に及ぶ多くの異なった設定でカテーテルを挿 入できるようにしている。検出器システム100は、付標されたカテーテルの尖 端を外部視認点に対して平均4mm以内に場所特定できたことを成功裏に実地証 明した。この研究で使用された外部視認点は、異種間の解剖における相違によっ て、人間の視認点と正確には相関していないが、検出器システム100を使って 上述の視認点にカテーテルを設定する着想が確立されたことに成る。 本検出器システム100は、更に、使用者がカテーテルの挿入における困難を 克服できるようにした。研究中の幾つかのケースでは、オペレータは挿入中に幾 つかの点で抵抗を感じ、カテーテルを正しく位置決めするためにリアルタイムの 位置と向きのデータを使った。この能力は、カテーテルが自ずから二重に折り曲 がった時に最も役立つものであり、それは、カテーテル尖端がその前進を止め新 しい向きに転動するので検出器システム100を使って容易に示される。この時 点では、画像の尖端がその正しい向きを取って挿入が完了するまでオペレータは カテーテルを引いた。もう一つ別の価値ある適用力は、カテーテルが鋭角をうま く通り抜けて静脈系で湾曲する時にカテーテル尖端の画像を観察できる能力であ る。調べる人は、カテーテルが左頭部静脈から左外側の頸部静脈へ通っている間 に検出器システム100のこの特長を使った。使用者は、壁に『突込する』よう に見える演出に相関したかなりの抵抗を感じた。カテーテルを捩り、再位置決め することで、不意に頸静脈内に通され、調べる人は、それが正しく位置決めされ て心地良さを感じた。即座のリアルタイムのフィードバックを行わないと、使用 者は、手続きが終わって患者がX線撮影による立証を受けるまでカテーテルが間 違ったターンや捩じれを起こしているかどうかが判らない。かくして、本研究は 、 動物モデルにおいて外部視認点に対してカテーテル尖端を正確に場所特定する検 出器システム100の能力を図解しており、またPICCや他の医療装置の設定 におけるその効験を証明する事を基礎としている。 上記の事から、本発明の特定の実施例は図解の目的でここに説明してきたので あって、本発明の精神と技術的範囲から逸脱しない限り各種の変更が成され得る ことが認識されよう。従って、本発明は、添付された請求の範囲による以外限定 され無い。
【手続補正書】特許法第184条の8第1項 【提出日】平成11年6月2日(1999.6.2) 【補正内容】 推定演算器152によって使われる等式は、電気と磁気に関連した物理学の基 本法則から容易に導かれる。強さmの磁気双極子によって発生され、場所aに配 置され且つ場所sで計測される静的磁場Bは、次によって与えられる。 その場合、‖s−a‖は行列数学で良く知られている母数値である(例えば、 ‖s−a‖2は平方母数である)。値a、m、s、Bは全てベクトル値であること に注目すべきである。要語の『静的磁場』とは、時間的に変化する電磁場又は交 播磁場とは反対に成るような磁石120によって発生される磁場を説明するため のものである。磁石120は、固定された一定の(即ち、静的な)磁場を発生さ せる。検出器システム100によって検出される磁場の強さは、磁石120と磁 気センサー108−114との間の距離に左右される。当業者は、磁石120が 患者内部で動かされるに従って、又は検出器システム100が磁石に対して動か されるに従って被検出磁場の強さが変化するものと認識できる。しかし、検出器 システム100と磁石120との間の相対移動は、必須ではない。検出器システ ム100は、たとえ検出器システムと磁石とが互いに対して移動していない時で も3次元空間での磁石120の場所と向きとを容易に確定することができる。 磁気センサー108−114からの値は、場所S1−S4での磁場Bの強さを 各々確定するために等式(1)で使用される。距離に伴った磁場Bの変化は、s に対するBの導関数であるBの勾配G(s)として定義される。勾配G(s)は 、等式(1)から導かれる3×3行列によって表され、次の形で表現される。 その場合、Tは配置行列であり、Iは次の形を有した3×3の単位行列である: 【手続補正書】特許法第184条の8第1項 【提出日】平成11年6月16日(1999.6.16) 【補正内容】 請求の範囲 1.患者の体表面上の計測場所から内在する医療装置に組み合わされた磁石の位 置を検出するシステムであって: 相対的に固定された位置に保持され、各々が公知の方向に向けられていて、 磁石による静止磁場の強さと方向の関数として信号を発生する複数の磁気セン サーと; 3次元空間における磁石の初期推定位置と; 推定位置に基づいて複数のセンサーの内の少なくとも一部分に対する予測 磁場強さと; 信号を使用してセンサーのその一部分に対する実際の磁場強さと; 予測磁場強さと実際の磁場強さとの間の差に基づいてエラー関数とを算定 する演算器と; 3次元空間における磁石の位置に関するデータを目視表示する表示器とから 構成されていることを特徴とする磁石の位置を検出するシステム。 2.演算器は、少なくとも一つのセンサーの信号に基づいて初期推定位置を算定 する請求の範囲第1項記載のシステム。 3.演算器は、所定限界値より大きい少なくとも一つのセンサーの信号に基づい て初期推定位置を算定する上記請求の範囲第1項と第2項いずれかに記載のシ ステム。 4.更に、初期推定位置を発生し、信号を受信してそれに基づいて初期推定位置 を発生する神経ネットワークを有している上記請求の範囲第1項から第3項の いずれかに記載のシステム。 5.神経ネットワークは、学習モードと作動モードとを有しており、また神経ネ ットワークは、学習モードにおいて複数の組の信号を受信して、第1、第2及 び第3の組の信号の複数の組の各々に対して推定位置を発生するよう機能し、 また神経ネットワークは、更に、推定位置の各々を発生した後に磁石の実際の 位置に関連したデータを受信し、作動モードにおいて機能している間に推定位 置データを発生する規則を作り出す為に複数の組の信号と推定位置データと実 際の位置データとを使用し、また神経ネットワークは、信号を受信し、それら 信号と学習モードで作動している間に作られた規則とに基づいて磁石の初期推 定位置を発生するように作動モードにおいて機能するものである請求の範囲第 4項記載のシステム。 6.複数の磁気センサーは、3次元計測を行う為に直交状態に配列されている上 記請求の範囲第1項から第5項のいずれかに記載の装置。 7.磁石は、磁石の向きを表示する磁気双極子モーメントを有しており、また検 出された磁気双極子モーメントは、磁石の向きを示す為に表示器上に表示され る上記請求の範囲第1項から第6項のいずれかに記載のシステム。 8.更に、ハウジングから構成されおり、そこで表示器は、該ハウジングによっ て支持されている上記請求の範囲第1項から第7項のいずれかに記載のシステ ム。 9.表示器は、該表示器の少なくとも一部分が透明であって使用者が透明な部分 の下方に患者の体表面を見れるようにしている2次元表示器である請求の範囲 第8項記載のシステム。 10.更に、複数のセンサーを指示するハウジングから構成されており、表示器は 、ハウジングから隔設され且つ演算器に電気的に接続された外部表示器である 上記請求の範囲第1項から第9項のいずれかに記載のシステム。 11.患者の内部解剖の画像を発生できる画像装置と共に使用する為のものであっ て、そこで表示器は、磁石の位置に関連したデータと組み合わされた患者の内 部解剖の画像を表示するものである請求の範囲第10項記載のシステム。 12.予測された磁場強さが所定許容値以内で実際の磁場強さと合致するのをエラ ー関数が示すまで、表示器は、推定位置と予測磁場強さとを反復して算定する 上記請求の範囲第1項から第11項のいずれかに記載のシステム。 13.表示器は、エラー関数の一回の発生に基づいてデータの目視表示を行う上記 請求の範囲第1項から第11項のいずれかに記載のシステム。 14.地球磁場の存在で使用する為のものであって、そこで演算器は、地球磁場の 作用を無くする為に、複数の磁気センサーの内の第1の選択されたものによっ て発生された第1の選択された信号を、複数の磁気センサーの内の第2の選択 されたものによって発生された第2の選択された信号から減算するるものであ る上記請求の範囲第1項から第13項のいずれかに記載のシステム。 15.更に、複数のセンサーを支持するハウジングと、ハウジングの位置を検出し てそれに関連した位置データを発生する位置検出器と、ハウジングの新しい位 置への移動から結果的に生じる地球磁場における変化を補償する較正演算器と から構成されており、また較正演算器は、位置データに基づいてハウジングの 位置における変化を算定し、新しい位置における実際の磁場強さを算定し、実 際の磁場に対する磁石から結果的に生じた影響を算定するものであり、また較 正演算器は、更に地球磁場の作用を補償する為に、新しい位置における実際の 磁場強さと実際の磁場に対する磁石から結果的に生じた影響との間の差を利用 するように成っている請求の範囲第14項記載のシステム。 16.更に、複数のセンサーを支持するハウジングと、ハウジングの位置を検出し てそれに関連した位置データを発生する位置検出器とから構成されており、ま た本システムは、使用者によって選定された複数の場所におけるハウジング位 置を記録するように作動できるものであり、また表示器は、磁石の位置に関連 したデータと組み合わされた選定場所を目視表示するものである請求の範囲第 1項から第16項のいずれかに記載のシステム。 17.患者の体表面上の計測場所から内在する医療装置に組み合わされた磁石の位 置を検出する方法であって: 相対的に固定された位置に保持されいて、各々が公知の方向に向けられてい て、磁石による静止磁場の強さと方向の関数として信号を発生する複数の磁気 センサーを位置決めする工程と; 3次元空間において磁石の初期推定位置を算定する工程と; その推定位置に基づいて複数のセンサーの内の少なくとも一部分に対して予 測磁場強さを算定する工程と; 上記信号を使用してセンサーのその部分に対する実際の磁場強さを算定する 工程と; 予測磁場強さと実際の磁場強さとの間の差に基づいてエラー関数を算定する 工程と; 3次元空間における磁石の位置に関連したデータを目視表示する工程とから 構成されていることを特徴とする磁石の位置を検出する方法。 18.初期推定位置の算定は、少なくとも一つのセンサーの信号に基づいている請 求の範囲第17項記載の方法。 19.初期推定位置の算定は、所定の限界値より大きい少なくとも一つのセンサー の信号に基づいている上記請求の範囲第17項と第18項のいずれかに記載の システム。 20.初期推定位置の算定は、神経ネットワークによって実施され、神経ネットワ ークは、信号を受信し、それに基づいて初期推定位置を発生する上記請求の範 囲第17項から第19項のいずれかに記載の方法。 21.神経ネットワークは、学習モードと作動モードとを有しており、また本方法 は、学習モードにおいて複数の信号を受信して第1、第2及び第3の組の信号 の複数の組の各々に対して推定位置を発生するように機能する神経ネットワー クから構成されており、また神経ネットワークは、更に、推定位置を各々発生 した後に磁石の実際の位置に関連したデータを受信し、作動モードにおいて機 能している間に推定位置データを発生する規則を作り出す為に第1、第2及び 第3の組の信号の複数の組と推定位置データと実際の位置データとを使用し、 また神経ネットワークは、上記信号を受信し、該信号と学習モードで作動して いる間に作られた規則とに基づいて磁石の初期推定位置を発生するように作動 モードにおいて機能する請求の範囲第20項記載の方法。 22.磁石は、磁石の向きを表示する磁気双極子モーメントを有しており、またデ ータの表示は、磁石の向きを示す為に検出された磁気双極子モーメントの表示 から構成されている請求の範囲第17項から第21項のいずれかに記載の方法 。 23.患者の内部解剖の画像を発生できる画像装置と共に使用する為のものであっ て、本方法は、更に、磁石の位置に関連したデータと組み合わされた患者の内 部解剖の画像を表示することから構成されている上記請求の範囲第17項から 第22項のいずれかに記載の方法。 24.更に、エラー関数に基づいて初期推定位置を変更し、予測された磁場強さが 所定許容値以内で実際の磁場強さと合致するのをエラー関数が示すまで、推定 位置と予測磁場強さとエラー関数とを反復して算定することから構成されてい る上記請求の範囲第17項から第23項のいずれかに記載の方法。 25.表示器は、エラー関数の一回の発生に基づいてデータを目視表示するもので ある上記請求の範囲第17項から第23項のいずれかに記載の方法。 26.地球磁場の存在で使用する為のものであって、更に、地球磁場の作用を無く する為に、複数の磁気センサーの内の第1の選択されたものによって発生され た第1の選択された信号を複数の磁気センサーの内の第2の選択されたものに よって発生された第2の選択された信号から減算することから構成されている 上記請求の範囲第17項から第25項のいずれかに記載の方法。 27.更に、新しい場所への複数の磁気センサーの移動から結果的に生じる複数の 磁気センサーの位置を検出して、それに関連した位置データを発生し; その位置に基づいて複数の磁気センサーの位置における変化を算定し; 新しい場所での実際の磁場強さに関連した値を算定し; 実際の磁場に関連した値に対する磁石から結果的に生じ影響を算定し; 新しい場所への複数の磁気センサーの移動から結果的に生じる地球磁場の作 用を補償する為に、新しい場所での実際の磁場強さに関連した値と実際の磁場 に関連した値に対する磁石から結果的に生じる影響との差を使用することから 構成されている請求の範囲第26項記載の方法。 28.更に、磁気センサーの位置を検出して、それに関連した位置データを発生し ; 使用者によって選定された複数の場所における磁気センサーの位置を記録 し; 磁石の位置に関連したデータと組み合わせて、選定された場所の目視表示を 表示することから構成されている上記請求の範囲第17項から第27項のいず れかに記載の方法。 29.患者の体表面上の計測場所から内在する医療装置に組み合わされた磁石の位 置を検出するシステムであって: 各々が公知の方向に向けられており、磁石による静止磁場の強さと方向の関 数として一組の信号を発生する複数の磁気センサーと; 3次元空間において磁石の推定位置を算定し、その推定位置に基づいて複数 のセンサーの内の少なくとも一部分に対して予測磁場強さに関連した値を算定 し、更に上記一組の信号を使用して実際の磁場強さに関連した値を算定すると 共に、予測磁場強さに関連した値と実際の磁場強さに関連した値との間の差に 基づいて磁石の場所に関連した値を確定する演算器と; 磁気センサーの場所を確定し、それに関連した位置データを発生する位置検 出器と; 位置データと磁石の場所に関連した値とを受信し、磁気センサーの場所が患 者に対して変わるに従って地球磁場の作用を補償する較正演算器と; 3次元空間における磁石の位置に関連した値を目視表示する表示器とから構 成されていることを特徴とする磁石の位置を検出するシステム。 30.較正演算器は、位置データに基づいて磁気センサーの場所における変化を算 定し、新しい位置における実際の磁場強さを算定し、実際の磁場に関連した値 に対する磁石から結果的に生じた影響を算定しするものであり、較正演算器は 、更に、地球磁場の作用を補償する為に、新しい位置における実際の磁場強さ に関連した値と実際の磁場に関連した値に対する磁石から結果的に生じた影響 との間の差を利用する請求の範囲第29項記載のシステム。 31.予測磁場強さに関連した値が、実際の磁場強さに関連した値に所定の許容値 以内で合致するまで、演算器は、推定位置と予測磁場強さに関連した値とを反 復して算定する上記請求の範囲第29項から第30項のいずれかに記載のシス テム。 32.演算器は、初期の推定位置に基づいて第1の反復を実行し、また本システム は、更に、初期の推定位置を発生する神経ネットワークを有しており、また神 経ネットワークは、第1、第2及び第3の組の信号を受信し、それに基づいて 初期の推定位置を発生するように成っている請求の範囲第31項記載のシステ ム。 33.演算器は、予測磁場強さに関連した値と実際の磁場強さに関連した値との一 回の算定に基づいて磁石の位置を算定する上記請求の範囲第29項から第30 項のいずれかに記載のシステム。 34.演算器は、磁場強さを表わす数学等式を使用して推定位置を算定するように 成っている上記請求の範囲第29項から第33項のいずれかに記載のシステム 。 35.演算器は、磁場強さの勾配を表わす数学等式を使用して推定位置を算定する 上記請求の範囲第29項から第33項のいずれかに記載のシステム。 36.演算器は、予測磁場強さに関連した値と磁場強さに関連した計測値に関連し た値との差に基づいてコスト関数を算定し、また演算器は、更にコスト関数の 最小値を算定すると共に、所定の最小値でコスト関数の最小値を分析し、その 最小値が所定最小値より大きいか又は小さいかを示す信号を使用者に発生する ものである上記請求の範囲第29項から第35項のいずれかに記載のシステム 。 37.患者の体表面上の計測場所から内在する医療装置に組み合わされた磁石の位 置を検出するシステムであって: 各々が磁石による磁場の強さと方向の関数として一組の電気信号を発生する 複数の磁気センサーと; その一組の電気信号から磁気センサーの磁場勾配計測値を算定し、磁場強さ の勾配を表わす数学等式と算定された磁場勾配計測値とを使用して3次元空間 における磁石の位置を算定する演算器と; 磁石の位置に関連したデータを目視表示する表示器とから構成されているこ とを特徴とする磁石の位置を検出するシステム。 38.患者の体表面上の計測場所から内在する医療装置に組み合わされた磁石の位 置を検出する方法であって: 磁石に対して所定場所に複数の磁気センサーを位置決めする工程と; 磁場の強さとセンサーから磁石への方向とに関連した一組の信号を発生する 工程と; その組の信号から磁気センサーに対する磁場勾配計測値を算定して、磁場の 勾配を表わす数学等式と、算定された磁場勾配計測値とを使用して3次元空間 における磁石の位置を算定する工程と; 磁石の位置に関連したデータを表示する工程とから構成されていることを特 徴とする磁石の位置を検出する方法。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,ML,MR, NE,SN,TD,TG),AP(GH,GM,KE,L S,MW,SD,SZ,UG,ZW),EA(AM,AZ ,BY,KG,KZ,MD,RU,TJ,TM),AL ,AM,AT,AU,BA,BB,BG,BR,BY, CA,CH,CN,CU,CZ,DE,DK,EE,E S,FI,GB,GE,GH,HU,IL,IS,JP ,KE,KG,KP,KR,KZ,LC,LK,LR, LS,LT,LU,LV,MD,MG,MK,MN,M W,MX,NO,NZ,PL,PT,RO,RU,SD ,SE,SG,SI,SK,TJ,TM,TR,TT, UA,UG,US,UZ,VN,YU (72)発明者 ソモジー クリストファー ピー アメリカ合衆国 ワシントン州 98072 ウッディンヴィル トゥーハンドレッドア ンドトゥエンティース アベニュー ノー スイースト 14058 (72)発明者 ゴールデン ロバート エヌ アメリカ合衆国 ワシントン州 98033 カークランド ノースイースト シックス ティシックスス ストリート 12117 【要約の続き】 内部における磁石の深度の相対的又は絶対的インジケー ションを提供する為に使用され得る。

Claims (1)

  1. 【特許請求の範囲】 1.患者の体表面上の計測場所から内在する医療装置に組み合わされた磁石の位 置を検出するシステムであって: ハウジングと; 該ハウジングによって支持され、各々が3つの直交方向において磁場強さを 検出するセンサーエレメントから構成されており、磁石による静止磁場の強さ と方向の関数として、各々第1、第2及び第3の組の信号を発生する第1、第 2及び第3の磁気センサーと; 3次元空間における磁石の推定位置を算定し、推定位置に基づいて第1、第 2及び第3のセンサーに対する予測磁場強さを算定し、更に第1、第2及び第 3の組の信号を使用して実際の磁場強さを算定して予測磁場強さと実際の磁場 強さとの間の差に基づいてエラー関数を発生する演算器と; 上記エラー関数を使って3次元空間における磁石の位置に関するデータを目 視表示する表示器とから構成されていることを特徴とする磁石の位置を検出す るシステム。 2.更に、推定位置を発生し、第1、第2及び第3の組の信号を受信してそれに 基づいて推定位置を発生する神経ネットワークを有している請求の範囲第1項 記載のシステム。 3.神経ネットワークは、学習モードと作動モードとを有しており、また神経ネ ットワークは、学習モードにおいて第1、第2及び第3の組の複数の信号を受 信して第1、第2及び第3の組の信号の複数の組の各々に対して推定位置を発 生するよう機能し、また神経ネットワークは、更に、推定位置を各々発生した 後に磁石の実際の位置に関連したデータを受信すると共に、作動モードにおい て機能している間に推定位置データをを発生する規則を作り出す為に第1、第 2及び第3の組の信号の複数の組と推定位置データと実際の位置データとを使 用し、また神経ネットワークは、第1、第2及び第3の組の信号を受信し、第 1、第2及び第3の組の信号と学習モードで作動している間に作られた規則と に基づいて磁石の推定位置を発生するように作動モードにおいて機能する請求 の範囲第2項記載のシステム。 4.磁石は、磁石の向きを表示する磁気双極子モーメントを有しており、また検 出された磁気双極子モーメントは、磁石の向きを示す為に表示器上に表示され るように成っている請求の範囲第1項記載のシステム。 5.表示器は、ハウジングによって支持されている請求の範囲第1項記載のシス テム。 6.表示器は、該表示器の少なくとも一部分が透明に成っていて使用者が透明部 分の下方で患者の体表面を見れるようにした2次元表示器である請求の範囲第 5項記載のシステム。 7.表示器は、ハウジングから隔設され且つ演算器に電気的に接続された外部表 示器である請求の範囲第1項記載のシステム。 8.患者の内部解剖の画像を発生できる画像装置と共に使用する為のものであっ て、そこで表示器は、磁石の位置に関連したデータと組み合わされた患者の内 部解剖の画像を表示するものである請求の範囲第7項記載のシステム。 9.予測磁場強さが所定許容値以内で実際の磁場強さと合致するのをエラー関数 が示すまで、演算器は、推定位置と予測磁場強さとを反復して算定する請求の 範囲第1項記載のシステム。 10.演算器は、初期の推定位置に基づいて第1反復を実行し、また本システムは 、更に初期の推定位置を発生する神経ネットワークを有しており、また本神経 ネットワークは、第1、第2及び第3の組の信号を受信してそれに基づいて初 期の推定位置を発生する請求の範囲第9項記載のシステム。 11.表示器は、エラー関数の一回の発生に基づいてデータの目視表示を行う請求 の範囲第1項記載のシステム。 12.第1、第2及び第3のセンサーは、ホール効果センサーや、フラックス−ゲ ートセンサー、巻き心誘導センサー、磁場勾配センサー、スキッドセンサー、 磁気抵抗センサー、核歳差運動センサーから構成された磁気センサーグループ から選択される請求の範囲第1項記載のシステム。 13.地球磁場の存在で使用する為のものであって、そこで演算器は、地球磁場の 作用を無くする為に、第1、第2及び第3の組の信号の内の第1の選択された ものを第1、第2及び第3の組の信号の内の第1の選択されたものとは異なっ ている第1、第2及び第3の組の信号の内の第2の選択されたものから減算す るものである請求の範囲第1項記載のシステム。 14.更に、ハウジングの位置を検出してそれに関連した位置データを発生する検 出器と、ハウジングの新しい位置への移動から結果的に生じる地球磁場におけ る変化を補償する較正演算器とを有しており、また較正演算器は、位置データ に基づいてハウジングの位置における変化を算定し、新しい位置における実際 の磁場強さを算定し、実際の磁場に対する磁石から結果的に生じた影響を算定 するものであり、また較正演算器は、更に地球磁場の作用を補償する為に、新 しい位置における実際の磁場強さと実際磁場に対する磁石から結果的に生じた 影響との間の差を利用するものである請求の範囲第13項記載のシステム。 15.更に、上記第1、第2及び第3の磁気センサーを較正する較正回路を有して いる請求の範囲第1項記載のシステム。 16.更に、ハウジングの位置を検出してそれに関連した位置データを発生する検 出器を有しており、本システムは、使用者によって選定された複数の場所にお けるハウジング位置を記録するように作動可能であり、また表示器は、磁石の 位置に関連したデータと組み合わされた選定場所を目視表示するものである請 求の範囲第1項記載のシステム。 17.患者の体表面上の計測場所から内在する医療装置に組み合わされた磁石の位 置を検出するシステムであって: 各々が公知の方向に向けられており、磁石による静止磁場の強さと方向の関 数として一組の信号を発生する複数の磁気センサーと; 3次元空間において磁石の推定位置を算定し、その推定位置に基づいて複数 のセンサーの内の少なくとも一部分に対して予測磁場強さに関連した値を算定 し、更に一組の信号を使用して実際の磁場強さに関連した値を算定すると共に 、予測磁場強さに関連した値と実際の磁場強さに関連した値との間の差に基づ いて磁石の場所に関連した値を確定する演算器と; 磁気センサーの場所を確定し、それに関連した位置データを発生する位置検 出器と; 位置データと磁石の場所に関連した値とを受信し、磁気センサーの場所が患 者に対して変わるに従って地球磁場の作用を補償する較正演算器と; 3次元空間における磁石の位置に関連した値を目視表示する表示器とから構 成されていることを特徴とする磁石の位置を検出するシステム。 18.較正演算器は、位置データに基づいて磁気センサーの場所における変化を算 定し、新しい位置における実際の磁場強さを算定し、実際の磁場に関連した値 に対する磁石から結果的に生じる影響を算定するものであり、また較正演算器 は、更に、地球磁場の作用を補償する為に、新しい位置における実際の磁場強 さに関連した値と実際の磁場に関連した値に対する磁石から結果的に生じる影 響との間の差を利用する請求の範囲第17項記載のシステム。 19.演算器は、予測磁場強さに関連した値が、実際の磁場強さに関連した値に所 定の許容値以内で合致するまで推定位置と予測磁場強さに関連した値とを反復 して算定する請求の範囲第17項記載のシステム。 20.演算器は、初期の推定位置に基づいて最初の反復を実行し、また本システム は、更に初期の推定位置を発生する神経ネットワークを有しており、また本神 経ネットワークは、第1、第2及び第3の組の信号を受信してそれに基づいて 初期の推定位置を発生する請求の範囲第19項記載のシステム。 21.演算器は、予測磁場強さに関連した値と実際の磁場強さに関連した値との一 回の算定に基づいて磁石の位置を算定する請求の範囲第17項記載のシステム 。 22.演算器は、磁場強さを表した数学等式を使用して推定位置を算定する請求の 範囲第17項記載のシステム。 23.演算器は、磁場強さの勾配を表した数学等式を使用して推定位置を算定する 請求の範囲第17項記載のシステム。 24.センサーは、ホール効果センサーや、フラックス−ゲートセンサー、巻き心 誘導センサー、磁場勾配センサー、スキッドセンサー、磁気抵抗センサー、核 歳差運動センサーから構成された磁気センサーグループから選択される請求の 範囲第17項記載のシステム。 25.更に、複数のセンサーを較正する為に較正回路を有している請求の範囲第1 7項記載のシステム。 26.演算器は、予測磁場強さに関連した値と磁場強さに関連した計測値に関連し た値との差に基づいてコスト関数を算定し、また演算器は、更にコスト関数の 最小値を算定すると共に、所定の最小値でコスト関数の最小値を分析し、その 最小値が所定最小値より大きいか又は小さいかを示す信号を使用者に発生する ものである請求の範囲第1項記載のシステム。 27.患者の体表面上の計測場所から内在する医療装置に組み合わされた磁石の位 置を検出するシステムであって: 互いに対して一定の位置に維持されいて、各々が公知の方向に向けられてい て、磁石による静止磁場の強さと方向の関数として信号を発生する複数の磁気 センサーと; 3次元空間において磁石の推定位置を算定し、その推定位置に基づいて複数 のセンサーの内の少なくとも一部分に対して予測磁場強さを算定し、更に信号 を使用してその部分の実際の磁場強さに関連した値を算定すると共に、予測磁 場強さと実際の磁場強さとの間の差に基づいてエラー関数を発生する演算器と ; エラー関数に基づいて3次元空間における磁石の位置に関連したデータを目 視表示する表示器とから構成されていることを特徴とする磁石の位置を検出す るシステム。 28.複数の磁気センサーは、3つの直交方向に向けられており、それらセンサー は、3つの直交方向における静止磁場強さの関数として、各々第1、第2及び 第3の組の信号を発生するものである請求の範囲第27項記載のシステム。 29.患者の体表面上の計測場所から内在する医療装置に組み合わされた磁石の位 置を検出するシステムであって: 各々が磁石による磁場の強さと方向の関数として一組の電気信号を発生する 複数の磁気センサーと; 複数の組の電気信号から磁気センサー対する磁場勾配計測値を算定すると共 に、磁場強さの勾配を表した数学等式と算定された磁場勾配計測値とを使用し て3次元空間における磁石の位置を算定する演算器と; 磁石の位置に関連したデータを目視表示する表示器とから構成されているこ とを特徴とする磁石の位置を検出するシステム。 30.患者の体表面上の計測場所から内在する医療装置に組み合わされた磁石の位 置を検出する方法であって: 磁石に対して所定場所に複数の磁気センサーを位置決めする工程と; 複数の磁気センサーの各々における磁場を検出する工程と; 磁石による検出磁場に関連した一組の信号を発生する工程と; 磁石の推定位置を算定する工程と; その推定位置に基づいて複数のセンサーの磁場に関連した予測値を算定する 工程と; 複数の組の信号を使用して磁場に関連した実際値を算定する工程と; 磁石位置を確定するために磁場に関連した実際値と磁場に関連した予測値を 比較する工程と; 磁場位置に関連したデータを表示する工程とから構成されていることを特徴 とする磁石の位置を検出する方法。 31.更に、神経ネットワークを使用して一組の信号を分析して、それによってそ の一組の信号に基づいて推定位置を発生する工程を有している請求の範囲第3 0項記載の方法。 32.更に、磁場に関連した予測値が磁場に関連した実際値に所定の許容値以内で 合致するまで、推定位置と磁場に関連した予測値とを再算定する工程を有して いる請求の範囲第30項記載の方法。 33.最初の反復が初期の推定位置に基づいて実施され、また本方法が、更に神経 ネットワークを使用して一組の信号を分析して、それによってその一組の信号 に基づいて初期の推定位置を発生する工程を有している請求の範囲第32項記 載の方法。 34.更に、計測場所を変更して、それによって複数の磁気センサーを再配置する 工程と、一組の信号を発生する工程と、推定位置を算定する工程と、予測値を 算定する工程と、実際値を算定する工程と、変更された計測場所に対して磁石 の位置を確定する為に予測値を実際値と比較する工程と、変更された計測場所 に対する磁石の位置に関連したデータを表示する工程とを有している請求の範 囲第30項記載の方法。 35.複数のセンサーは、ホール効果センサーや、フラックス−ゲートセンサー、 巻き心誘導センサー、磁場勾配センサー、スキッドセンサー、磁気抵抗センサ ー、核歳差運動センサーから構成された磁気センサーのグループから選択され る請求の範囲第30項記載の方法。 36.地球磁場の存在で使用する為のものであって、本方法は、更に、地球磁場の 作用を無くする為に、複数の磁気センサーの第1のものによって発生された組 の信号の内の選択されたものを複数の磁気センサーの内の第2のものによって 発生された組の信号の内の第2の選択されたものから減算する工程を有してい る請求の範囲第30項記載の方法。 37.更に、新しい場所への複数の磁気センサーの移動から結果的に生じる複数の 磁気センサーの位置を検出して、それに関連した位置データを発生する工程と ; その位置に基づいて複数の磁気センサーの位置における変化を算定する工程 と; 新しい場所での実際の磁場強さに関連した値を算定する工程と; 実際の磁場に関連した値に対する磁石から結果的に生じ影響を算定する工程 と; 新しい場所への複数の磁気センサーの移動から結果的に生じる地球磁場の作 用を補償する為に、新しい場所での実際の磁場強さに関連した値と実際の磁場 に関連した値に対する磁石から結果的に生じる影響との差を使用する工程とを 有している請求の範囲第30項記載の方法。 38.表示工程は、磁気センサーから隔設された外部表示器を使用している請求の 範囲第17項記載の方法。 39.患者の内部解剖の画像を発生できる画像化装置と共に使用するためのもので あって、本方法は、更に、磁石の位置に関連したデータと組み合わせて、患者 の内部解剖の画像を表示する工程を有している請求の範囲第38項記載の方法 。 40.更に、磁気センサーの位置を検出して、それに関連した位置データを発生す る工程と; 使用者によって選定された複数の場所における磁気センサーの位置を記録す る工程と; 磁石の位置に関連したデータと組み合わせて、選定された場所の目視表示を 表示する工程とを有している請求の範囲第30項記載の方法。 41.患者の体表面上の計測場所から内在する医療装置に組み合わされた磁石の位 置を検出する方法であって: 磁石に対して所定場所に複数の磁気センサーを位置決めする工程と; 磁場の強さとセンサーから磁石への方向とに関連した一組の信号を発生する 工程と; 複数組の信号から磁気センサーに対する磁場勾配計測値を算定して、磁場の 勾配を表わした数学等式と、算定された磁場勾配計測値とを使用して3次元空 間における磁石の位置を算定する工程と; 磁石の位置に関連したデータを表示する工程とから構成されていることを特 徴とする磁石の位置を検出する方法。
JP54854798A 1997-05-08 1998-05-08 内在する医療装置の場所と向きを確定するシステムと方法 Expired - Fee Related JP4091991B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/852,940 1997-05-08
US08/852,940 US5879297A (en) 1997-05-08 1997-05-08 System and method to determine the location and orientation of an indwelling medical device
PCT/US1998/009454 WO1998049938A1 (en) 1997-05-08 1998-05-08 System and method to determine the location and orientation of an indwelling medical device

Publications (3)

Publication Number Publication Date
JP2001524012A true JP2001524012A (ja) 2001-11-27
JP2001524012A5 JP2001524012A5 (ja) 2005-12-02
JP4091991B2 JP4091991B2 (ja) 2008-05-28

Family

ID=25314606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54854798A Expired - Fee Related JP4091991B2 (ja) 1997-05-08 1998-05-08 内在する医療装置の場所と向きを確定するシステムと方法

Country Status (11)

Country Link
US (2) US5879297A (ja)
EP (2) EP1181891B1 (ja)
JP (1) JP4091991B2 (ja)
CN (1) CN1250161C (ja)
AT (2) ATE227543T1 (ja)
AU (1) AU729379C (ja)
BR (1) BR9809789A (ja)
CA (1) CA2288118A1 (ja)
DE (2) DE69809411T2 (ja)
ES (1) ES2187970T3 (ja)
WO (1) WO1998049938A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107107A (ja) * 2000-07-20 2002-04-10 Biosense Inc 医療システムの静止金属補償付き校正方法
JP2003530557A (ja) * 2000-04-07 2003-10-14 ノーザン・デジタル・インコーポレイテッド 磁気的な位置または配向の決定における誤差の検出方法
JP2007500565A (ja) * 2003-05-21 2007-01-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ カテーテルをナビゲートする機器及び方法
JP2007502187A (ja) * 2003-05-21 2007-02-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ カテーテルをナビゲートする機器及び方法
JP2007125193A (ja) * 2005-11-04 2007-05-24 Pentax Corp 医療用器具および医療用器具振動システム
JP2007248451A (ja) * 2005-12-30 2007-09-27 Depuy Products Inc 磁気源の位置を突き止める方法
JP2010131385A (ja) * 2008-11-12 2010-06-17 Biosense Webster Inc 機械的特性に基づくプローブの可視化
JP2012508116A (ja) * 2008-11-07 2012-04-05 アドバンスド アナリシス アンド インテグレイション リミテッド アライメントシステム
JP2012528304A (ja) * 2009-05-25 2012-11-12 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 磁気によって位置を求めるための方法及び装置
JP2014531283A (ja) * 2011-10-07 2014-11-27 ノボ・ノルデイスク・エー/エス 3軸磁気センサに基づいて要素の位置を決定するシステム
JP2015119972A (ja) * 2013-12-24 2015-07-02 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. 磁界補正の適用のための適応型蛍光透視鏡の場所
JP2018027308A (ja) * 2016-08-18 2018-02-22 ニュートリシール リミテッド パートナーシップNutriseal Limited Partnership 挿入装置位置決め誘導システム及び方法
JP2018192263A (ja) * 2017-05-19 2018-12-06 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. 精度及び干渉に対する位置耐性を向上させるための近位位置センサの使用
US11364179B2 (en) 2018-04-30 2022-06-21 Envizion Medical Ltd. Insertion device positioning guidance system and method
US11382701B2 (en) 2018-10-17 2022-07-12 Envizion Medical Ltd. Insertion device positioning guidance system and method
US11389254B2 (en) 2016-08-18 2022-07-19 Envizion Medical Ltd. Insertion device positioning guidance system and method
US11779403B2 (en) 2018-10-17 2023-10-10 Envizion Medical Ltd. Insertion device positioning guidance system and method

Families Citing this family (273)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496715B1 (en) * 1996-07-11 2002-12-17 Medtronic, Inc. System and method for non-invasive determination of optimal orientation of an implantable sensing device
US6263230B1 (en) 1997-05-08 2001-07-17 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US5879297A (en) 1997-05-08 1999-03-09 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US6129668A (en) * 1997-05-08 2000-10-10 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
WO1998052466A1 (en) 1997-05-21 1998-11-26 Lucent Medical Systems, Inc. Non-invasive sensing of a physical parameter
US6269262B1 (en) 1997-06-20 2001-07-31 Hitachi, Ltd. Biomagnetic field measuring apparatus
GB9717574D0 (en) * 1997-08-19 1997-10-22 Flying Null Ltd Catheter location
US6052610A (en) * 1998-01-09 2000-04-18 International Business Machines Corporation Magnetic catheter tracker and method therefor
US6091980A (en) * 1998-05-12 2000-07-18 Massachusetts Institute Of Technology Stent slip sensing system and method
US6363940B1 (en) * 1998-05-14 2002-04-02 Calypso Medical Technologies, Inc. System and method for bracketing and removing tissue
WO2002039917A1 (en) * 1998-05-14 2002-05-23 Calypso Medical, Inc. Systems and methods for locating and defining a target location within a human body
US6145509A (en) * 1998-07-24 2000-11-14 Eva Corporation Depth sensor device for use in a surgical procedure
US6230038B1 (en) * 1999-02-01 2001-05-08 International Business Machines Corporation Imaging of internal structures of living bodies by sensing implanted magnetic devices
US6368331B1 (en) * 1999-02-22 2002-04-09 Vtarget Ltd. Method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body
US6173715B1 (en) 1999-03-01 2001-01-16 Lucent Medical Systems, Inc. Magnetic anatomical marker and method of use
US20060287574A1 (en) * 1999-08-25 2006-12-21 Chin Albert K Longitudinal dilator
WO2001024697A1 (en) * 1999-10-06 2001-04-12 Orthodyne, Inc. Device and method for measuring skeletal distraction
US6480111B2 (en) * 2000-01-10 2002-11-12 Southwest Research Institute Motion detection for physiological applications
US8888688B2 (en) 2000-04-03 2014-11-18 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US8517923B2 (en) 2000-04-03 2013-08-27 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US6858005B2 (en) 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
US6468203B2 (en) 2000-04-03 2002-10-22 Neoguide Systems, Inc. Steerable endoscope and improved method of insertion
US6610007B2 (en) 2000-04-03 2003-08-26 Neoguide Systems, Inc. Steerable segmented endoscope and method of insertion
US6484118B1 (en) 2000-07-20 2002-11-19 Biosense, Inc. Electromagnetic position single axis system
AU2001283703B2 (en) 2000-08-23 2006-05-25 Avent, Inc. Catheter locator apparatus and method of use
US20020103430A1 (en) 2001-01-29 2002-08-01 Hastings Roger N. Catheter navigation within an MR imaging device
US20020111662A1 (en) * 2001-02-09 2002-08-15 Iaizzo Paul A. System and method for placing an implantable medical device within a body
US20020193685A1 (en) 2001-06-08 2002-12-19 Calypso Medical, Inc. Guided Radiation Therapy System
US6625563B2 (en) * 2001-06-26 2003-09-23 Northern Digital Inc. Gain factor and position determination system
US7135978B2 (en) * 2001-09-14 2006-11-14 Calypso Medical Technologies, Inc. Miniature resonating marker assembly
US7338505B2 (en) 2002-01-09 2008-03-04 Neoguide Systems, Inc. Apparatus and method for endoscopic colectomy
US8244330B2 (en) 2004-07-23 2012-08-14 Varian Medical Systems, Inc. Integrated radiation therapy systems and methods for treating a target in a patient
US20060079764A1 (en) * 2004-07-23 2006-04-13 Wright J N Systems and methods for real time tracking of targets in radiation therapy and other medical applications
DE10225518B4 (de) 2002-06-10 2004-07-08 Rayonex Schwingungstechnik Gmbh Verfahren und Vorrichtung zur Steuerung und Positionsbestimmung eines Instruments oder Gerätes
CA2500845C (en) * 2002-10-03 2012-07-31 Virginia Tech Intellectual Properties, Inc. Magnetic targeting device
US20040097803A1 (en) * 2002-11-20 2004-05-20 Dorin Panescu 3-D catheter localization using permanent magnets with asymmetrical properties about their longitudinal axis
US7945309B2 (en) * 2002-11-22 2011-05-17 Biosense, Inc. Dynamic metal immunity
US7247160B2 (en) * 2002-12-30 2007-07-24 Calypso Medical Technologies, Inc. Apparatuses and methods for percutaneously implanting objects in patients
US9248003B2 (en) * 2002-12-30 2016-02-02 Varian Medical Systems, Inc. Receiver used in marker localization sensing system and tunable to marker frequency
US7912529B2 (en) * 2002-12-30 2011-03-22 Calypso Medical Technologies, Inc. Panel-type sensor/source array assembly
US7289839B2 (en) * 2002-12-30 2007-10-30 Calypso Medical Technologies, Inc. Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices
US6889833B2 (en) * 2002-12-30 2005-05-10 Calypso Medical Technologies, Inc. Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems
US7926491B2 (en) * 2002-12-31 2011-04-19 Calypso Medical Technologies, Inc. Method and apparatus for sensing field strength signals to estimate location of a wireless implantable marker
JP2004215992A (ja) * 2003-01-16 2004-08-05 Uchihashi Estec Co Ltd 体腔内への医療用挿入具の位置及び姿勢検出装置並びにその検出方法
WO2004070577A2 (en) * 2003-02-04 2004-08-19 Z-Kat, Inc. Interactive computer-assisted surgery system and method
US8882657B2 (en) 2003-03-07 2014-11-11 Intuitive Surgical Operations, Inc. Instrument having radio frequency identification systems and methods for use
US20040176683A1 (en) * 2003-03-07 2004-09-09 Katherine Whitin Method and apparatus for tracking insertion depth
US20040204645A1 (en) * 2003-04-10 2004-10-14 Vahid Saadat Scope position and orientation feedback device
US7433728B2 (en) 2003-05-29 2008-10-07 Biosense, Inc. Dynamic metal immunity by hysteresis
US7974680B2 (en) * 2003-05-29 2011-07-05 Biosense, Inc. Hysteresis assessment for metal immunity
US7321228B2 (en) * 2003-07-31 2008-01-22 Biosense Webster, Inc. Detection of metal disturbance in a magnetic tracking system
US7334582B2 (en) 2003-10-31 2008-02-26 Medtronic, Inc. Electronic valve reader
US8015977B2 (en) 2003-10-31 2011-09-13 Medtronic, Inc. Indicator tool for use with an implantable medical device
US8196589B2 (en) * 2003-12-24 2012-06-12 Calypso Medical Technologies, Inc. Implantable marker with wireless signal transmitter
JP4286127B2 (ja) * 2003-12-25 2009-06-24 オリンパス株式会社 被検体内位置検出システム
JP2005192632A (ja) * 2003-12-26 2005-07-21 Olympus Corp 被検体内移動状態検出システム
US20050154280A1 (en) * 2003-12-31 2005-07-14 Wright J. N. Receiver used in marker localization sensing system
US20050154284A1 (en) * 2003-12-31 2005-07-14 Wright J. N. Method and system for calibration of a marker localization sensing array
US7684849B2 (en) * 2003-12-31 2010-03-23 Calypso Medical Technologies, Inc. Marker localization sensing system synchronized with radiation source
WO2005067563A2 (en) * 2004-01-12 2005-07-28 Calypso Medical Technologies, Inc. Instruments with location markers and methods for tracking instruments through anatomical passageways
JP4520198B2 (ja) * 2004-04-07 2010-08-04 オリンパス株式会社 被検体内位置表示システム
US9373166B2 (en) * 2004-04-23 2016-06-21 Siemens Medical Solutions Usa, Inc. Registered video endoscopy and virtual endoscopy
JP2008507996A (ja) 2004-06-24 2008-03-21 カリプソー メディカル テクノロジーズ インコーポレイテッド 誘導型放射線療法又は手術を用いて患者の肺を治療するシステム及び方法
US7850610B2 (en) 2004-06-28 2010-12-14 Medtronic, Inc. Electrode location mapping system and method
JP2006031399A (ja) * 2004-07-15 2006-02-02 Fujitsu Component Ltd ポインティングデバイス
FI118356B (fi) 2004-07-22 2007-10-15 Planmeca Oy Järjestely intraoraaliröntgenkuvantamisen yhteydessä
US8095203B2 (en) * 2004-07-23 2012-01-10 Varian Medical Systems, Inc. Data processing for real-time tracking of a target in radiation therapy
US9586059B2 (en) * 2004-07-23 2017-03-07 Varian Medical Systems, Inc. User interface for guided radiation therapy
EP1771223A4 (en) * 2004-07-23 2009-04-22 Calypso Med Technologies Inc DEVICE AND METHOD FOR PERCUTANEOUS OBJECT IMPLANTING IN PATIENTS
US7899513B2 (en) * 2004-07-23 2011-03-01 Calypso Medical Technologies, Inc. Modular software system for guided radiation therapy
US8437449B2 (en) 2004-07-23 2013-05-07 Varian Medical Systems, Inc. Dynamic/adaptive treatment planning for radiation therapy
US7976518B2 (en) 2005-01-13 2011-07-12 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US7775966B2 (en) * 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US20060241397A1 (en) * 2005-02-22 2006-10-26 Assaf Govari Reference pad for position sensing
US7699770B2 (en) * 2005-02-24 2010-04-20 Ethicon Endo-Surgery, Inc. Device for non-invasive measurement of fluid pressure in an adjustable restriction device
US7775215B2 (en) * 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US7561051B1 (en) 2005-04-20 2009-07-14 Creare Inc. Magnet locating apparatus and method of locating a magnet using such apparatus
US20060264732A1 (en) * 2005-05-05 2006-11-23 Chunwu Wu System and method for electromagnetic navigation in the vicinity of a metal object
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
EP1926520B1 (en) 2005-09-19 2015-11-11 Varian Medical Systems, Inc. Apparatus and methods for implanting objects, such as bronchoscopically implanting markers in the lung of patients
US20090216113A1 (en) 2005-11-17 2009-08-27 Eric Meier Apparatus and Methods for Using an Electromagnetic Transponder in Orthopedic Procedures
EP3788944B1 (en) 2005-11-22 2024-02-28 Intuitive Surgical Operations, Inc. System for determining the shape of a bendable instrument
US8083879B2 (en) 2005-11-23 2011-12-27 Intuitive Surgical Operations, Inc. Non-metallic, multi-strand control cable for steerable instruments
US7525309B2 (en) 2005-12-30 2009-04-28 Depuy Products, Inc. Magnetic sensor array
US20070167741A1 (en) 2005-12-30 2007-07-19 Sherman Jason T Apparatus and method for registering a bone of a patient with a computer assisted orthopaedic surgery system
US20070161888A1 (en) * 2005-12-30 2007-07-12 Sherman Jason T System and method for registering a bone of a patient with a computer assisted orthopaedic surgery system
US7727240B1 (en) 2006-02-15 2010-06-01 Blake Benton Method and system for securing an intramedullary nail
EP1998702A2 (en) * 2006-03-29 2008-12-10 Stryker Corporation Shielded surgical navigation system that determines the position and orientation of the tracked object with real and virtual dipoles
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US20070276218A1 (en) * 2006-05-04 2007-11-29 Benjamin Yellen Magnetic markers for position sensing
US8568299B2 (en) 2006-05-19 2013-10-29 Intuitive Surgical Operations, Inc. Methods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope
US8197494B2 (en) * 2006-09-08 2012-06-12 Corpak Medsystems, Inc. Medical device position guidance system with wireless connectivity between a noninvasive device and an invasive device
US7769422B2 (en) * 2006-09-29 2010-08-03 Depuy Products, Inc. Apparatus and method for monitoring the position of an orthopaedic prosthesis
US7977939B2 (en) * 2006-10-17 2011-07-12 Stoneridge Control Devices, Inc. Non-contact engine parameter sensor
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8359278B2 (en) * 2006-10-25 2013-01-22 IndentityTruth, Inc. Identity protection
US20080103798A1 (en) * 2006-10-25 2008-05-01 Domenikos Steven D Identity Protection
US20080103800A1 (en) * 2006-10-25 2008-05-01 Domenikos Steven D Identity Protection
US8068648B2 (en) * 2006-12-21 2011-11-29 Depuy Products, Inc. Method and system for registering a bone of a patient with a computer assisted orthopaedic surgery system
US8249689B2 (en) * 2007-02-23 2012-08-21 General Electric Company Coil arrangement for electromagnetic tracking method and system
DE102007012361B4 (de) * 2007-03-14 2016-09-22 Siemens Healthcare Gmbh Verfahren zur Positionsbestimmung eines medizinischen Instruments und Positionsbestimmungsvorrichtung
EP2120839A2 (en) * 2007-03-14 2009-11-25 Kathryn A. Mckenzie Waitzman Methods and systems for locating a feeding tube inside of a patient
EP2134402A2 (en) * 2007-04-16 2009-12-23 C.R. Bard Inc. Guidewire-assisted catheter placement system
DE102007042622A1 (de) * 2007-09-07 2009-03-12 Rheinisch-Westfälisch-Technische Hochschule Aachen Verfahren und System zur Bestimmung der Position und/oder Orientierung eines Objektes
US9220398B2 (en) 2007-10-11 2015-12-29 Intuitive Surgical Operations, Inc. System for managing Bowden cables in articulating instruments
CA3122449C (en) 2007-11-26 2023-12-05 Attractive Surgical, Llc Magnaretractor system and method
CN103750858B (zh) 2007-11-26 2017-04-12 C·R·巴德股份有限公司 用于脉管系统内的导管放置的集成系统
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
WO2009077811A1 (en) * 2007-12-14 2009-06-25 Sophysa Locator, device and method for electronically locating and reading the setting of an adjustable valve.
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US8182418B2 (en) 2008-02-25 2012-05-22 Intuitive Surgical Operations, Inc. Systems and methods for articulating an elongate body
EP3673801B1 (en) 2008-04-17 2022-06-01 C. R. Bard, Inc. Systems for breaching a sterile field for intravascular placement of a catheter
EP2293720B1 (en) 2008-06-05 2021-02-24 Varian Medical Systems, Inc. Motion compensation for medical imaging and associated systems and methods
US9901714B2 (en) * 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
WO2010057716A1 (en) 2008-11-20 2010-05-27 Biomass Heating Solutions Limited A mushroom production process
US8123815B2 (en) * 2008-11-24 2012-02-28 Biomet Manufacturing Corp. Multiple bearing acetabular prosthesis
CN102481490A (zh) * 2008-12-27 2012-05-30 约翰·汉考克 高比重胃内装置
US9943704B1 (en) 2009-01-21 2018-04-17 Varian Medical Systems, Inc. Method and system for fiducials contained in removable device for radiation therapy
CL2009000279A1 (es) 2009-02-06 2009-08-14 Biotech Innovations Ltda Sistema de guia y traccion remota para cirugia mini-invasiva, que comprende: al menos una endopinza quirurgica y desprendible con medios de enganches y una porcion de material ferro magnaetico, una guia de introduccion de forma cilindrica, un mecanismo de desprendimiento, y al menos un medio de traccion remota con iman.
US8548564B2 (en) * 2009-04-03 2013-10-01 Covidien Lp Tracheal tube locating system and method
US20100256476A1 (en) * 2009-04-06 2010-10-07 Nellcor Puritan Bennett Llc Tracheal tube locating system and method
US8280489B2 (en) 2009-04-08 2012-10-02 Nellcor Puritan Bennett Llc Method and system for determining placement of a tracheal tube in a subject
US8457715B2 (en) * 2009-04-08 2013-06-04 Covidien Lp System and method for determining placement of a tracheal tube
WO2010123879A1 (en) * 2009-04-20 2010-10-28 Virginia Tech Intellectual Properties, Inc. Intramedullary nail targeting device
US8457716B2 (en) * 2009-05-04 2013-06-04 Covidien Lp Time of flight based tracheal tube placement system and method
US20100293090A1 (en) * 2009-05-14 2010-11-18 Domenikos Steven D Systems, methods, and apparatus for determining fraud probability scores and identity health scores
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
EP3542713A1 (en) 2009-06-12 2019-09-25 Bard Access Systems, Inc. Adapter for a catheter tip positioning device
US8308810B2 (en) 2009-07-14 2012-11-13 Biomet Manufacturing Corp. Multiple bearing acetabular prosthesis
US8427296B2 (en) * 2009-07-14 2013-04-23 Apple Inc. Method and apparatus for determining the relative positions of connectors
US8522787B2 (en) 2009-07-29 2013-09-03 Covidien Lp Ultrasound-based tracheal tube placement device and method
WO2011019760A2 (en) 2009-08-10 2011-02-17 Romedex International Srl Devices and methods for endovascular electrography
US8244329B2 (en) * 2009-09-29 2012-08-14 Nellcor Puritan Bennett Llc Multiple channel tracheal tube placement device and technique for using the same
US11103213B2 (en) * 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US8761862B2 (en) * 2009-10-09 2014-06-24 Stephen F. Ridley Ultrasound guided probe device and sterilizable shield for same
US8241240B2 (en) 2009-11-09 2012-08-14 Medtronic Xomed, Inc. Adjustable valve setting with motor control
EP2333544A1 (de) 2009-12-11 2011-06-15 F. Hoffmann-La Roche AG Sterilisierbare Chemie für Testelemente
CN102821679B (zh) 2010-02-02 2016-04-27 C·R·巴德股份有限公司 用于导管导航和末端定位的装置和方法
US9652802B1 (en) 2010-03-24 2017-05-16 Consumerinfo.Com, Inc. Indirect monitoring and reporting of a user's credit data
US9216257B2 (en) * 2010-03-25 2015-12-22 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US8483802B2 (en) 2010-03-25 2013-07-09 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US9339601B2 (en) * 2010-03-25 2016-05-17 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US8475407B2 (en) 2010-03-25 2013-07-02 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US8701677B2 (en) 2010-04-05 2014-04-22 Ankon Technologies Co., Ltd. System and method for determining the position of a remote object
CA2800813C (en) 2010-05-28 2019-10-29 C.R. Bard, Inc. Apparatus for use with needle insertion guidance system
WO2012021542A2 (en) 2010-08-09 2012-02-16 C.R. Bard, Inc. Support and cover structures for an ultrasound probe head
DE102010039304A1 (de) * 2010-08-13 2012-02-16 Siemens Aktiengesellschaft Befestigungsvorrichtung für eine Mitralklappe und Verfahren
US9149615B2 (en) 2010-08-17 2015-10-06 DePuy Synthes Products, Inc. Method and tools for implanted device
EP2605699A4 (en) 2010-08-20 2015-01-07 Bard Inc C R ECG ASSISTED CATHETER END POSITIONING RECONFIRMATION
US8425425B2 (en) 2010-09-20 2013-04-23 M. Dexter Hagy Virtual image formation method for an ultrasound device
WO2012045092A2 (en) 2010-10-01 2012-04-05 Calypso Medical Technologies, Inc. Delivery catheter for and method of delivering an implant, for example, bronchoscopically implanting a marker in a lung
KR101598773B1 (ko) * 2010-10-21 2016-03-15 (주)미래컴퍼니 수술용 로봇의 움직임 제어/보상 방법 및 장치
CN103189009B (zh) 2010-10-29 2016-09-07 C·R·巴德股份有限公司 医疗设备的生物阻抗辅助放置
US8391956B2 (en) 2010-11-18 2013-03-05 Robert D. Zellers Medical device location systems, devices and methods
US8380289B2 (en) 2010-11-18 2013-02-19 Robert D. Zellers Medical device location systems, devices and methods
EP2654559B1 (en) 2010-12-23 2021-11-24 Bard Access Systems, Inc. System to guide a rigid instrument
US8813757B2 (en) 2011-01-27 2014-08-26 Medtronic Xomed, Inc. Reading and adjusting tool for hydrocephalus shunt valve
US8298168B2 (en) 2011-01-27 2012-10-30 Medtronic Xomed, Inc. Adjustment for hydrocephalus shunt valve
WO2012112781A1 (en) 2011-02-18 2012-08-23 Csidentity Corporation System and methods for identifying compromised personally identifiable information on the internet
CN102302368A (zh) * 2011-05-16 2012-01-04 深圳市资福技术有限公司 用于定位微型体内诊疗装置的微型磁定位装置及方法
CA2835890A1 (en) 2011-07-06 2013-01-10 C.R. Bard, Inc. Needle length determination and calibration for insertion guidance system
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
EP2997901B1 (en) 2011-09-06 2018-03-07 eZono AG Imaging probe
WO2013036772A1 (en) 2011-09-08 2013-03-14 Corpak Medsystems, Inc. Apparatus and method used with guidance system for feeding and suctioning
US11030562B1 (en) 2011-10-31 2021-06-08 Consumerinfo.Com, Inc. Pre-data breach monitoring
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
US9526856B2 (en) 2011-12-15 2016-12-27 The Board Of Trustees Of The Leland Stanford Junior University Devices and methods for preventing tracheal aspiration
US8971989B2 (en) * 2012-01-24 2015-03-03 Covidien Lp Magnetic field device for mapping and navigation in laparoscopic surgery
US20130267788A1 (en) 2012-04-04 2013-10-10 Ankon Technologies Co. Ltd. System and Method for Orientation and Movement of Remote Objects
CN104837413B (zh) 2012-06-15 2018-09-11 C·R·巴德股份有限公司 检测超声探测器上可移除帽的装置及方法
RU2669621C2 (ru) 2012-09-28 2018-10-12 Си. Ар. БАРД, ИНК. Узел иглы, включающий выровненный магнитный элемент
BR102013004787A2 (pt) * 2013-02-28 2015-11-24 Inst Tecnológico De Aeronáutica Ita dispositivo de identificação portátil, objetos cirúrgicos com marcadores magnéticos, método de identificação de objetos cirúrgicos com marcadores magnéticos e sistema de prevenção de retenção de objetos cirúrgicos com marcadores magnéticos
US9257220B2 (en) 2013-03-05 2016-02-09 Ezono Ag Magnetization device and method
GB201303917D0 (en) 2013-03-05 2013-04-17 Ezono Ag System for image guided procedure
US9459087B2 (en) 2013-03-05 2016-10-04 Ezono Ag Magnetic position detection system
EP2964085A4 (en) 2013-03-08 2016-10-26 Bard Inc C R ICONIC PREPARATIONS RELATING TO SYSTEMS FOR PLACING A MEDICAL DEVICE
US8764769B1 (en) 2013-03-12 2014-07-01 Levita Magnetics International Corp. Grasper with magnetically-controlled positioning
US8812387B1 (en) 2013-03-14 2014-08-19 Csidentity Corporation System and method for identifying related credit inquiries
US10010370B2 (en) 2013-03-14 2018-07-03 Levita Magnetics International Corp. Magnetic control assemblies and systems therefor
US10188831B2 (en) 2013-03-14 2019-01-29 Angiodynamics, Inc. Systems and methods for catheter tip placement using ECG
EP2981310B1 (en) 2013-04-05 2017-07-12 Novo Nordisk A/S Dose logging device for a drug delivery device
WO2014182246A1 (en) 2013-05-07 2014-11-13 Singapore University Of Technology And Design A method and/ or system for magnetic localization
US20160143514A1 (en) * 2013-06-12 2016-05-26 University Of Utah Research Foundation Spherical mechanism for magnetic manipulation
CA2855315C (en) 2013-06-28 2021-08-10 DePuy Synthes Products, LLC Method and tools for implanted device
EP3065804A4 (en) 2013-11-05 2017-08-16 Ciel Medical, Inc. Devices and methods for airway measurement
KR20160094397A (ko) 2013-12-04 2016-08-09 오발론 테라퓨틱스 인코퍼레이티드 위 내 장치를 위치시키고 및/또는 특징화하는 시스템 및 방법
WO2015112645A1 (en) 2014-01-21 2015-07-30 Levita Magnetics International Corp. Laparoscopic graspers and systems therefor
US9839372B2 (en) 2014-02-06 2017-12-12 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
WO2015138708A1 (en) * 2014-03-12 2015-09-17 Proximed, Llc Surgical guidance systems, devices, and methods
US20150282734A1 (en) 2014-04-08 2015-10-08 Timothy Schweikert Medical device placement system and a method for its use
US10043284B2 (en) 2014-05-07 2018-08-07 Varian Medical Systems, Inc. Systems and methods for real-time tumor tracking
US9919165B2 (en) 2014-05-07 2018-03-20 Varian Medical Systems, Inc. Systems and methods for fiducial to plan association
WO2016033599A1 (en) 2014-08-29 2016-03-03 Cardioinsight Technologies, Inc. Localization and tracking of an object
EP3203916B1 (en) 2014-10-09 2021-12-15 ReShape Lifesciences Inc. Ultrasonic systems and methods for locating and /or characterizing intragastric devices
US10339527B1 (en) 2014-10-31 2019-07-02 Experian Information Solutions, Inc. System and architecture for electronic fraud detection
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
ES2897754T3 (es) 2015-04-13 2022-03-02 Levita Magnetics Int Corp Dispositivos retractores
EP3954303A1 (en) 2015-04-13 2022-02-16 Levita Magnetics International Corp. Grasper with magnetically-controlled positioning
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US11151468B1 (en) 2015-07-02 2021-10-19 Experian Information Solutions, Inc. Behavior analysis using distributed representations of event data
WO2017127722A1 (en) 2016-01-20 2017-07-27 Lucent Medical Systems, Inc. Low-frequency electromagnetic tracking
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US10350100B2 (en) 2016-04-12 2019-07-16 Obalon Therapeutics, Inc. System for detecting an intragastric balloon
US10286196B2 (en) 2016-06-30 2019-05-14 Integra Lifesciences Switzerland Sàrl Device to control magnetic rotor of a programmable hydrocephalus valve
US10589074B2 (en) 2016-06-30 2020-03-17 Integra Lifesciences Switzerland Sàrl Magneto-resistive sensor tool set for hydrocephalus valve
KR20190030704A (ko) 2016-07-18 2019-03-22 메드트로닉 좀드 인코퍼레이티드 배열방향 감지 메커니즘을 구비한 전자 밸브 판독기
US11291384B2 (en) * 2016-09-09 2022-04-05 Sunnybrook Research Institute System and method for magnetic occult lesion localization and imaging
ES2811359T3 (es) 2016-12-14 2021-03-11 Bard Inc C R Agujas para su uso con sistemas para guiar un instrumento médico
US10631755B2 (en) 2017-01-05 2020-04-28 Integra LifeSciences Switzerland Sarl Detection of spatial location and rotation of a programmable implantable valve
US10953204B2 (en) 2017-01-09 2021-03-23 Boston Scientific Scimed, Inc. Guidewire with tactile feel
US11020137B2 (en) 2017-03-20 2021-06-01 Levita Magnetics International Corp. Directable traction systems and methods
EP3785626B8 (en) 2017-04-27 2022-08-31 Bard Access Systems, Inc. Magnetizing system for needle assemblies
US11134877B2 (en) * 2017-08-09 2021-10-05 Genetesis, Inc. Biomagnetic detection
US10782152B2 (en) * 2017-08-16 2020-09-22 Allegro Microsystems, Llc Magnetic field sensors and method for determining position and orientation of a magnet
US11027096B2 (en) 2017-08-21 2021-06-08 Lucent Medical Systems, Inc. Flexible circuit bearing a trackable low-frequency electromagnetic coil
US10850081B2 (en) 2017-09-19 2020-12-01 Integra LifeSciences Switzerland Sáarl Implantable bodily fluid drainage valve with magnetic field resistance engagement confirmation
US10850080B2 (en) 2017-09-19 2020-12-01 Integra LifeSciences Switzerland Sárl Electronic toolset to locate, read, adjust, and confirm adjustment in an implantable bodily fluid drainage system without recalibrating following adjustment
US10888692B2 (en) 2017-09-19 2021-01-12 Integra Lifesciences Switzerland Sàrl Electronic toolset for use with multiple generations of implantable programmable valves with or without orientation functionality based on a fixed reference magnet
US10994108B2 (en) 2017-09-19 2021-05-04 Integra LifeSciences Switzerland Sárl Programmable drainage valve with fixed reference magnet for determining direction of flow operable with analog or digital compass toolsets
US10699028B1 (en) 2017-09-28 2020-06-30 Csidentity Corporation Identity security architecture systems and methods
US20190133694A1 (en) 2017-11-02 2019-05-09 Covidien Lp Surgical tracking system for tracking and visualizing the relative positioning of two or more surgical components
US11744647B2 (en) 2017-11-08 2023-09-05 Teleflex Medical Incorporated Wireless medical device navigation systems and methods
US10896472B1 (en) 2017-11-14 2021-01-19 Csidentity Corporation Security and identity verification system and architecture
CN109893135A (zh) * 2017-12-08 2019-06-18 天启慧眼(北京)信息技术有限公司 插管的定位方法、装置和系统
US10952797B2 (en) * 2018-01-02 2021-03-23 Biosense Webster (Israel) Ltd. Tracking a rigid tool in a patient body
US11039898B2 (en) * 2018-02-08 2021-06-22 William T. MCCLELLAN MRI safe tissue expander port
US11234769B2 (en) 2018-03-02 2022-02-01 Lucent Medical Systems, Inc. Wireless electromagnetic navigational element
US11426133B2 (en) 2018-03-13 2022-08-30 Lucent Medical Systems, Inc. Externally placed electromagnetic fiducial element
CN108871375B (zh) * 2018-04-24 2022-03-25 北京大学 一种三维空间磁定位系统的标定系统和方法
EP3809987B1 (en) 2018-06-21 2024-02-21 California Institute of Technology Surgical alignment by magnetic field gradient localization
EP3840636A4 (en) 2018-08-22 2022-05-11 Bard Access Systems, Inc. INFRARED ENHANCED ULTRASOUND VISUALIZATION SYSTEMS AND METHODS
WO2020081373A1 (en) 2018-10-16 2020-04-23 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
CN109288549B (zh) * 2018-11-27 2021-03-16 上海安翰医疗技术有限公司 微创手术辅助装置及其控制方法
US11585869B2 (en) 2019-02-08 2023-02-21 Genetesis, Inc. Biomagnetic field sensor systems and methods for diagnostic evaluation of cardiac conditions
CN112438801A (zh) 2019-09-04 2021-03-05 巴德阿克塞斯系统股份有限公司 用于超声探针跟踪状态指示器的系统和方法
WO2021055289A1 (en) 2019-09-20 2021-03-25 Bard Access Systems, Inc. Automatic vessel detection tools and methods
WO2021113733A1 (en) 2019-12-04 2021-06-10 Bard Access Systems, Inc. Needle-guidance systems, components, and methods thereof
US20210186456A1 (en) 2019-12-19 2021-06-24 Bard Access Systems, Inc. Needle Sterility Breach Warning Using Magnetic Needle Tracking
CN111610474A (zh) * 2020-04-30 2020-09-01 联宝(合肥)电子科技有限公司 一种电子设备检验方法及装置
US20210369373A1 (en) * 2020-05-28 2021-12-02 The Chinese University Of Hong Kong Mobile-electromagnetic coil-based magnetic actuation systems
WO2022020351A1 (en) 2020-07-21 2022-01-27 Bard Access Systems, Inc. System, method and apparatus for magnetic tracking of ultrasound probe and generation of 3d visualization thereof
CN111796221A (zh) * 2020-07-23 2020-10-20 中国人民解放军海军工程大学 一种消磁站海底三分量磁传感器精确定位方法
CN217310576U (zh) 2020-08-04 2022-08-30 巴德阿克塞斯系统股份有限公司 用于辅助医疗部件在患者体内推进的引导系统
US11890139B2 (en) 2020-09-03 2024-02-06 Bard Access Systems, Inc. Portable ultrasound systems
CN216135922U (zh) 2020-09-08 2022-03-29 巴德阿克塞斯系统股份有限公司 动态调整超声成像系统
CN114246614A (zh) 2020-09-25 2022-03-29 巴德阿克塞斯系统股份有限公司 超声成像系统和最小导管长度工具
CN114569155A (zh) 2020-12-01 2022-06-03 巴德阿克塞斯系统股份有限公司 超声成像系统和用于通过其获得超声图像的方法
CN117083029A (zh) * 2021-01-21 2023-11-17 艾彼度科技有限公司 使用深度学习在医疗过程期间跟踪医疗工具的方法
MX2023012841A (es) 2021-04-28 2023-11-13 Bard Access Systems Inc Estiletes rastreables magneticamente y sus metodos.
CN115813553A (zh) 2021-09-16 2023-03-21 巴德阿克塞斯系统股份有限公司 磁定向纤维光学三维形状
US20230121370A1 (en) 2021-10-14 2023-04-20 Bard Access Systems, Inc. Fiber Optic Ultrasound Probe
WO2023076268A1 (en) 2021-10-25 2023-05-04 Bard Access Systems, Inc. High fidelity doppler ultrasound using vessel detection for relative orientation
WO2023081414A1 (en) 2021-11-05 2023-05-11 Bard Access Systems, Inc. Systems and methods for artificial intelligence enabled ultrasound correlation
WO2023156994A1 (en) * 2022-02-21 2023-08-24 Epidutech Ltd. Method for tracking a medical tool during a medical procedure using deep learning
WO2024010530A1 (en) * 2022-07-08 2024-01-11 Singapore University Of Technology And Design Apparatus and method for tracking a device having a magnet
US20240008929A1 (en) 2022-07-08 2024-01-11 Bard Access Systems, Inc. Systems and Methods for Intelligent Ultrasound Probe Guidance
WO2024042365A1 (en) * 2022-08-23 2024-02-29 Molli Surgical Inc. Sensor optimization to identify location and orientation of anisotropic magnet field from a permanent magnet

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649908A (en) 1970-10-12 1972-03-14 Us Navy Magnetic field gradiometer utilizing a pair of cores driven by a blocking oscillator
US3757773A (en) * 1972-03-22 1973-09-11 Univ California External field electromagnetic flow sensor-artery
US3847157A (en) 1973-06-18 1974-11-12 J Caillouette Medico-surgical tube
US4063561A (en) * 1975-08-25 1977-12-20 The Signal Companies, Inc. Direction control device for endotracheal tube
US4244362A (en) * 1978-11-29 1981-01-13 Anderson Charles C Endotracheal tube control device
DE2903357A1 (de) * 1979-01-29 1980-07-31 Stauros Z Dr Med Ikonomidis Vorrichtung zum sondieren des oberen verdauungstraktes
US4249536A (en) * 1979-05-14 1981-02-10 Vega Roger E Urological catheter
US4317078A (en) * 1979-10-15 1982-02-23 Ohio State University Research Foundation Remote position and orientation detection employing magnetic flux linkage
JPS5675131A (en) * 1979-11-22 1981-06-22 Olympus Optical Co Endoscope apparatus
GB2102127B (en) 1981-05-07 1985-03-20 Mccormick Lab Inc Determining the position of a device inside biological tissue
US4619247A (en) * 1983-03-31 1986-10-28 Sumitomo Electric Industries, Ltd. Catheter
US4608992A (en) * 1983-08-18 1986-09-02 Salomon Hakim External magnetic detection of physiopathological and other parameters
US4671287A (en) * 1983-12-29 1987-06-09 Fiddian Green Richard G Apparatus and method for sustaining vitality of organs of the gastrointestinal tract
US4622644A (en) 1984-05-10 1986-11-11 Position Orientation Systems, Ltd. Magnetic position and orientation measurement system
US4790809A (en) * 1985-08-29 1988-12-13 Medical Engineering Corporation Ureteral stent
US4943770A (en) * 1987-04-21 1990-07-24 Mccormick Laboratories, Inc. Device for accurately detecting the position of a ferromagnetic material inside biological tissue
DE8709240U1 (de) * 1987-07-02 1988-05-11 Effner und Spreine GmbH, 1000 Berlin Magnetsonde mit Katheter
US4809713A (en) * 1987-10-28 1989-03-07 Joseph Grayzel Catheter with magnetic fixation
US4788975B1 (en) 1987-11-05 1999-03-02 Trimedyne Inc Control system and method for improved laser angioplasty
JPH0221290A (ja) 1988-07-08 1990-01-24 Mirai Ind Co Ltd 管の探知装置及びその装置を構成する可撓性長尺部材
US4913139A (en) * 1989-02-09 1990-04-03 Ballew Donald H Method of translaryngeal retrograde tracheal intubation
CN1049287A (zh) * 1989-05-24 1991-02-20 住友电气工业株式会社 治疗导管
EP0419729A1 (de) * 1989-09-29 1991-04-03 Siemens Aktiengesellschaft Ortung eines Katheters mittels nichtionisierender Felder
US5005592A (en) * 1989-10-27 1991-04-09 Becton Dickinson And Company Method and apparatus for tracking catheters
DE4014947A1 (de) * 1990-05-10 1991-11-14 Wolfgang Dr Med Ram Katheter fuer diagnostische oder therapeutische zwecke
DE4014977A1 (de) 1990-05-10 1991-11-14 Basf Ag Kondensationsprodukte aus phenolmonosulfonsaeuren, dihydroxydiphenylsulfonen, harnstoff und formaldehyd
GB9018660D0 (en) * 1990-08-24 1990-10-10 Imperial College Probe system
US5134370A (en) * 1991-01-08 1992-07-28 Northwest Marine Technology Inc. Apparatus for the detection of magnetic tags
US5257636A (en) * 1991-04-02 1993-11-02 Steven J. White Apparatus for determining position of an endothracheal tube
JP2735747B2 (ja) * 1991-09-03 1998-04-02 ゼネラル・エレクトリック・カンパニイ 追跡及びイメージング・システム
US5645065A (en) * 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5425367A (en) 1991-09-04 1995-06-20 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5222501A (en) 1992-01-31 1993-06-29 Duke University Methods for the diagnosis and ablation treatment of ventricular tachycardia
US5325873A (en) * 1992-07-23 1994-07-05 Abbott Laboratories Tube placement verifier system
US5913820A (en) 1992-08-14 1999-06-22 British Telecommunications Public Limited Company Position location system
US5456718A (en) * 1992-11-17 1995-10-10 Szymaitis; Dennis W. Apparatus for detecting surgical objects within the human body
JP2739804B2 (ja) 1993-05-14 1998-04-15 日本電気株式会社 双極子推定装置
US5381095A (en) * 1993-06-21 1995-01-10 Rockwell International Corporation Method of estimating location and orientation of magnetic dipoles using extended Kalman filtering and Schweppe likelihood ratio detection
US5526812A (en) 1993-06-21 1996-06-18 General Electric Company Display system for enhancing visualization of body structures during medical procedures
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5738096A (en) 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5902238A (en) 1993-09-14 1999-05-11 University Of Washington Medical tube and apparatus for locating the same in the body of a patient
US5425382A (en) * 1993-09-14 1995-06-20 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
US5558091A (en) * 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
SE9403193L (sv) * 1994-09-22 1996-03-23 Bo Lennernaes Förfarande och anordning för lägesbestämning
US5624430A (en) 1994-11-28 1997-04-29 Eton; Darwin Magnetic device to assist transcorporeal guidewire placement
US5762064A (en) 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US5752513A (en) 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
US5944023A (en) 1995-12-07 1999-08-31 Sims Deltec, Inc. Systems and methods for determining the location of an implanted device including a magnet
IL125259A (en) 1996-01-08 2002-12-01 Biosense Inc Device for stimulating the heart muscle through the blood vessels
US5769843A (en) 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
US5731996A (en) 1996-03-05 1998-03-24 Hughes Electronics Dipole moment detector and localizer
US5845646A (en) 1996-11-05 1998-12-08 Lemelson; Jerome System and method for treating select tissue in a living being
DK0901341T3 (da) 1997-01-03 2005-05-30 Biosense Webster Inc Krumningsfölsomt kateter
US6129668A (en) * 1997-05-08 2000-10-10 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US5879297A (en) 1997-05-08 1999-03-09 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530557A (ja) * 2000-04-07 2003-10-14 ノーザン・デジタル・インコーポレイテッド 磁気的な位置または配向の決定における誤差の検出方法
JP2002107107A (ja) * 2000-07-20 2002-04-10 Biosense Inc 医療システムの静止金属補償付き校正方法
JP4701179B2 (ja) * 2003-05-21 2011-06-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ カテーテルをナビゲートするナビゲーションシステム
JP2007500565A (ja) * 2003-05-21 2007-01-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ カテーテルをナビゲートする機器及び方法
JP2007502187A (ja) * 2003-05-21 2007-02-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ カテーテルをナビゲートする機器及び方法
JP2007125193A (ja) * 2005-11-04 2007-05-24 Pentax Corp 医療用器具および医療用器具振動システム
US8862200B2 (en) 2005-12-30 2014-10-14 DePuy Synthes Products, LLC Method for determining a position of a magnetic source
JP2007248451A (ja) * 2005-12-30 2007-09-27 Depuy Products Inc 磁気源の位置を突き止める方法
JP2012508116A (ja) * 2008-11-07 2012-04-05 アドバンスド アナリシス アンド インテグレイション リミテッド アライメントシステム
JP2010131385A (ja) * 2008-11-12 2010-06-17 Biosense Webster Inc 機械的特性に基づくプローブの可視化
JP2012528304A (ja) * 2009-05-25 2012-11-12 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 磁気によって位置を求めるための方法及び装置
JP2014531283A (ja) * 2011-10-07 2014-11-27 ノボ・ノルデイスク・エー/エス 3軸磁気センサに基づいて要素の位置を決定するシステム
JP2015119972A (ja) * 2013-12-24 2015-07-02 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. 磁界補正の適用のための適応型蛍光透視鏡の場所
CN114099902A (zh) * 2016-08-18 2022-03-01 易美逊医疗有限公司 插入设备定位引导系统和方法
JP2018027308A (ja) * 2016-08-18 2018-02-22 ニュートリシール リミテッド パートナーシップNutriseal Limited Partnership 挿入装置位置決め誘導システム及び方法
US11389254B2 (en) 2016-08-18 2022-07-19 Envizion Medical Ltd. Insertion device positioning guidance system and method
JP2022119838A (ja) * 2016-08-18 2022-08-17 エンヴィジョン メディカル リミテッド 挿入装置位置決め誘導システム及び方法
JP7129683B2 (ja) 2016-08-18 2022-09-02 エンヴィジョン メディカル リミテッド 挿入装置位置決め誘導システム及び方法
US11806087B2 (en) 2016-08-18 2023-11-07 Envizion Medical Ltd. Insertion device positioning guidance system and method
JP2018192263A (ja) * 2017-05-19 2018-12-06 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. 精度及び干渉に対する位置耐性を向上させるための近位位置センサの使用
US11364179B2 (en) 2018-04-30 2022-06-21 Envizion Medical Ltd. Insertion device positioning guidance system and method
US11382701B2 (en) 2018-10-17 2022-07-12 Envizion Medical Ltd. Insertion device positioning guidance system and method
US11779403B2 (en) 2018-10-17 2023-10-10 Envizion Medical Ltd. Insertion device positioning guidance system and method

Also Published As

Publication number Publication date
AU7567398A (en) 1998-11-27
EP1181891B1 (en) 2003-09-24
AU729379B2 (en) 2001-02-01
EP1181891A2 (en) 2002-02-27
EP0983018B1 (en) 2002-11-13
ATE227543T1 (de) 2002-11-15
US5879297A (en) 1999-03-09
DE69818526D1 (de) 2003-10-30
EP1181891A3 (en) 2002-03-06
DE69809411T2 (de) 2004-02-26
ES2187970T3 (es) 2003-06-16
JP4091991B2 (ja) 2008-05-28
ATE250386T1 (de) 2003-10-15
CN1259025A (zh) 2000-07-05
CA2288118A1 (en) 1998-11-12
US6216028B1 (en) 2001-04-10
DE69818526T2 (de) 2004-07-22
WO1998049938A1 (en) 1998-11-12
CN1250161C (zh) 2006-04-12
BR9809789A (pt) 2000-06-20
EP0983018A1 (en) 2000-03-08
DE69809411D1 (de) 2002-12-19
AU729379C (en) 2002-02-21

Similar Documents

Publication Publication Date Title
JP4091991B2 (ja) 内在する医療装置の場所と向きを確定するシステムと方法
US6129668A (en) System and method to determine the location and orientation of an indwelling medical device
US6263230B1 (en) System and method to determine the location and orientation of an indwelling medical device
US10765343B2 (en) Imaging probe and method of obtaining position and/or orientation information
US5944023A (en) Systems and methods for determining the location of an implanted device including a magnet
US6226547B1 (en) Catheter tracking system
US20070078334A1 (en) DC magnetic-based position and orientation monitoring system for tracking medical instruments
JP2004215992A (ja) 体腔内への医療用挿入具の位置及び姿勢検出装置並びにその検出方法
WO2005082246A1 (en) Device and method for the determination of the position of a catheter in a vascular system
CN101129264A (zh) 利用频率外推的抗失真位置跟踪
JP4458676B2 (ja) 磁気共鳴画像法実行中に対象物の場所および方向を推定する装置
US11513168B2 (en) Magnetic field probe for determining a disposition of an implantable magnetic marker
Monteiro et al. Locating steel needles in the human body using a SQUID magnetometer
WO2016193185A1 (en) Determination of positions of objects, such as brachytherapy seeds
JP2016106009A (ja) 撮像プローブ並びに位置及び/又は方位情報を得る方法
Placidi et al. Review on patents about magnetic localisation systems for in vivo catheterizations
EP3545894A1 (en) Magnetic localization arrangement for medical device
MXPA99010206A (en) System and method to determine the location and orientation of an indwelling medical device
Swanepoel A 5D Magnetic Tracking System for Placement Verification of Umbilical Catheters and Endotracheal Tubes in Neonates
WO2024089504A1 (en) System operable to determine a pose of an instrument
WO2024089502A1 (en) System and method for illustrating a pose of an object
WO2024089503A1 (en) System and method for illustrating a pose of an object

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071024

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees