JP2001520660A - オリゴヌクレオチドの溶液相合成方法 - Google Patents

オリゴヌクレオチドの溶液相合成方法

Info

Publication number
JP2001520660A
JP2001520660A JP54450398A JP54450398A JP2001520660A JP 2001520660 A JP2001520660 A JP 2001520660A JP 54450398 A JP54450398 A JP 54450398A JP 54450398 A JP54450398 A JP 54450398A JP 2001520660 A JP2001520660 A JP 2001520660A
Authority
JP
Japan
Prior art keywords
group
reaction
compound
resin
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP54450398A
Other languages
English (en)
Inventor
ピーケン,ウルフガング
マクギー,ダニー
セトル,アレシア
ツァイ,ヤンシェン
ファン,ジャンピン
ヒル,ケン
スミス,ランドール・エス
イェッジ,ジョン
Original Assignee
プロリゴ・エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プロリゴ・エルエルシー filed Critical プロリゴ・エルエルシー
Publication of JP2001520660A publication Critical patent/JP2001520660A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom

Abstract

(57)【要約】 本発明は、オリゴヌクレオチドの逐次溶液相合成のための改良法を開示する。本方法は自動化でき、高い効率で大規模にオリゴヌクレオチドを製造するのに理想的に適している。

Description

【発明の詳細な説明】 オリゴヌクレオチドの溶液相合成方法発明の分野 本発明は、核酸化学の分野に関する。詳細には、本発明はオリゴヌクレオチド 製造のための新規方法を記載する。本明細書においてオリゴヌクレオチド製造の ために用いる方法は、PASSと呼ばれる。これは生成物固定式逐次合成(r oduct nchored equntial ynthesis)の 頭字語である。発明の背景 ごく最近まで、オリゴヌクレオチドは厳密に情報的なもの以外のいかなる能力 においても考慮されていなかった。特定のオリゴヌクレオチドは興味深い構造上 の可能性をもつことが知られており(たとえばt−RNA)、他のオリゴヌクレ オチドにポリペプチドが事実上特異的に結合するという事実にもかかわらず、情 報以外のオリゴヌクレオチドの能力にはほとんど関心が向けられていなかった。 このため、特に医薬用化合物としてオリゴヌクレオチドを使用することはほとん ど考慮されていない。 オリゴヌクレオチドを医薬用化合物として用いることに関し広範な研究が行わ れている開発には、現在少なくとも3つの領域がある。最も進んだ分野では、ア ンチセンスオリゴヌクレオチドを用いて生体内で特定のコード領域に結合させ、 タンパク質の発現を阻止し、または種々の細胞機能を遮断する。さらに、触媒作 用をもつRNA種―リボザイム―の発見により、目的の効果を達成する細胞内反 応を行うのに役立つRNA種が研究されるようになった。そしてごく最近、指数 的濃縮による系統的リガンド進化(SELEX法、ystematic v olution of igands by Exponential En richment)(TuerkおよびGold(1990)Science,249 :505)の発見で、生物学的に関心のあるほとんどすべてのターゲット についても結合するオリゴヌクレオチドを同定しうることが示された。 SELEX法は、“核酸抗体”と呼ばれる核酸リガンド、たとえばターゲット 分子と相互作用する核酸を、同定および製造するための方法である(Tuerk およびGold(1990)Science,249:505)。この方法は、 候補オリゴヌクレオチド混合物からの選択、ならびに同じ一般的選択方式を用い た結合、分配、および増幅の段階的反復を行って、実質的にいかなる目的基準の 結合親和性および選択性も達成するものである。 遺伝子発現を制御する手段としてアンチセンスオリゴヌクレオチドを使用する こと、また有望な医薬としてオリゴヌクレオチドを使用しうる可能性があること から、オリゴヌクレオチドの療法活性および安定性を高めるために多数の化学的 修飾をオリゴヌクレオチドに導入することが研究されるようになった。そのよう な修飾は、オリゴヌクレオチドの細胞透過性を高めるため、体内でオリゴヌクレ オチド類似体の構造もしくは活性を分解もしくは妨害するヌクレアーゼその他の 酵素からそれらを安定化するため、ターゲットRNAへのオリゴヌクレオチドの 結合を高めるため、ターゲットRNAに配列特異的に結合した時点で分断モード (終止事象)を生じさせるため、またオリゴヌクレオチドの薬物動態特性を改良 するために設計される。 最近の研究で、RNAの二次および三次構造が重要な生物学的機能をもつ可能 性のあることが示された(Tinocoら(1987)Cold Spring Harb.Symp.Quant.Biol.52:135;Larsonら (1987)Mol.Cell.Biochem.74:5;Tuerkら(1 988)Proc.Natl.Acad.Sci.USA 85:1364;R esnekovら(1989)J.Biol.Chem.264:9953)。 国際特許出願公開第WO91/14436号、表題“RNA模倣による遺伝子発 現調節のための試薬および方法”には、1種類またはそれ以上のタンパク質と相 互作用しうるRNA部分を模倣した、オリゴヌクレオチドまたはオリゴヌクレオ チド類似体が記載されている。これらのオリゴヌクレオチドはそれらをヌクレア ーゼ抵抗性にする修飾されたヌクレオシド間結合を含み、高い細胞透過能をもち 、かつターゲットオリゴヌクレオチド配列を結合することができる。 医薬として用いるための修飾オリゴヌクレオチドの開発についてはかなりの活 動があるが、これらの化合物を臨床開発の可能な規模で製造および単離すること にはほとんど関心が払われていない。従来の実験室規模による1μmolの自動 オリゴヌクレオチド合成では、臨床開発を可能にするのに十分な量の目的化合物 は得られない。臨床開発のためには、オリゴヌクレオチドを最低でもグラム規模 ないしマルチグラム規模の量で製造しなければならない。文献には大規模オリゴ ヌクレオチド合成という報文があるが、“大規模”という用語はグラム規模また はキログラム規模の量ではなく1〜10μmol規模に対して用いられている( Iwaiら(1990)Tetrahedron 46:6673−6688) 。 オリゴヌクレオチド合成の現在の技術水準は、ホスホルアミダイト法によるオ リゴヌクレオチドの自動固相合成であり、これを反応経路1に示す(Beauc ageおよびIyer(1992)Tetrahedron 48:2223− 2311;ZonおよびGeiser(1991)Anti−Cancer D rug Design :539−568;MatteucciおよびCar uthers(1981)J.Am.Chem.Soc.103:3185−3 191)。要約すると、合成すべきオリゴヌクレオチドの3’−末端ヌクレオシ ドを固体支持体に結合させ、支持体に結合させたまま一度に1個のヌクレオチド を付加することにより、オリゴヌクレオチドを合成する。反応経路1に示すよう に、ヌクレオシドモノマーを保護し(P1)、ホスホルアミダイト(1)を調製 する。次いでこのホスホルアミダイト(5’−保護モノマー単位と呼ぶ)を、生 長しつつあるオリゴヌクレオチド鎖(2)に、生長しつつあるオリゴヌクレオチ ド鎖のリボース環の5’−ヒドロキシ基を介してホスファイトトリエステル結合 により共有結合させて、オリゴヌクレオチド生成物(3)を得る。その際、生長 しつつあるオリゴヌクレオチド鎖の大部分が1ヌクレオチド分延長するが、有意 %の鎖が延長しない。次いで生成物(3)を酸化してホスフェートトリエステル (4)を得る。生長しつつあるオリゴヌクレオチド鎖に次の塩基を付加する前に 、5’−ヒドロキシ基を脱保護しなければならない。しかし、反応経路1にみら れるように(化合物4)、必ずしも固体支持体上のすべての反応性部位が5’− 保護モノマーと反応するわけではない。したがってこれらの未反応部位(欠損配 列と呼ぶ)を、5’−ヒドロキシ基の脱保護(6)前に保護しなければならな い(キャッピングと呼ぶ)(5)。次いで、同様に保護され、かつホスホルアミ ダイトに変換された後続モノマーが、生長しつつあるオリゴマーの5’−末端を モノマーの3’−末端へ結合させることにより逐次付加される。各結合反応で、 オリゴヌクレオチドはホスファイトトリエステル結合により1モノマー分延長す る。各工程で―および固体支持体との最初の反応に際し―、5’−保護モノマー と反応し損なった反応部位があり、その結果、1ヌクレオチドモノマー分延長し なかったオリゴヌクレオチド(欠損配列)が生じる。合成が完了すると目的オリ ゴヌクレオチド(6(n+1配列))を脱保護し、すべての欠損配列(n、n− x)と共に樹脂から開裂させる。 従来の固相オリゴヌクレオチド合成の収率は、結合させるモノマー数と共に指 数的に低下する。このため、粗生成物を欠損配列から精製するのがいっそう困難 になる。さらに、たとえ高い分離精製が達成されたとしても、生成物が標準でな いヌクレオチドを含む場合は特に、生成物の配列および組成を確認するのはやは りきわめて困難である。 反応経路1固体支持体上での自動オリゴヌクレオチド合成は、少量(0.001〜0.01 mmol)の多様な配列を最小時間で妥当な収率において製造するにはきわめて 有効である。しかし、装入モノマーを基準とした全プロセス収率に関しては、著 しく非効率的方法である。一般に1モノマー付加につき16倍過剰のホスホルア ミダイトが必要である。自動固相合成法は、効率的なオリゴヌクレオチド医薬製 造を可能にする水準にまでスケールアップするのは容易でないと認識されている (ZonおよびGeiser(1991)Anti−Cancer Drug D esign :539−568)。 固相合成が非効率的であるのは、不均一相モノマー結合反応であること、およ び朱反応欠損配列と反応生成物が同一支持体ビーズに共有結合していることによ り生じるところが大きい。各サイクルで、支持体に結合したヌクレオチドの1〜 5%は活性化モノマーと反応しない。その後、不完全オリゴヌクレオチドにモノ マーが付加するのを阻止するには、欠損配列と呼ぶこれらの未反応化合物を前記 のようにブロックまたはキャッピングしなければならない。合成の各工程で欠損 配列が生成すると、相同性の高い副生物で汚染された粗生成物が製造され、これ らの副生物を最終粗生成物にまで保持しなければならない(反応経路1、構造式 6(n,n−x))。その結果、粗製の合成オリゴヌクレオチドを臨床研究用と して許容できる状態にまで精製するのはきわめて煩雑で、非効率的である。欠損 配列の割合を少なくするには、大過剰のモノマー(約16倍)を用いる。 装填量がより高いポリスチレン支持体を用いて固相オリゴヌクレオチド合成を スケールアップする方法がMontserratら((1994)Tetrah edron 50:2617−2622)により報告された。しかしこの方法は 、欠損配列を少なくするためにかなり過剰のモノマーがやはり必要であるという 点で、固相合成に伴う主要な問題を克服していない。さらに、この方法では一貫 して十分な収率が得られるわけではない。 結合を達成しかつ容易にスケールアップするのに必要なモノマーの過剰量を減 らすために、Bonoraら(1993)Nucleic Acids Res .21:1213−1217は、モノマー結合反応に際し可溶性のポリエチレン グリコール(PEG)を3’−支持体として用いることを研究した。この方法は ホスホルアミダイト結合、H−ホスホナート縮合およびホスホトリエステル縮合 によりオリゴヌクレオチドを製造するのに用いられている(Bonoraら(1 987)Gazzetta Chimica Italiana 117:37 9;Bonoraら(1990)Nucleic Acids Res.18: 3155;Bonoraら(1991)Nucleosides & Nucl eotides 10:269;Colonnaら(1991)Tetrahe dron Lett.32:3251−3254;BonoraおよびScre min(1992)Innovation Perspect.Solid P hase Synth.Collect.Pap.,Int.Symp. ,第2 版,“オリゴヌクレオチドの大規模合成.HELP法:結果と見通し”,pp. 355−358,インターセプト発行,英国,アンドバー;Screminおよ びB onora(1993)Tetrahedron Lett.34:4663; Bonora(1995)Applied Biochemistry and Biotechnology 54:3;ZaramellaおよびBono ra(1995)Nucleosides & Nucleotides 14 :809)。この方法の弱点は、各反応工程後の支持体結合オリゴヌクレオチド 回収率が許容できないほど低いことである。さらにこの方法は、キャッピングし なければならない欠損配列が最終生成物にまで保持される問題に対処していない 。 ポリエチレングリコール−ポリスチレンコポリマー支持体も、オリゴヌクレオ チド合成スケールアップのために用いられている(Wrightら(1993) Tetrahedron Lett.34:3373−3376)。18mer DNAにつき、1mmol規模で1モノマー付加当たり96.6%の結合効率 が報告された。この方法も、樹脂に結合した欠損配列の問題には対処していない 。 Zonらは、オリゴヌクレオチド合成にブロック法を示唆した。この方法では 二量体または多量体オリゴヌクレオチドフラグメントのライブラリーを溶液中に 調製し、次いで互いに結合させる(ZonおよびGeiser(1991)An ti−Cancer Drug Design :539−568)。これら のフラグメントは、結合のために差別5’−脱保護および3’−リン酸化により 活性化される。フラグメント調製のために、ホスホトリエステル結合が示唆され た(Bonoraら(1993)Nucleic Acids Res.21: 1213−1217)。ホスホトリエステル結合の収率が比較的低いため、この 方法は広く受け入れられてはいない。 従来のオリゴヌクレオチド合成では、結合工程で1モノマーの5’−ヒドロキ シル基と第2モノマーのホスホルアミダイト基が反応するのを防ぐために、5’ −保護基が用いられる。オリゴヌクレオチド合成中に付加される5’−保護モノ マー単位の5’−保護基としては、4,4’−ジメトキシトリチル(DMT)基 が慣用される(Schallerら(1963)J.Am.Chem.Soc.85 :3821)。この基が選ばれるのは、次の5’−保護モノマー単位を付加 する前に、オリゴヌクレオチド生成物の5’−酸素から容易かつ選択的に除去で きるからである(概説についてはBeaucageおよびIyer(1992) Tetrahedron 48:2223−2311参照)。溶液中では、5’ −DMT基の脱保護は可逆的な酸誘発性脱トリチル化により損なわれる。この反 応を駆動して完結させるために、溶液相脱トリチル化には遊離トリチルカチオン の捕そく剤を添加する(Ravikumarら(1995)Tetrahedr on Lett.36:6587)。最終5’−末端DMT基は疎水性ハンドル として作用し、このため逆疎水性クロマトグラフィーにより全長生成物オリゴヌ クレオチドを短い欠損配列から分離できることが認められた。さらに、固相合成 の完了後、脱保護した全長オリゴヌクレオチド生成物を欠損配列から分離する分 離能を高めるために、DMT基の高疎水性類似体が調製された(Seliger およびSchmidt(1987)Journal of Chromatog raphy 397:141)。他の方法では、粗製の脱保護オリゴヌクレオチ ド中にある全長生成物の検出を容易にするために、オリゴヌクレオチド合成中に 5’−末端保護基として蛍光性トリチル類似体を用いた(Fourreyら(1 987)Tetrahedron Lett.28:5157)。固相オリゴヌ クレオチド合成中に特定のモノマー付加を監視できるように、有色トリチル基が 考案された(FisherおよびCaruthers(1983)Nuclei c Acids Res.11:1589)。固相オリゴヌクレオチド合成中に オリゴヌクレオチドからトリチル基を除去する選択性を変更または増大させるた めに、他の修飾トリチル基が調製された(概説についてはBeaucageおよ びIyer(1992)Tetrahedron 48:2223−2311参 照)。 現在まで、溶液中でのオリゴヌクレオチド合成に際し生成物を樹脂または膜に 固定しうるトリチル基は設計されていない。さらに、誘導体化した樹脂、膜また は可溶性ポリマーと共有結合反応しうるトリチル基は報告されていない。 とりわけ多く研究されているディールスーアルダー反応は、共役ジエンと不飽 和分子の間で環状化合物を形成する付加環化反応であり、その際、新たなσ結合 の形成にπ−電子が用いられる。このディールス−アルダー反応は4−π電子の 系(ジエン)と2−π電子の系(ジエノフィル)を伴うので、[4+2]付加環 化反応の一例である。この反応は、穏やかな条件下で広範な反応体につき、きわ めて速やかに行わせることができる。ディールス−アルダー反応は範囲が広く、 当業者に周知である。ディールス−アルダー反応の概説は、“Advanced Organic Chemistry ”(March,J.編)761−79 8(1977)(マグローヒル、ニューヨーク)にみられる。これを本明細書に 援用する。 Cooksonのジエン―4−置換−1,2,4−トリアゾリン−3,5−ジ オン(RTAD)―(Cooksonら(1967)J.Chem.Soc.(C )1905;Cooksonら(1971)Org.Syn.51:121)は 、知られているうちでは最も反応性の高いディールスーアルダージエノフィルの ひとつである。これらのジエノフィルを、アミノ誘導体化したシリカゲルに共有 結合とイオン結合の両方により取り込ませ、ジエン不純物とこのジエノフィル誘 導体化した固体支持体とのディールス−アルダー反応により、ジエン不純物を含 有する混合物を精製するのに用いた(Keanaら(1983)Org.Che m.548:1982)。たとえばエルゴステロール、すなわちディールス−ア ルダー様式でRTAD誘導体と反応することが示された1,3−ジエン(Bar tonら(1970)J.Chem.Soc.(D)939)を含有するコレス テロール試料を、各種スルホン化4−アリール−1,2,4−トリアゾリン−3 ,5−ジオンで誘導体化した3−アミノプロピル−シリカゲル(TDA−シリカ ゲル)の過剰量により25℃で処理した。反応後、ほぼ定量的収率の純粋なコレ ステロールが得られた。このTAD−シリカゲルで捕獲された他のジエンには、 8,10−ドデカジエノール、1−クロロ−、2−クロロ−および9−ブロモア ントラセンが含まれる。 他の例では、4−アリール−(2,6−ジイソプロピル)−1,2,4−トリ アゾリン−3,5−ジオンのアリールスルホン酸誘導体を調製し、アミノシリカ ゲルに取り込ませた。このTAD−シリカゲルもエルゴステロールを捕獲した。 エルゴステロール捕獲後、未反応エルゴステロールがなくなるまでシリカゲルを 洗浄し、そして分離した。シリカゲルをアセトニトリル中のトリエチルアミンの 過剰量で溶離すると、エルゴステロール−トリアゾリンジオン付加物が得られた 。このディールス−アルダー付加物を、過剰のLiAlH4を含有する還流TH F 中で処理すると、エルゴステロールが遊離した。 現在まで多数の試みがなされたが、オリゴヌクレオチドを大量に、連続操作で 、低経費において、労力を要する精製を行わずに製造する方法がなお求められて いる。発明の概要 本発明は、反応収率を高め、かつスケールアップの可能な、逐次溶液相オリゴ ヌクレオチド合成法である。生長しつつあるオリゴヌクレオチドの3’−末端を 固体支持体に結合させる従来の方式と異なり、本発明は生長しつつあるオリゴヌ クレオチドの5’−末端に未反応出発物質から結合生成物を分離できる固定基を 使用することを特徴とする。1態様においては、固定基は5’−OH保護基とし ても役立ち、結合反応は溶液中で行われる。反応し得たオリゴマーはこの保護基 を含有し、一方、反応しなかったオリゴマーは含有せず、これらの物質を固定/ 保護基の存在に基づいて分配できる。好ましい態様においては、固定基は誘導体 化した固定支持体、たとえば樹脂、膜またはポリマーと共有結合反応する。 詳細には本発明は、5’−保護モノマー単位を生長しつつあるオリゴヌクレオ チド鎖の5’−末端と溶液中で反応させることを含む、多様なオリゴヌクレオチ ドおよび修飾オリゴヌクレオチドの溶液相合成法を提供する。本発明の他の態様 においては、5’−保護モノマー単位と生長しつつあるオリゴヌクレオチドとの 反応後、未反応モノマーを酸化して荷電種を形成する。これは、反応媒質中の他 の物質から容易に分配できる。本発明の好ましい態様においては、モノマー単位 はホスホルアミダイトであり、これは活性化および酸化されるとホスフェートに 変換する。この荷電ホスフェート種は、反応媒質中の他の物質から容易に分配で きる。 本発明の好ましい態様において、モノマー単位は5’−保護ホスホルアミダイ トまたはH−ホスホナートからなり、この保護基は置換トリチル基、レブリン酸 基、またはシリルエーテル基である。1態様においては、クロマトグラフィー樹 脂に対する保護基の親和性に基づいて、未反応オリゴヌクレオチド出発物質(欠 損配列)を反応したオリゴヌクレオチド生成物から分離できる。好ましい態様に おいては、保護基と誘導体化した固体支持体(たとえば樹脂、膜またはポリマー) との特異的反応に基づいて、未反応オリゴヌクレオチド出発物質を反応したオリ ゴヌクレオチド生成物から分離できる。本発明の好ましい態様においては、未反 応オリゴヌクレオチドを分離するための分配法により、未反応オリゴヌクレオチ ドを単離および再使用でき、かつ反応したオリゴヌクレオチドを脱保護して次の 5’−保護モノマー単位を付加するために調製できる。 本発明方法はホスホルアミダイト結合化学に限定されず、H−ホスホナートま たはホスフェートトリエステル結合化学など他の結合反応にも適合する。この方 法は自動化もでき、オリゴヌクレオチドを高い効率で大規模に製造するのに理想 的に適している。本発明方法はすべての逐次重合反応に拡張でき、したがってい かなるポリマーの逐次合成にも拡張できる。 本発明は、生成物を5’−保護モノマー単位および出発物質から自動的に分離 する方法および装置を含む。1態様においては、装置は抽出器およびクロマトグ ラフィー樹脂ろ過チャンバー(固体支持体を収容)からなる。モノマー付加反応 が完了すると、反応混合物を抽出チャンバーへ送り、抽出し、5’−保護モノマ ー単位のみを保持する固体支持体を通して溶離する。次いで、生成物のみを保持 している固体支持体を溶離することにより、生成物を出発物質から分離する。第 2態様においては、クロマトグラフィー樹脂ろ過チャンバーには5’−保護モノ マー単位と生成物の両方と共有結合反応する固体支持体が収容される。出発物質 は固体支持体から溶出し、次いでモノマーと生成物を希酸により固体支持体から 放出させる。次いで限外ろ過膜を通すことにより、生成物を5’−保護モノマー 単位から分離する。 材料原価分析により、オリゴヌクレオチド合成においては5’−保護ホスホル アミダイトが最も高価な反応成分であることが分かる。他の材料の原価はこれに 比べてわずかである。したがってこのモノマーを制限試薬とするのが望ましいで あろう。さらに、装入モノマーに付加し損なった個々の中間体オリゴヌクレオチ ド配列は、その後の合成に際し中間体として利用できる。本発明方法を用いると 、オリゴヌクレオチド生成物の配列および組成の確認が困難ではなくなる。各モ ノマー付加サイクル後、完全に保護された中性中間体が得られ、これは冗長な試 料 調製なしに質量分析で容易に分析される。オリゴヌクレオチド合成経路全体にわ たって、逐次モノマー付加ごとに分析データのライブラリーを得ることができる 。したがって生成物分析は本方法に統合された一部となる。図面の簡単な説明 図1は、実施例1に述べる酸化前のホスホルアミダイト結合反応混合物の逆相 高圧液体クロマトグラフィー(HPLC)トレースを示す。 図2は、実施例1に述べる酸化後のホスホルアミダイト結合反応混合物の逆相 HPLCトレースを示す。。酸化後トレースを図1の酸化前トレースに重ねた。 図3は、実施例1に述べる酸化したホスホルアミダイト結合反応混合物の逆相 HPLCトレースであって、DEAEセファデックス(Sephadex、登録 商標)フィルタープラグに通す前と後の両方を示す。 図4は、実施例1に述べる酸化したホスホルアミダイト結合反応物の逆相HP LCトレースであって、C18樹脂を通して水/アセトニトリルで溶離した後の もの、および酢酸で処理し、水/アセトニトリルで溶離した後のものを示す。 図5は、本発明方法に用いるために設計した自動抽出およびろ過システムを模 式的に示す。 図6は、実施例7で3’−PEG固定式溶液相合成法を用いて製造した15塩 基オリゴヌクレオチドのアニオン交換HPLCトレースを示す。 図7は、5’−DHDTO−T−[3’,3’]−T−OSiPDBT−5’ と1.0当量、2.5当量、5当量および10当量のマレイミドを含有するポリ スチレンマレイミド樹脂との反応についての、ディールス−アルダー捕獲データ をグラフで示す。 図8は、ディールス−アルダー生成物捕獲に用いるために設計した自動抽出お よびろ過システムを模式的に示す。 図9は、エチルエーテル、イソプロピルエーテルおよびN−ブチルエーテルに より沈殿させたPEGの沈殿および遠心分離をグラフで示す。 図10は、実施例17(反応経路22)に述べるジエン置換トリチルアルコー ル5’−O−(4,4’−ジ−3,5−ヘキサジエンオキシトリチル)チミジン (5’−DHDTO−dT)(31)とフェニルトリアゾリンージオン(PTA D)(82)とのディールス−アルダー反応をグラフで示す。 図11は、PASS法におけるビス−TAD分子の使用を示す。Pは固体支持 体である。 図12は、本発明の好ましい態様についてのPASSサイクルを模式的に示す 。 図13A〜13Eは、実施例21に記載したPASSサイクルの各工程につき 、反応混合物のHPLCトレースを示す。 図14は、実施例30で製造したT−T二量体の逆相HPLCトレースを示す 。 図15は、実施例30で製造したT−T−T三量体の逆相HPLCトレースを 示す。 図16Aは、DHDT fC 3’−OH(153)とTBDPSi−Clの 反応の65分後の逆相HPLCトレースを示す。結合、上から下へ:5’−DH DT 2’−fC 3’−OH(153)(13.8分)、TBDPSi−Cl (11.3分)、および5’−DHDT 2’−fC 3’−TBDPSi(1 54)(19.8分)。 図16Bは、PTAD−PS樹脂上における5’−DHDT 2’−fC3’ −TBDPSi(154)捕獲反応の逆相HPLCトレースを示す。上から下へ :5’−DHDT 2’−fC 3’−TBDPSi(154)(19.8分) および捕獲溶液(10.4および11.3分)。 図16Cは、化合物155の放出および中和後の逆相HPLCトレースを示す 。上から下へ:水溶液1(1〜2分)、水溶液2(特定のピークはない)、およ び2’−fC 3’−TBDPSi 5’−OH(155)(25.5分)。 図16Dは、化合物(155)1’−シチジル(アセチル保護)2’−フルオ ロ 3’−TBDPSi 5’−OHのNMRを示す。発明の詳細な説明 本発明は、本明細書中で生成物固定式逐次合成(PASS)と呼ぶ、オリゴヌ クレオチドの溶液相合成法を含む。生長しつつあるオリゴヌクレオチドの3’− 末端を固体支持体に結合させる従来の方式と異なり、本発明は生長しつつあるオ リゴヌクレオチド生成物の5’−末端に、結合し得た生成物を未反応出発物質か ら分離できる固定基を使用することを特徴とする。好ましい態様においては、固 定基は5’−OH保護基としても役立つ。反応し得たオリゴヌクレオチド生成物 は保護基を含有するのに対し、未反応の出発物質は含有せず、このブロッキング /保護基の存在に基づいて生成物を出発物質から分配できる。未反応出発物質は 回収して、同じオリゴヌクレオチドの後続合成バッチに再使用できる。このよう に従来の固相合成と対照的に、本明細書に記載する改良されたオリゴヌクレオチ ド合成法は、生長しつつあるオリゴヌクレオチド鎖の3’−末端を固定するため の固体支持体を用いない。 詳細には本発明は、5’−保護モノマー単位を生長しつつあるオリゴヌクレオ チド鎖の5’−末端と溶液中で反応させることを含む、多様なオリゴヌクレオチ ドおよび修飾オリゴヌクレオチドの溶液相合成法を提供する。これらの反応を固 体支持体上ではなく溶液中で行うことにより、より良い反応速度が得られる。本 発明の他の態様においては、5’−保護モノマー単位と生長しつつあるオリゴヌ クレオチドとの反応後、未反応モノマーを活性化および酸化して荷電種を形成す る。これは、反応媒質中の他の物質から容易に分配できる。本発明の好ましい態 様においては、モノマー単位はホスホルアミダイトであり、これは活性化および 酸化して容易にホスフェートジエステルに変換することができる。この荷電ホス フェート種は、反応媒質中の他の物質から容易に分配できる。さらに、好ましい 態様においては酸化を系内で実施できる。 5’−保護モノマー単位として荷電種であるH−ホスホナートを用いる場合( 実施例2、反応経路5)、最終モノマーを添加するまでH−ホスホナートの酸化 を延期する。荷電H−ホスホナートモノマーは結合後に中性H−ホスホナートジ エステル生成物を生成し、荷電モノマー種がアニオン交換ろ過または抽出によっ て容易に分離される。さらに、回収したH−ホスホナートモノマーは再使用でき る。 用いる5’−保護基は、本発明の基本的要件を満たす一群の官能基から選択で きる。分離を行うために、保護基は反応生成物を反応混合物中の他の物質から分 別するのに利用できるタイプのものでなければならない。好ましくは、保護基は 特定の相または固体支持体に対し強い親和性または反応性をもち、かつ高い選択 性でその相または固体支持体から容易に開裂または分離されなければならない。 オリゴヌクレオチド生成物は、当業者に既知の標準法で未反応オリゴヌクレオチ ド出発物質から分離できる。これには遠心分離、樹脂上での分離、シリカゲルに よる分離、金属に対する親和性に基づく分離、磁力もしくは電磁力に基づく分離 、または適切な固体支持体への共有結合に基づく分離が含まれるが、これらに限 定されない。 本発明の好ましい態様においては、未反応オリゴヌクレオチド出発物質を分離 するための分配法により、未反応オリゴヌクレオチドを再使用のために単離でき 、かつ樹脂結合したオリゴヌクレオチド生成物が得られ、これを容易に脱保護し て次の5’−保護モノマー単位を付加するために調製できる。最も好ましくは、 保護基は誘導体化した固体支持体、たとえば樹脂、膜またはポリマーと共有結合 反応して、共有結合固定された保護基を与える。これは高い選択性でオリゴヌク レオチドから容易に開裂できる。 本発明の最も好ましい態様においては、モノマー単位は5’−保護ホスホルア ミダイトまたはH−ホスホナートからなり、その際、保護基は置換されたトリチ ル基、レブリン酸基、またはシリルエーテル基である。保護基の好ましい置換基 はジエン官能基であり、これはジエノフィル、好ましくは1,2,4−トリアゾ リン−3,5−ジオン(TAD)で誘導体化した固体支持体、たとえば樹脂、膜 またはポリマーとディールス−アルダー反応により反応できる。この態様におい ては、5’−保護基と誘導体化した樹脂との選択的または特異的共有結合反応に 基づいて、未反応オリゴヌクレオチド出発物質を反応したヌクレオチド生成物か ら分離する。 本明細書中で用いる特定の用語を以下のとおり定義する: “ヌクレオシド”は、デオキシリボヌクレオシドもしくはリボヌクレオシド、 またはその任意の化学修飾体を意味する。ヌクレオシドの修飾には、糖の2’− 位の修飾、ピリミジンの5−位の修飾、プリンの8−位の修飾、シトシン環外ア ミンの修飾、5−ブロモウラシルの置換などが含まれるが、これらに限定されな い。 “オリゴヌクレオチド”は、DNAもしくはRNA、またはその任意の化学修 飾体を表す。本発明方法により合成されるオリゴヌクレオチドは一般に下記によ り示される: 式中、n=1〜1,000、AおよびA’は後記に定義する2’−糖置換基であ り、Bは後記に定義する核酸塩基である。 本明細書中で用いる“固体支持体”は、樹脂、膜、相、ポリマー、ポリマー前 駆体、または可溶性ポリマー(相転移を行うことができるもの)を表す。固体支 持体は、後記に定義するように、ジエン、ジエノフィル、1,3−双極子または D基で誘導体化した樹脂、膜、相、ポリマー、ポリマー前駆体、または可溶性ポ リマーをも表す。樹脂と固体支持体という用語は互換性をもって用いられ、当業 者には樹脂という用語が意図するものが認識されるであろう。固体支持体の例に は以下のものが含まれるが、これらに限定されない:有機ポリマー、架橋有機ポ リマー、マレイミド誘導体化したポリスチレン、後記のD基で誘導体化したポリ スチレン、ジエノフィルまたはジエンで誘導体化したポリスチレン、後記のD基 で誘導体化したテンタゲル(Tentagel、商標)、ジエノフィルまたはジ エンで誘導体化したテンタゲル(商標)、1,2,4−トリアゾリン−3,5− ジオン(TAD)誘導体化した樹脂、フェニルトリアゾリン−ジオン(PTAD )誘導体化した樹脂、ジエンまたはジエノフィルで誘導体化したアミノ官能化樹 脂、たとえばアミノメチルポリスチレン、アミノプロピルシリカゲル、アミノプ ロピルCPG、ノバシン(NovaSyn、商標)TGアミノ樹脂HL、および アル ゴケル(ArgoGel、商標)、後記のD基で誘導体化したアミノ官能化樹脂、 4−(1,2,4−トリアゾリン−3,5−ジオン)安息香酸誘導体化したアミ ノ官能化樹脂、ジエノフィルまたはジエンで誘導体化した限外ろ過膜、ジエノフ ィルまたはジエンで誘導体化したポリエチレングリコール、ジエンまたはジエノ フィルで誘導体化した無機酸化物、たとえばシリカゲル、アルミナ、制御多孔ガ ラスおよびゼオライト、ジエノフィルまたはジエンで誘導体化した他のポリマー 、疎水性逆相樹脂、たとえばC2〜C18ポリスチレン、セルロース、メタクリ ラート、デンドリマー(dendrimer)、チオプロピルセファロース(フ ァルマシア・バイオテク)、水銀化樹脂、アガロースアジピン酸ヒドラジド(フ ァルマシア・バイオテク)、アミノ官能化セルロースビーズまたはアビジン樹脂 。 “ジエン”は、共役した2つの二重結合を含む分子であると定義される。これ らの二重結合を形成する原子は、炭素でも異種原子でもよい。ジエンはジエノフ ィルと[2+4]付加環化反応を行うことができる。 “ジエノフィル”は、アルケン基、または炭素と異種原子の間の二重結合、ま たは2個の異種原子間の二重結合をもつ分子であると定義される。ジエノフィル は適切なジエンと[2+4]付加環化反応を行うことができる。 ジエノフィルは、置換もしくは非置換アルケン、または置換もしくは非置換ア ルキンを含めたいかなる群であってもよく、これらに限定されない。一般にジエ ノフィルは式C=C−ZまたはZ’−C=C−Zの置換アルケンであり、これら の式中のZおよびZ’は、CHO、COR、COOH、COCl、COAr、C N、NO2、Ar、CH2OH、CH2Cl、CH2NH2、CH2CN、CH2CO OH、ハロゲン、またはC=Cから独立して選択される電子吸引基である。他の ジエノフィルにはチオカルボニル化合物、たとえばチオアルデヒド、チオエステ ル、チオケトン、チオカルバメート、チオカーボネートおよびチオアミド、なら びにニトロソ化合物が含まれるが、これらに限定されない。 “ジエノフィル誘導体化した固体支持体”はジエノフィルで官能化した固体支 持体、“ジエン誘導体化した固体支持体”はジエンで官能化した固体支持体を表 す。好ましい固体支持体は、官能化できるヒドロキシル基をもつシリカ、アルミ ナ、ゼオライト、制御多孔ガラスよりなる群から選択される無機酸化物、または ポリスチレンなどの有機支持体である(反応経路13および14に示す)。好ま しい態様においては、ジエノフィルはマレイミドであり、ジエンは3,5−ヘキ サジエンである。最も好ましい態様においては、ジエノフィルは1,2,4−ト リアゾリン−3,5−ジオン(TAD)である。 “[3+2]双極子”は、置換もしくは非置換アルケンまたは置換もしくは非 置換アルキンと3+2付加環化反応を行うことができる任意の部分と定義される 。[3+2]双極子の例には次式のものが含まれるが、これらに限定されない: 式中、Y、R4およびXは後記に定義するものである。 本発明の“5’−保護モノマー単位”は、リボース環の慣用番号を含めて一般 に下記のように表すことができる: Bは核酸塩基であり; AおよびA’は2’−糖置換基であり; Wは、ホスホルアミダイト、H−ホスホナート、ホスホトリエステル、ホスホ ルアミデート、保護されたオリゴヌクレオチド、およびメチルホスホナートより なる群から独立して選択され;そして D−Eはアルコール保護基(1またはそれ以上)であり、反応し得たオリゴヌ クレオチド生成物を未反応オリゴヌクレオチド出発物質から分配するための固定 基として作用する。 上記置換基に対する他の明らかな置換も本発明の範囲に含まれる。本発明は上 記の特定の反応形態に限定されず、一般的反応形態を含む。 本発明の好ましい態様において: Wは、ホスホルアミダイトまたはH−ホスホナートであり; AおよびA’は独立して、H、2H、3H、Cl、F、OH、NHOR1、NH OR3、NHNHR3、NHR3、=NH、CHCN、CHCl2、SH、SR3、 CFH2、CF2H、CR2 2Br、−(OCH2CH2nOCH3、OR4、および イミダゾールよりなる群から選択され(米国特許出願第08/264,029号 、1994年6月22日出願、表題“2’−修飾ピリミジン分子内求核置換体を 製造するための新規方法”参照、本明細書に援用する); R1は、Hおよびアルコール保護基よりなる群から選択され; R2は、=O、=S、H、OH、CCl3、CF3、ハライド、所望により置換さ れたC1〜C20アルキル(環式、直鎖および分枝鎖を含む)、アルケニル、アリ ール、C1〜C20アシル、ベンゾイル、OR4、およびエステルよりなる群から選 択され; R3は、R2、R4、CN、C(O)NH2、C(S)NH2、C(O)CF3、SO24、アミノ酸、ペプチドおよびその混合物よりなる群から選択され; R4は、所望により置換された炭化水素(C1〜C20アルキル、C2〜C20アルケ ニルル、C2〜C20アルキニル)、所望により置換された複素環、t−ブチルジ メチルシリルエーテル、トリイソプロピルシリルエーテル、ヌクレオシド、炭水 化物、蛍光標識およびホスフェートよりなる群から選択され; 最も好ましくは、AはH、OH、NH2、Cl、F、NHOR3、OR4、OS iR4 3よりなる群から選択され(米国特許出願第08/264,029号、19 94年6月22日出願、表題“2’−修飾ピリミジン分子内求核置換体を製造す るための新規方法”参照、本明細書に援用する); D−Eは、“生長しつつあるオリゴヌクレオチド鎖”または“オリゴヌクレオ チド生成物”を目的外の副生物および出発物質から分配しうるいかなる基であっ てもよい。分配は任意の適切な方法で実施でき、シリカゲルによるクロマトグラ フィー、遠心分離が含まれるがこれらに限定されず、物質の分配につき当業者に 既知の他のいかなる手段も含まれる。好ましい分配方法は樹脂への結合によるも のである。最も好ましい分配方法は、Dと、誘導体化した固体支持体(たとえば 誘導体化した樹脂、ポリマーまたは膜)との間の共有結合反応によるものである 。したがって保護基D−Eは、好ましくはDが個々の樹脂または相に対し強い親 和性をもつように設計され、Eは5’−酸素−E結合が高い選択性で容易に開裂 するように設計される。Eが樹脂または相に高い親和性を示す場合、Dを省くこ とができる。最も好ましくは、保護基D−Eは、好ましくはDが誘導体化した個 々の樹脂、ポリマーまたは膜に選択的または特異的に共有結合を形成しうるよう に設計される。Dと樹脂の間のこの共有結合は可逆性であってもよい。 Eには下記のトリチル基またはレブリン酸基またはシリル基が含まれるが、こ れらに限定されない: Dには下記のものから独立して選択される基が含まれるが、これらに限定され ない:H、OR4、共役ジエン単位をもつアルキルまたは置換アルキル基、共役 ジエン単位をもつアルコキシまたは置換アルコキシ基、CH2=CHCH=CH CH2CH2O−、CH2=CHCH=CHCH2CH2CH2O−、アルケニルまた は置換アルケニル基、マレイミド置換アルコキシ基、ジエノフィル置換アルコキ シ基、アルコキシ基、共役ジエン単位をもつアルキルアミノまたは置換アルキル アミノ基、マレイミド置換アルキルアミノまたは置換アルキルアミノ基、ジエノ フィル部分をもつアルキルアミノまたは置換アルキルアミノ基、固体支持体、1 , 3−双極子基、開環メタテシス(methathesis)重合を行うことがで きる置換基、たとえば7−オキサノルボレン含有置換基、ジスルフィド、アルデ ヒド類、および金属キレート化剤、ジエノフィルまたはジエン単位をもつシリル エーテル。それらの若干例を下記に示す。以上に挙げた置換基上のアルキル基は 、1〜50個の炭素原子、好ましくは1〜30個の炭素原子をもつことができる 。 Y=O,NH,S,P(H)(OR4),P(OR4)2,POH(O)(OR4),NH(CO),(CO)NH,O(CO)(CO)O,NH(CO)NH ,NH(CO)O,O(CO)NH,NH(CS)NH,NH(CS)O,O(CS)N なし,SO,SO2 L=連結基 X=電子吸引基または電子供与基 本発明の目的に関し“核酸塩基”は下記の定義をもつ。核酸塩基はプリン塩基 またはピリミジン塩基である。核酸塩基には、現在当業者に知られているすべて のプリン類およびピリミジン類、またはそのいかなる化学修飾体も含まれる。プ リン類はプリン環の9−位の窒素を介してリボース環に結合し、ピリミジン類は ピリミジン環の1−位の窒素を介してリボース環に結合している。ピリミジンは ピリミジン環の5−または6−位で修飾でき、プリンはプリン環の2−、6−ま たは8−位で修飾できる。ある種の修飾が、出願中の米国特許出願第08/26 4,029号、1994年6月22日出願、表題“2’−修飾ピリミジン分子内 求核置換体を製造するための新規方法”、および米国特許出願第08/458, 421号、1994年6月2日出願、表題“パラジウム触媒によるヌクレオシド 修飾−親核試薬および一酸化炭素を用いる方法”、および米国特許第5,428 ,149号、表題“パラジウム触媒による炭素−炭素の結合および製造方法”に 記載されており、これらを本明細書に援用する。より詳細には、核酸塩基にはウ ラシル、シトシン、N4−保護シトシン、4−チオウラシル、イソシトシン、5 −メチルウラシル(チミン)、5−置換ウラシル、アデニン、N6−保護アデニ ン、グアニン、N2−保護グアニン、2,6−ジアミノプリン、ハロゲン化プリ ン、およびプリンまたはピリミジン環に似た複素環、たとえばイミダゾールが含 まれるが、これらに限定されない。 本明細書中で用いる“出発物質”は、PASSの各サイクルで5’−保護モノ マー単位と反応してヌクレオチド1個またはそれ以上分延長したオリゴマーを生 成する化合物を表す。出発物質は、目的とするオリゴヌクレオチド生成物に応じ て、ヌクレオチド間[5’,3’]結合またはヌクレオチド間[3’,3’]結 合を形成するように設計できる。第1の場合は出発物質は5’−脱保護され、他 は保護された、長さnのオリゴヌクレオチドであり、第2の場合は出発物質は3 ’−脱保護され、他は保護された、長さnのオリゴヌクレオチドである。一般に 出発物質は5’−脱保護され、他は保護された、長さnのオリゴヌクレオチドで あり、ここでnは1〜1000の整数である。出発物質は、5’−保護モノマー 単位と出発物質の反応および5’−脱保護反応に適合する保護基、たとえば塩基 不安定基で、2’,3’−保護される。さらに、PASS法は制御されたオリゴ ヌクレオチド逐次重合からなるので、あるPASSサイクルの出発物質は一般に その前のPASSサイクルからの生成物を脱保護したものである。PASS法で は3’−末端ヌクレオチドを固体支持体に固定する必要がないので、出発物質に は非ヌクレオシド修飾体が含まれてもよい。非ヌクレオシド修飾体を3’−末端 に 導入することができる。固相合成ではこれは普通は不可能である。改良された薬 物動態特性をもつオリゴヌクレオチドを製造するために、出発物質の3’−末端 への非ヌクレオシド修飾には、ポリエチレングリコールモノメチルエーテル(分 子量5,000〜100,000)(PEG)、または他の高分子量非免役原単 位を3’−末端モノマーとして用いることが含まれるが、これらに限定されない 。 本明細書中で用いる“生成物”は、各PASSサイクルで5’−保護モノマー と出発物質の共有結合反応により生成するオリゴヌクレオチドを表す。前記のよ うに、出発物質が長さnの5’−脱保護オリゴヌクレオチドであり、かつ5’− モノマー単位が単一ヌクレオチドである場合、反応生成物は長さn+1の5’− 保護オリゴヌクレオチドであろう。5’−保護モノマー単位が長さmのオリゴヌ クレオチドブロックである場合、反応生成物は長さn+mの5’−保護オリゴヌ クレオチドであろう。個々のPASSサイクルの生成物は、次いで脱保護され、 次のサイクルの出発物質となる。 “欠損配列”は、個々のPASSサイクルから得られる、そのサイクルで5’ −保護モノマー単位と反応し損なった出発物質を表す。 “生長しつつあるオリゴヌクレオチド鎖”は、目的ヌクレオチドの3’−末端 ヌクレオチドから出発して、本発明方法でヌクレオチド(N)の逐次付加により 製造された5’−脱保護オリゴヌクレオチド鎖または5’−保護オリゴヌクレオ チド鎖を表す。PASS法の各反応サイクル後、生長しつつあるオリゴヌクレオ チドの長さは少なくとも1オリゴヌクレオチド分延長し、次の反応サイクルの出 発物質となる。本明細書中で用いるこの用語は、出発物質または生成物のいずれ をも表すことができ、当業者にはその用語が個々の状況で意図するものが認識さ れるであろう。 反応経路2は本発明方法を一般的に示す。5’−保護モノマー単位、たとえば ホスホルアミダイト7を溶液中の出発物質8に、活性化剤、たとえばテトラゾー ルまたは好ましくは4,5−ジシアノイミダゾール(DCI)(米国特許出願第 08/730,556号、1996年10月15日出願、表題“オリゴヌクレオ チド合成のための改良された結合活性化剤”参照)の存在下で添加すると、1ヌ クレオチドがホスファイトトリエステル結合により付加された生成物9が得られ る。この反応経路に示したように、出発物質8は5’−脱保護され、他は保護さ れた、長さnのオリゴヌクレオチドであり(nは1〜1000の整数)、生成物 は長さn+1の5’−保護オリゴヌクレオチドである。5’−脱保護オリゴヌク レオチド出発物質8は固体支持体に固定されておらず、5’−保護モノマー単位 と出発物質の反応および5’−脱保護反応に適合する保護基、たとえば塩基不安 定基で、標準法により単に2’,3’−保護される。固体支持体への3’−固定 を行わないことにより、オリゴヌクレオチドに取り込むことができる3’−修飾 の範囲が拡大される。さらに、3’−末端ヌクレオチドは、もはや支持体固定の ためにヒドロキシル置換基をもつ必要がない。したがって、固相合成では不可能 な修飾基を3’−末端へ導入できる。これには、ポリエチレングリコールモノメ チルエーテル(分子量5,000〜100,000)、または他の高分子量非免 役原単位をオリゴヌクレオチド製造用3’−末端モノマーとして用いて改良され た薬物動態特性を得ることが含まれるが、これらに限定されない(米国特許出願 第08/434,465号、1995年5月4日出願、表題“核酸リガンド複合 体”参照、本明細書に援用する)。 5’−保護モノマー単位7と出発物質8の反応が完了した後、反応混合物は3 種を含有する:未反応5’−保護モノマー単位7、未反応出発物質8、および反 応生成物である化合物9、すなわち長さn+1の5’−保護オリゴヌクレオチド 。前記のように、5’−保護モノマー単位7と反応し損なった出発物質8(長さ nの5’−脱保護オリゴヌクレオチド)は延長していないので、欠損配列と呼ぶ 。反応生成物である化合物9は、出発物質8(長さnのオリゴヌクレオチド)と5 ’−保護モノマー単位7の3’−ホスホルアミダイト基との共有結合反応により 1ヌクレオチド分延長した5’−保護オリゴヌクレオチド鎖(長さn+1)である 。生成物である化合物9は主成分であり、反応しなかった5’−保護モノマー単 位7と未反応出発物質8は少量存在するにすぎない。 プロセスのこの段階で、物質を精製し、かつモノマー出発物質を回収するため に、未反応5’−保護モノマー単位を所望により反応混合物から分離してもよい 。この態様によれば、未反応モノマーを分離しやすいイオン種の形成のために反 応させる。ホスファイトトリエステルからホスフェートトリエステルへの酸化は 、 同じ反応フラスコ内で酸化剤を添加するだけで実施できる。系内での酸化により 、目的オリゴヌクレオチド生成物9、モノマー7のホスフェート塩10、および 未反応オリゴヌクレオチド出発物質8が得られる。モノマー7のホスフェート塩 10はこの反応混合物中で唯一の遊離塩であるので、当業者に既知の方法で容易 に分離される。これにはアニオン交換樹脂もしくは膜によるろ過、または水相に よる抽出が含まれるが、これらに限定されない。本発明のこの態様の変法では、 3’−末端モノマーが分子量5,000〜100,000、好ましくは20,0 00のポリエチレングリコールモノメチルエーテルである。この場合、モノマー 10を分離するのに簡単な分子量分画膜を使用できる。 未反応モノマーを反応混合物から分離した後、次いで“オリゴヌクレオチド生 成物”を“欠損配列”から分離するのに適した任意の方法で、残りのろ液を分配 する。1態様においては、5’−保護基(D−E)と選択的または特異的に相互 作用するように設計された物質(たとえば逆相樹脂)にろ液を付与する。生成物 は、5’−保護基の成分Dとこの樹脂の親和性により固体支持体に捕獲または保 持される。好ましい態様においては、5’−保護基(D−E)と共有結合反応す るように設計された物質(たとえばDがジエン単位を含む場合はジエノフィル誘 導体化した樹脂)に、ろ液を付与する。生成物は、5’−保護基の成分Dと樹脂 の共有結合反応により固体支持体に捕獲または保持される。5’−保護基Dをも たない未反応オリゴヌクレオチド出発物質8は洗い去られる。未反応出発物質は 、後続の合成に中間体として使用するために単離、保存できる。次いで、保持さ れたオリゴヌクレオチド生成物9を周知の方法で樹脂から放出させる。ある態様 では、オリゴヌクレオチド生成物を5’−酸素と保護基D−Eの間の結合の開裂 により放出させる。たとえば、5’−保護基がトリチル誘導体である場合、希ジ クロロ酢酸(DCA)を用いてトリチル基を開裂させ、これによりオリゴヌクレ オチド結合生成物を放出させる。次いで、遊離した5’−脱保護オリゴヌクレオ チド結合生成物11をさらに結合反応の出発物質として使用できる。 反応経路2 反応経路2に示したモノマー付加サイクルの各工程が厳密に上記の順序で起きる ことが本発明の要件ではない。あるいは、結合および系内での酸化に続いて、生 成物およびモノマー10を樹脂に共有結合または親和性により捕獲させてもよい 。その後5’−保護基を開裂させると、生成物とモノマーの両方が遊離する。こ の段階で抽出または膜によるろ過を行うと、目的外のモノマー副生物が容易に分 離される。 オリゴヌクレオチド生成物固定のために5’−保護基を利用すると、広範な3 ’−末端修飾を採用できる。これらは、5’−保護モノマー単位からの反応生成 物の分離を促進するように設計された基(たとえばこの分離に分子量分画膜を利 用するのに十分な分子量のポリマー)、または生成物を選択的に沈殿させるため の金属キレート化剤であってもよい。このような場合、これらの基は、オリゴ ヌクレオチドの3’−末端と修飾基の間に開裂性リンカー、たとえばスクシネー トリンカーを含む。あるいは、非ヌクレオシド3’−末端置換基、たとえばポリ エチレングリコールモノメチルエーテルまたはジステアリルグリセロールは、オ リゴヌクレオチド生成物の薬物動態特性を高めることができる(米国特許出願第 08/434,465号、1995年5月4日出願、表題“核酸リガンド複合体 ”参照、本明細書に援用する)。3’−末端モノマー、たとえばインビボ造影の ためにTc99mを保持するように設計されたキレート化剤は、診断用オリゴヌ クレオチド適用の検出体としても利用できる(国際特許出願公開第WO96/0 2274号、1996年2月1日公開、表題“金属錯体とオリゴヌクレオチドか ら形成された結合体、それらの結合体を含有する薬剤、放射線診断におけるそれ らの使用、およびそれらの製造方法”参照、本明細書に援用する)。従来の固相 オリゴヌクレオチド合成法では、3’−末端は生長しつつある鎖を固体支持体に 固定するのに用いられるので、このような成分を導入するのに利用できない。 従来の固相合成法と異なり、新たな結合反応を行うたびにオリゴヌクレオチド 生成物を未反応出発物質から分離するのが好ましい。したがって最終オリゴヌク レオチド生成物は本質的に純粋な形で得られ、相同性の高い欠損配列を分離する 煩わしさが除かれる。さらに、反応が溶液相で行われるので、モノマーとオリゴ ヌクレオチド出発物質との反応の収率も著しく増大する。さらに、この方式では 結合し得たオリゴヌクレオチド生成物のみが次のプロセス工程に進入するので、 キャッピング工程が不必要になる。このキャッピング工程排除は、従来法と比較 してさらに効率増大をもたらす。5’−保護モノマー単位と反応し損なったオリ ゴヌクレオチド出発物質(欠損配列)は、単離して再使用できる。PASS反復 工程で欠損配列を再単離するたびに、それを同一工程の出発物質に、または同一 オリゴマーもしくは同一3’−末端フラグメントを共有するオリゴマーの後続合 成での反復工程の出発物質にブレンドできる(反応経路3参照)。したがって欠 損配列は後続のオリゴマー製造に有用な逐次構築ブロックとなる。これはプロセ ス効率を高めるだけでなく、最終粗生成物の純度も著しく高める。これによりさ らにモノマーを制限試薬として使用でき、したがってプロセス効率が著しく高ま る。 反応経路3 上記に概説した、生成物を出発物質から分離するための固定基として5’−保 護基を利用し、欠損配列を後続合成の中間体にすることができる合成方式は、ホ スホルアミダイト結合化学に限定されない。これは他の結合反応、たとえばH− ホスホナートまたはホスフェートトリエステル結合化学にも適合する(Gaff neyおよびJones(1988)Tetrahedron Lett.29: 2619−2622参照)。この方式はオリゴヌクレオチド合成を自動化し、効 率の高い大規模オリゴヌクレオチド製造に理想的に適している。 本明細書に記載した技術的観点は、PASS合成法以外にも適用される。たと えばオリゴヌクレオチド合成に際しての目的種または目的外種の共有捕獲は、従 来の固相法または溶液相法での高分離能一工程精製法にも適用できる。末端モノ マーのみがその5’−末端にジエン修飾トリチル基をもつ場合、ジエノフィル誘 導体化した樹脂または膜に全長生成物を選択的に固定すると、大部分の欠損配列 が粗製混合物から分離される(反応経路1参照)。他の適用例では、共有捕獲に 適した部分を含むキャッピング試薬(前記のすべてのD基に適合)、たとえばジ エン修飾した無水酢酸(または一般に、D修飾した無水酢酸)、またはジエン修 飾したシリルクロリド、たとえば無水3,5−ヘキサジエンオキシ酢酸もしくは トリ−(3,5−ヘキサジエンオキシ)シリルクロリドを用いると、各モノマー 付加後(溶液相オリゴヌクレオチド合成法の場合)、または固体支持体から粗製 オリゴヌクレオチドを開裂させた後(従来の固相オリゴヌクレオチド合成法の場 合)、すべてのキャップ付き欠損配列を粗製オリゴヌクレオチドバッチから分離 できる。さらに他の適用例では、ジエン修飾したトリチル基とジエノフィル修飾 した樹脂との反応により、カチオン交換樹脂を容易に製造できる。 2’−フルオロピリミジン修飾したRNAオリゴヌクレオチドの二量体を、実 施例1でPASSにより組み立てる(反応経路4)。第1反応では、ホスホルア ミダイト結合化学により3’,3’−ホスホジエステル結合を形成する。オリゴ ヌクレオチドは、3’−末端に3’,3’−ホスホジエステル結合を取り込ませ ることにより3’−から5’−へのエキソヌクレアーゼ分解に対し保護されるこ とが多い。結合後、反応混合物を系内で酸化すると、未反応チミジン出発物質1 2、酸化されたアミダイトモノマー15、および酸化された二量体生成物14が 生成する。 反応混合物をジエチルアミノエチレン(DEAE)セアァデックス(登録商標 )床でろ過することにより、酸化されたアミダイトモノマー15を分離する。ろ 液のHPLC分析は、図3に示すように酸化されたアミダイトモノマー15がD EAEセアアデックスに保持されたことを示す。酸化された二量体生成物14お よび未反応チミジン出発物質12を含有するろ液を濃縮し、60%アセトニトリ ル/水に再溶解し、C18フィルタープラグに装入する。樹脂を70%水/アセ トニトリル、次いで50%水/アセトニトリルで洗浄して、未反応チミジン出発 物質12を完全に溶離する。この時点でトリチル化二量体生成物14のみを含有 する樹脂を、次いで水で洗浄し、続いて80%酢酸/水で処理して脱トリチル化 する。次いで樹脂を50%アセトニトリル/水で洗浄すると、最終生成物16が 溶出し、トリチル種は保持される(図4)。 反応経路4 実施例2(反応経路5)には、5’−保護モノマー単位がホスホルアミダイト ではなくH−ホスホナートである本発明方法を示す。この例では、3’−末端に 3’,3’−ヌクレオチド間結合をもつH−ホスホナートチミジン三量体(T− T−[3’,3’]−T三量体)20を製造する。この液相結合反応の効率はき わめて高いので、未反応3’−末端フラグメント19は検出されなかった。した がって逆相工程は、生成物からトリチル基を開裂および分離するためだけに用い られる。 実施例3(反応経路6)には、5’−保護基(D−E)として5’−O−(4 ,4’−ジオクタデシルオキシトリチル)(DOT)を含むホスホルアミダイト モノマーの合成を記載する。 実施例4には、5’−保護基(D−E)と特定の樹脂または相との選択的また は特異的相互作用に基づいて、結合生成物を未反応オリゴヌクレオチド出発物質 (欠損配列)から分離できることを示す。この例では、C18逆相樹脂上におけ る4,4’−ジオクタデシルトリフェニルメタノール(DOT)23の移動性を 、4−デシルオキシ−4’−メトキシトリアノールおよびジメトキシトリアノー ル(DMT)のものと比較する(表1参照)。有機溶剤中でのDOT基とC18 樹脂の相互作用が強いので(たとえばメタノール(Rf=0)、アセトニトリル(Rf =0))、混合物をC18樹脂に装入し、未反応出発物質を有機溶剤で洗い去る ことにより、生成物を1工程で出発物質から分離できる。次いで有機溶剤中のハ ロ酢酸でトリチル保護基を開裂させることにより、結合生成物をチャンバーから 溶離できる。トリチル基は樹脂に保持される。 実施例5には、溶液中での六量体オリゴヌクレオチド(5’−HO−T−T− A−C−T−[3’,3’]−T)の組立てを記載する。過剰のモノマーを分離 するためにアニオン交換媒体を用い、欠損配列を保持せずに5’−DMT保護生 成物を選択的に捕獲するためにC18逆相樹脂を用いた。実施例5にみられるよ うに、各モノマー添加を2工程で行う。第1工程ではホスホルアミダイト結合化 学を用いて5’−保護モノマー単位を出発物質に結合させる。結合後、反応混合 物を系内で酸化すると、未反応出発物質(欠損配列)、酸化されたアミダイトモ ノマー、および酸化された生成物が得られる。酸化されたアミダイトモノマーは 、反応混合物をアニオン交換媒体、たとえばDEAEセアアデックス(登録商標 )でろ過することにより分離される。 第2工程では、酸化された生成物および未反応出発物質(欠損配列)を含有す るろ液を希酸で処理して脱トリチル化する。使用できる希酸の例には、希鉱酸、 希トリクロロ酢酸、希ジクロロ酢酸(DCA)、ルイス酸、たとえばZnBr2 、ニトロメタン、トシック酸(tosic acid)および過塩素酸が含まれ るが、これらに限定されない。次いで混合物をクロマトグラフィーにより分離す る。あるいは、生成物および未反応出発物質の混合物をまず逆相樹脂で分離した 後、脱トリチル化し、樹脂から脱トリチル化生成物を放出させる。実施例5に示 したデータは、PASS法によれば反復工程ごとに本質的に純粋なオリゴヌクレ オチ ド中間体が最小の原価制限モノマー消費量で得られることを示す。 実施例6(図5)には、本発明方法に用いるために設計した、未反応5’−保 護モノマー単位を反応混合物の他の物質から分離する自動抽出/ろ過システム1 10を模式的に示す。前記のように、本発明方法は自動化でき、オリゴヌクレオ チドの大規模製造に理想的に適している。自動抽出/ろ過システム110は2つ の中枢をもつ:抽出器112およびクロマトグラフィー樹脂ろ過チャンバー11 4。抽出器は管118でクロマトグラフィー樹脂チャンバーと流体連絡している 。第1の三方弁120が、抽出器112からクロマトグラフィーろ過チャンバー 114への内容物の流れを制御する。第2弁122は、チャンバー114への溶 剤の添加を制御する。第3弁124は、チャンバー114からの排出物の採集を 制御する。3つすべての弁が制御装置126に電気的に結合し、これが3つすべ ての弁120、122および124をそれらの種々の流れ状態間で作動させる信 号を発する。 抽出器112は、2つの入口128および130、撹拌機132、ならびに出 口134を備えている。反応混合物を入口128から抽出器112へ送入し、抽 出溶剤(たとえばCH2Cl2)および水性緩衝液を入口130から抽出器へ送入 する。混合物を撹拌機132で撹拌してもよく、その後、層を分離させる。次い で第1の三方弁120を開くと、有機下層が出口134から導電率モニター13 6へ流入し、次いで管118を通ってチャンバー114へ流入する。導電率モニ ターは制御装置126に電気的に結合している。導電率の上昇は有機層が導電率 モニターを通り過ぎ、水層が進入し始めたことを示す。導電率上昇は制御装置1 26により認識され、これが第1の三方弁120へ信号を送り、この三方弁を作 動させて水層をチャンバー114からそらす。 チャンバー114は、3つの入口138、140および142、ならびに出口 144を備えている。有機層は入口138からチャンバー114に入り、入口1 40からチャンバーに入る加圧不活性ガス源(たとえばアルゴン)でチャンバー から押し出される。次いでチャンバーは、入口142からチャンバーに入る溶剤 (たとえばCH2Cl2)で洗浄される。溶剤の添加は、第2弁122を選択的に 作動させる制御装置により制御される。制御装置126が第3弁124を開くこ とにより、有機排出物が出口144から採集される。有機排出物は、反応生成物 、すなわち1ヌクレオチド分延長した出発物質、および未反応オリゴヌクレオチ ド出発物質(欠損配列)を含有する。未反応5’−保護モノマーはチャンバー1 14内に保持される。有機溶剤の溶出後、入口140から添加した緩衝液でチャ ンバー114を洗浄すると、未反応5’−保護モノマー単位が溶離される。次い でチャンバー112を反応混合物の溶離に用いる有機溶剤(たとえばCH2Cl2 )で平衡化する。次いで有機排出物は逆層樹脂上を通過し、生成物が未反応オリ ゴヌクレオチド出発物質(欠損配列)から分離される(実施例6参照)。 実施例7には、3’側残基修飾として分子量20,000のポリエチレングリ コールを用いる15塩基オリゴヌクレオチド(5’−CTAAACGTAATG G−[3’,3’]−T−T−3’)(配列番号:1)の溶液相合成を記載する。 この実施例は、溶液相合成が効率的であること、および従来の固相合成法では直 接に製造できなかった3’−修飾オリゴヌクレオチドを溶液中で製造できること を証明する。この実施例には、溶液相合成法に必要な基本工程を概説する。これ は、典型的なPASSサイクルの場合のようなオリゴヌクレオチド結合生成物を 樹脂に捕獲する工程を必要としない。したがってこの実施例は、PASSにおい て予想される生成物捕獲が効率および生成物純度に与える影響も証明する。各モ ノマー付加サイクルでそのような生成物捕獲を行うと、従来の固相合成の場合の ようなジエチルエーテルからの煩雑な沈殿はもはや必要ない。さらに、欠損配列 が各モノマー付加サイクルで分離されるので、PASSにより得られる生成物の アニオン交換クロマトグラムは、図6のクロマトグラムに存在する多重ピークで はなく単一ピークのみを示すと予想される。 実施例8(反応経路7および8)には、5’−ジ−(3,5−ヘキサジエンオ キシ)トリチルチミジンホスホルアミダイトモノマー(32)および5’−ジ− (2,4−ヘキサジエンオキシ)トリチルチミジンホスホルアミダイトモノマー を含めた各種ジエン修飾トリチルアルコールの合成を記載する。 実施例9(反応経路9)には、ジエン―4,4’−ジ−3,5−ヘキサジエン オキシトリチルアルコール(30)および4,4’−ジ−2,4−ヘキサジエン オキシトリチルアルコール(36)―をマレイミドへの効率的な付加環化に 使用できることを証明する(それぞれ反応1および2(反応経路9))。表4に これら2反応につき種々の条件下での反応速度を示す。表4に示したデータから 、修飾トリチル化合物(30)の方が種々の反応条件下で速やかに反応すること が明らかである。予想されるように、ジエノフィル当量数の増加および反応混合 物への水の添加が共に反応速度を高めることも明らかである。各トリチル基上に は2個のジエンが存在するので、すべてのトリチルアルコールまたはヌクレオチ ドをマレイミド修飾した固相支持体に捕獲するには50%以上のジエン置換基が 反応すれば十分であることを認識するのが重要である。これは、反応を行うのに 必要な時間を短縮する。 速度を比較するために、5’−O−(4,4’−ジ−3,5−ヘキサジエンオ キシトリチル)チミジン(5’−(DHDT)チミジン)(31)および5’− O−(4,4’−ジ−3,5−ヘキサジエンオキシトリチル)チミジン3’−ホ スホルアミダイト(32)を用いて、反応#3(表4)につき示したものと同じ 反応条件下でディールス−アルダー反応を行った。結果を表5に示す。この場合 も1時間以内に50%以上のジエン基が付加環化反応した。これは、PASSで 予想される生成物捕獲が、迅速かつ効率的なモノマー付加サイクルを可能にする のに妥当な時間枠内で起きうることを示唆する。適切に置換されたジエンおよび ジエノフィルを用いるとディールス−アルダー付加環化反応速度を調節できるこ とは、広く知られている。したがって適切なジエンとジエノフィルの組合わせを 用いることにより、生成物捕獲反応速度を調節できる。 実施例10には、置換マレイミド−ポリスチレン樹脂上にオリゴヌクレオチド 生成物を捕獲するために4,4’−ジ−3,5−ヘキサジエンオキシトリチル保 護基を用い、PASSにより3’−PEG誘導体オリゴヌクレオチドを製造する ことにつき記載する。この捕獲工程で、反応混合物から未反応出発オリゴヌクレ オチド(欠損配列)が分離される。これを所望により単離し、後続の生産バッチ にオリゴヌクレオチド組立ての同じ時点でブレンドするために保存しておくこと ができる。3’−PEG末端修飾は、インビボでの療法用オリゴヌクレオチドの 薬物動態挙動を向上させるのに特に有用である。 実施例11には、ジエンとして5’−O−(4,4’−ジ−3,5−ヘキサジ エンオキシトリチル)ヌクレオシド(5’−O−DHDT−ヌクレオシト)46、 ジエノフィルとしてマレイミド置換固体支持体45を用いたディールス−アルダ ー生成物捕獲により、PEG誘導体化されていないオリゴヌクレオチドを製造す るための一般的反応経路を記載する(反応経路11)。前記のように、全長オリ ゴヌクレオチドを樹脂または膜に捕獲することはPASS法の自動化に不可欠で ある。捕獲の一般的設計は、トリチル基またはトリチル類似体を固体支持体、た とえば樹脂、膜またはポリマーに不可逆的に結合させるもの(47)である。結 合すると、不可逆的に結合したトリチル基48から分離することにより、オリゴ ヌクレオチド49が放出される。この一例は、上記5’−O−DHDT−ヌクレ オシドのディールス−アルダー捕獲である。樹脂結合した活性ディールス−アル ダージエノフィルはジエンであるトリチルと共有結合反応し、慣用される脱トリ チル化法により、ヌクレオシドが固体支持体および結合トリチル基から放出され る。この捕獲法を用いて、実施例11に記載したようにPEG誘導体化されてい ないオリゴヌクレオチドをPASSにより製造できる(反応経路12)。 反応経路11 多数の固体支持体がディールス−アルダー反応による捕獲および放出に適して いると考えられる。好ましい固体支持体は、反応経路13および14に示すよう に官能化できるヒドロキシル基をもつシリカ、アルミナ、ゼオライト、制御多孔 ガラスよりなる群から選択される無機酸化物である。シリカ、アルミナ、ゼオラ イト、制御多孔ガラス(CPG)などの無機酸化物は、容易に酸化できる表面ヒ ドロキシル基をもつ。CPGは例外の可能性があるが、これらの無機固体支持体 は市販の樹脂よりはるかに高い装填容量をもつことが多い。通常これらの無機酸 化物はヒドロキシル基をより多能または反応性の官能基をもつシリル化剤でシリ ル化することにより官能化される(反応経路13)。 反応経路13 反応性ジエノフィルを共有結合させる他の方法、たとえば6−マレイミド−カプ ロン酸などの分子と表面ヒドロキシル基の間のエステル化も考えられる(反応経 路14)。ジエノフィルの表面装填量および/または反応性を高めることが認め られるならば、表面とジエノフィル基の間の他の共有結合リンカーも使用できる 。 反応経路14 より好ましくは、固体支持体はポリスチレンまたはアミノ官能化ポリスチレン などの有機支持体である。これらの支持体は当業者に既知の標準法により誘導体 化することができる。後記のように、実施例18〜21(反応経路23〜26) にトリアゾリンジオン誘導体化したアミノ官能化樹脂の調製方法2例を示す。 実施例12(反応経路15)には、ディールスーアルダー付加環化による生成 物捕獲を用いた二量体製造につき記載する。3’,3’−結合した5’−DHD TO−T−T二量体の捕獲速度は、樹脂結合したマレイミド基の過剰度に依存す る。生成物捕獲は定量的に進行する。捕獲された生成物は、ジクロロメタン中3 %ジクロロ酢酸により、樹脂から容易かつ定量的に放出される。中和および濃縮 後、純粋な生成物が得られる。 実施例13には、ブロックのひとつを樹脂に捕獲することによりブロックから オリゴヌクレオチドを組み立てる方法であって、ジエノフィル誘導体化した樹脂 への5’−O−(4,4’−ジ−3,5−ヘキサジエンオキシトリチル)保護オ リゴヌクレオチドの付加環化を用いる方法を記載する。 実施例14(図8)には、自動抽出/ろ過システム200、および実施例10 に記載したように各サイクルでのモノマー付加生成物の共有結合捕獲により3’ −末端ポリエチレングリコールをもつオリゴヌクレオチドを自動的に製造するよ うに設計されたプロセスを模式的に示す。前記のように、制御されたヌクレオシ ドホスホルアミダイト逐次重合からなるPASS法は、自動化に理想的に適して いる。各モノマー付加は化学処理工程のシーケンスからなる。このシーケンスは 各モノマー付加(サイクル)につき同じである。サイクル間の唯一の違いは、付 加されるモノマーの性質である。典型的なオリゴヌクレオチドは2〜12の異な るモノマーから構成され、それらが一定の目的に従ったプログラマブルシーケン スで、一般に1回より多く付加される。 図8から分かるように、自動抽出/ろ過システム200は3つの中枢をもつ: 反応器212、ろ過チャンバー214―これはジエノフィル修飾した固体支持体 215を収容する―および限外ろ過膜システム218。 実施例14には、捕獲樹脂から放出された後の生成物オリゴヌクレオチドと過 剰のモノマーを分離するのに必要な条件に適合する種々の限外ろ過膜も挙げる。 膜を試薬/生成物の吸着、保持および反応性に基づいて評価する。実施例14に 述べた膜は、溶剤により影響を受ける流束速度(flux rate)、吸着に よる生成物損失、そして最後に拡散反射FTIRに基づいて、適切であると認め られた。 実施例14には説明のために3’−末端PEGオリゴヌタレオチドの製造を記 載したが、この自動合成法はオリゴヌクレオチドに高分子が結合しても、結合し なくても実施できる。後者の場合、図5に示したように分子量分画膜の代わりに 液/液抽出工程を用いてもよい。 実施例15には、マレイミド誘導体化したトリチル基の合成を記載する。前記 のように、PASSプロセスに不可欠な部分は、n−1配列の分離方法である。 1方法は、マレイミド修飾−トリチル基を含むモノマーを用いるオリゴヌクレオ チド合成である。これらのトリチル基はジエン修飾樹脂と反応しやすく、樹脂を 洗浄するだけでn−1を分離でき、次いで脱トリチル化すると、全長オリゴヌク レオチドが放出される。 実施例16には、溶液相合成および従来の固相合成中に欠損配列を選択的に分 離するための、ジエン修飾−キャッピング試薬の使用を記載する。一般に欠損配 列を無水酢酸でキャッピングする。無水酢酸によるキャッピング反応は、迅速に ほぼ定量的に進行する。したがって、実施例7に記載したように、無水酢酸のジ エン修飾類似体、たとえば無水3,5−ヘキサジエン酸(74)および無水3, 5−ヘキサジエンオキシ酢酸(75)(反応経路18)を用いると、溶液相合成 の各サイクルで欠損配列が効率的にキャッピングされ、かつジエノフィル誘導体 化した樹脂または膜への付加環化によりキャップ付き欠損配列を分離することも できる。従来の固相合成中に導入された5’−アセチルキャッピング基は、アン モニア開裂および脱保護工程で除去される。試薬74または75を固相合成にお けるキャッピング試薬として、また後に欠損配列の選択的分離のための手がかり として用いるためには、実施例12に記載するように、非塩基性条件下で開裂し うるリンカーを介してオリゴヌクレオチドを支持体に結合させなければならない 。あるいは、従来の固相合成の終了時に用いられる典型的な塩基性脱保護条件下 で除去されやすくないキャッピング試薬を使用できる。 ヘキサジエンオキシシリルクロリド(76、77および78)は、粗製オリゴ ヌクレオチドをアンモニアで支持体から開裂させると、欠損配列を選択的に分離 できる。シリルエーテル基はこれらの条件下では分離されない。したがって、ジ エノフィル誘導体化した樹脂または膜との反応により、目的生成物からヘキサジ エンオキシシリルキャップ付き欠損配列を分離できる。 反応経路18 反応経路19に、一般に好ましい本発明方法を示す。前記のように、PASS 法に不可欠なのは、モノマーを付加するたびに、好ましくは樹脂、ポリマーまた は膜への共有結合固定により生成物を化学選択的に単離することである。好まし い態様においては、共有結合固定方法は1,2,4−トリアゾリン−3,5−ジ オン(TAD)修飾した固体支持体をジエノフィル樹脂成分として用いるディー ルス−アルダー反応によるものである。トリアゾリンジオンを使用すると、固定 反応が著しく促進されるだけでなく、この重要な工程を視覚監視することもでき る。PASS法のこの態様においては、ウラゾールを固体支持体に結合させる。 固定化したウラゾールをNBS、N24、NCSまたは次亜塩素酸t−ブチルな どの酸化剤で酸化して、テトラゾリンジオンにする。これらのTAD樹脂は、生 長しつつあるオリゴヌクレオチド上のヘキサジエン標識トリチル基(DHDT) と速やかに反応する(室温で数分以内)。反応経路19を参照すると、TAD樹 脂80とジエンートリチル修飾されたオリゴヌクレオチド生成物(たとえば46) との反応により、固定された生成物81が生成する。TAD基は、ジエン−トリ チル修飾された生成物との反応により固定される前は、特徴的な濃赤/紫色を呈 する。2+4付加環化反応により固定されると、たとえば固定された生成物81 の場合は色が淡黄色に変化する。したがって、赤色が持続するまでTAD−樹脂 を粗製結合生成物に連続添加するだけで、完全な生成物固定が達成される。固定 された生成物は、前記のように慣用される脱トリチル化により樹脂から放出され る。 反応経路19 好ましい態様においては、ウラゾール誘導体化樹脂を使用前に酸化して、対応 する1,2,4−トリアゾリン−3,5−ジオン樹脂(TAD−樹脂)にする。 樹脂を適切な溶媒で洗浄することにより、酸化剤を樹脂から除去する。酸化剤を 完全に樹脂から除去した時点で、ディールス−アルダー捕獲反応がその中で行わ れる溶媒を樹脂に添加して樹脂を膨潤させる。次いでヘキサジエンオキシトリチ ル(DHDT)−誘導体化オリゴヌクレオチドを、DHDT 1当量当たり少な くとも2当量の過剰の樹脂に添加する。TLCまたはHPLCにより、オリゴヌ クレオチドの消失につき反応を監視する。あるいは、過剰の未反応TAD樹脂に 特徴的な濃赤色が持続するまで、5’−末端DHDT基をもつ粗製オリゴヌクレ オチド生成物にTAD樹脂を添加する。上記方法で反応の完了が判定されると、 適切な溶媒で樹脂を十分に洗浄して浸出性物質を除去する。次いで樹脂を適切な 溶媒に再懸濁し、脱トリチル化と同時に5’−脱保護オリゴマーを放出するのに 十分な強度の酸で5〜20分間処理する。本発明の好ましい態様においては、ジ クロロメタン中3%ジクロロ酢酸溶液を用いる。樹脂を溶液からろ過により分離 し、有機層を合わせて塩基性水溶液、好ましくはNaHCO3溶液、続いて中性 水溶液で、有機層のpHが6〜7になるまで繰り返し洗浄する。次いで有機層を Na2SO4で乾燥させ、濃縮して、5’−脱保護オリゴマーを固体として得る。 実施例17(反応経路22、図10)には、ジエン置換トリチルアルコール、 5’−O−(4,4’−ジ−3,5−ヘキサジエンオキシトリチル)チミジン(5’ −DHDTO−dT)(31)とフェニルトリアゾリンージオン(PTDA)(82) のディールス−アルダー反応を記載する。この実施例は、トリアゾリンジオンを 用いると反応速度が高まること、および視覚により反応を監視できることを示す 。 実施例18〜21(反応経路23〜26)には、トリアゾリンジオン誘導体化 樹脂を調製するための一般法2例を示す。第1法―実施例18および19―では 、安息香酸で誘導体化したウラゾールをアミノ官能化樹脂と反応させる。第2法 ―実施例20―では、ウラゾールを樹脂上で直接に形成する。実施例21には、 ウラゾール官能化した固体支持体を酸化するための種々の方法を記載する。実施 例22(反応経路27)には、カプロン酸で誘導体化したウラゾールにより固体 支持体を誘導体化することを記載する。この結合ウラゾールを次亜塩素酸t−ブ チルで酸化すると、トリアゾリンジオンで誘導体化した樹脂(99)が生成する 。実施例19および22は、ウラゾールをアミド結合により固体支持体に結合さ せることを示す。ウラゾールをエステル結合により固体支持体に結合させること もできる。 TAD樹脂を調製するための別法は、固体支持体をジエンで誘導体化し、続い てこのジエンを過剰のビス−TAD分子と反応させるものである。この方法(図 11に示す)では、ウラゾールを固体支持体上で酸化してTADにする必要なし にTAD樹脂が生成する。この方法は、樹脂の官能化が容易であり、安価な出発 物質を利用でき、ビス−TADが安定であるため長期保存できるので、好ましい 。固体支持体は、樹脂、膜またはポリマーから選択できる。例にはシリカ、セル ロース、ポリプロピレン、ポリビニルアルコール、メタクリラート、ポリスチレ ンおよびポリエチレングリコールが含まれるが、これらに限定されない。 実施例23(反応経路28〜30)には、ビス−TAD化合物の合成、ジエン 誘導体化樹脂の合成、およびこれら2化合物のディールス−アルダーにより、ウ ラゾールを固体支持体上で酸化してTADにする必要なしにTAD樹脂を形成す ることを示す。 他のジエノフィルを固体支持体に結合させて捕獲−放出工程に用いてもよく、 これにはたとえばチオカルボニル化合物、たとえばチオケトン、チオアルデヒド 、チオエステル、チオカルバメート、チオカーボネートおよびチオアミド、β− ニトロアクリル酸およびニトロソ化合物が含まれるが、これらに限定されない。 チオカルボニル化合物は反応性の高いジエノフィルであり、それらに対応するカ ルボニル化合物よりはるかに反応性が高い。チオカルボニル化合物とブタジエン のディールス−アルダー反応は、室温において良好な収率で進行する(Wein rebおよびStaib(1982)Tetrahedron 38:3087 )。固体支持体に容易に共有結合しうる他の反応性ジエノフィルは、β−ニトロ アクリル酸である(Carruthers(1990),Cycloaddit ion Reactions in Organic Synthesis ,パ ーガモン・プレス,p.99)。このジエノフィルも緩和な条件下でブタジエン 誘導体と反応する。有用性をもつ他の一群のジエノフィルは、ニトロソ化合物で ある(Bogerら(1985)J.Org.Chem.50:19911)。 これらの化合物は、系内でベンゾヒドロキサム酸からテトラアルキル過ヨウ素酸 塩溶液処理により生成させることができる。ニトロソ基は、生成すると速やかに ブタジエンとディールス−アルダー付加環化反応する。 実施例24(反応経路31)には、チオカルボニル誘導体化樹脂をジエノフィ ルとして標準DHDT捕獲−放出サイクルに使用することを記載する。この樹脂 は有機合成の標準法で容易に製造され、ジエノフィルの生成に酸化工程を必要と しない。 実施例25(反応経路32)には、ニトロアクリラート誘導体化樹脂をジエノ フィルとして標準DHDT捕獲−放出サイクルに使用することを記載する。チオ カルボニル樹脂と同様に、ニトロアクリラート誘導体化固体支持体は予め活性化 する必要がない。この樹脂を標準DHDT捕獲−放出サイクルに用いる。 実施例26(反応経路33)には、系内で樹脂結合チオスルフィナートから形 成したチオアルデヒドの使用を記載する。DHDTを含むオリゴヌクレオチドの 存在下で形成したチオアルデヒド樹脂は、DHDTとディールスーアルダー反応 して目的生成物を樹脂に捕獲することができる。 実施例27(反応経路34)には、ニトロソホルメート樹脂をジエノフィルと して標準DHDT捕獲−放出サイクルに使用することを記載する。ニトロソホル メート樹脂は、系内でヒドロキシカルバミン酸誘導体化樹脂より、ホスファイト トリエステルからホスフェートトリエステルへの酸化で得たオリゴ混合物中に存 在する過剰のテトラアルキル過ヨウ素酸塩により形成される。ニトロソホルメー ト基はきわめて反応性のジエノフィルであり、ディールス−アルダー付加環化反 応により樹脂上のDHDT部分を速やかに捕獲するであろう。 図12は、本発明の好ましい態様に従ったオリゴヌクレオチドの生成物固定式 逐次合成(PASS)に関する1モノマー付加サイクルを模式的に示す。この図 について述べると、出発物質(3’−末端オリゴヌクレオチドフラグメント)を 活性化剤の存在下で次の5’−保護モノマーに結合させる。結合が行われた時点 で、可溶性の有機酸化剤、好ましくは過ヨウ素酸テトラブチルアンモニウムを反 応混合物に添加して、ホスファイトをホスフェートに酸化する。有機溶媒に可溶 性である他の酸化剤、たとえばジ酢酸ジヨードベンゼンも使用できる。酸化後、 ジエノフィル樹脂、好ましくはトリアゾリン−ジオン誘導体化樹脂を添加する。 結合生成物が完全に樹脂に固定されるまで固定反応を続ける。次いで樹脂を洗浄 し、樹脂に固定された5’−末端保護基(好ましくはDHDT基)をオリゴヌク レオチドフラグメントの5’−酸素から分離する試薬に暴露する。好ましくは希 ジクロロ酢酸を用いて行われるこの工程により、生成物が樹脂から放出される。 反応混合物をダウエックス(DOWEX)樹脂に通すことにより、酸試薬を除去 する。生成物を沈殿により単離する。生成物を反応溶媒(好ましくはアセトニト リルを含有する溶媒混合物)に溶解すると、次のモノマー付加を行える状態にな る。 このサイクルの幾つかの別法が同様に有効である。たとえば酸化前に固定工程 を実施してもよい。この場合、ホスファイトをホスフェート種に変換する酸化剤 (たとえばピリジン緩衝ヨウ素水溶液)に暴露することにより、生成物を酸化す る。さらに、過剰のジクロロ酢酸を除去するためのダウエックス工程は、必ずし も必要ではない。生成物を樹脂から放出させた後、沈殿させ、沈殿の洗浄、摩砕 処理、または沈殿の再結晶により酸を除去できる。 実施例28には、生成物を1,2,4−トリアゾリン−3,5−ジオン(TA D)修飾樹脂にディールス−アルダー反応により共有結合固定するPASS法の 1モノマー付加サイクルを記載する。 ディールス−アルダー反応は反応生成物を固体支持体に固定するための好まし い方法であるが、他の方法も本発明の範囲に含まれるものとする。たとえば2+ 3双極子付加環化反応を固定工程に使用できる。この態様においては、オリゴヌ クレオチド生成物上または樹脂上のD基の部分を1,3−双極子置換基と反応さ せて、環状5員付加生成物を形成する。2+2双極子付加環化反応も固定工程に 使用できる(反応経路20)。 反応経路20 この態様においては、ケテン(シソシアナートその他の反応性クムレン(cum mulene))で誘導体化した固体支持体を調製し、オレフィン修飾した5’ −トリチルオリゴヌクレオチドで処理する。最近発見された7−オキサノルボル ネン開環メタテシス重合(ROMP)も、PASS法の捕獲−放出工程に利用で きる(反応経路21)。 反応経路21 この実施例では、7−オキサノルボルネン誘導体化トリチルを製造し、ヌクレ オシドの5’−アルコールに結合させる。ホスホルアミダイト(またはH−ホス ホナート)を調製し、次いで標準結合サイクルに用いる。結合(およびホスホル アミダイトの酸化)後、ROMP重合を実施し、得られたポリマー溶液をろ過し 、洗浄する。次いでポリマーをCH2Cl2/DCA混合物で処理して全長オリゴ ヌクレオチドを放出させる。 実施例29(反応経路35)には、炭化水素を用いる一般的なジオン−オール 合成を記載する。 反応経路36には、樹脂結合モノマーへの結合による生成物固定を用いたオリ ゴヌクレオチド合成を示す。この好ましい態様は、ジエントリチルヌクレオシド ホスホルアミダイトの形成を必要とせず、かつトリアゾリンジオン樹脂の調製を 必要とせずに、PASS法の望ましい観点を保持する。N−保護5’−および3 ’−ヒドロキシルヌクレオシドは5’−ヒドロキシルにおいて塩化トリチルと選 択的に反応することが知られている(BeaucageおよびRadhakri shman(1992)Tetrahedron 48:2223)。この選択 性を利用して、市販の塩化トリチル樹脂(カルビオケム−ノバビオケムから入手 )を用い、N−保護ヌクレオシドを5’−ヒドロキシル基において結合させると 、固体支持体に直接結合した5’−トリチル化ヌクレオシドが得られる(137) 。この樹脂結合ヌクレオシドの3’−末端を過剰のホスフィチル化試薬で処理す ることにより、ホスフィチル化できる。ヌクレオシドは固体支持体に結合してい るので、過剰の試薬は洗浄工程で容易に除去される。得られたホスホルアミダイ ト樹脂(139)を次いでDCIおよび5’−ヒドロキシル−N−保護−3’− 保護ヌクレオシド(すなわち、他のすべての部位を保護した5’−ヒドロキシル オ リゴヌクレオチド)で処理して、樹脂結合ホスホトリエステル二量体(または5’ −ヒドロキシルオリゴヌクレオチドの場合はオリゴヌクレオチドのn+1mer )を得ることができる。未反応5’−ヒドロキシル(モノマーまたはオリゴ)は 樹脂の洗浄により回収できる。得られたホスファイトトリエステルは、樹脂を適 切な酸化性溶液(ヨウ素もしくはテトラアルキル過ヨウ素酸塩を使用するか、ま たはホスホロチオエートの形成には標準的Beaucage試薬を使用できる) で洗浄することにより、ホスフェートトリエステルに酸化される。次いで標準脱 ブロックサイクルを行うことにより、目的生成物141を樹脂から開裂させるこ とができる。トリチル基は樹脂に結合したままであり(ディールス−アルダ−捕 獲−放出の例と同様)、生成物は塩化メチレン/ジクロロ酢酸溶液中に洗い出さ れる。この酸性洗液をリン酸緩衝液(pH=7.0)で抽出すると、ジクロロ酢 酸および未反応の樹脂結合モノマーが分離される(ヌクレオシドまたは加水分解 されたホスホルアミダイトとして)。次いで塩化メチレン層を蒸発させて、純粋 な二量体(または遊離5’−ヒドロキシル基をもつn+1merオリゴヌクレオ チド)を得る。目的とする長さのオリゴ体が得られるまで、このサイクルを繰り 返すことができる。 反応経路36 この態様は、上記に示した特定のトリチル樹脂または特定の結合化学に限定さ れない。むしろ本発明はより一般的に、装入モノマーを樹脂、可溶性ポリマー、 膜または非混和性液相に固定することによる、線状逐次ポリマーの製造を記載す る。装入モノマーの結合は、除去できる保護基、オリゴヌクレオチド合成につい ては特にヌクレオシドモノマーの5’−保護基を介して行われる。ペプチド合成 においては、モノマーは特にN−末端保護基を介して固定される。オリゴヌクレ オチド合成の場合、生長しつつあるポリマー鎖を標準的結合化学により、たとえ ばホスホルアミダイト、H−ホスホナートまたはホスフェートトリエステル結合 により、固定されたモノマーに結合させる。結合が行われた後、すべての試薬お よび残りの未反応ポリマー出発物質は、固定された生成物を洗浄するだけで分離 される。この工程は、生長しつつあるポリマーを各モノマー付加後に、複雑な精 製工程の必要なしに精製できるので重要である。次いで、延長したポリマー鎖か ら保護基を開裂させる試薬により、延長したポリマー鎖を樹脂、可溶性ポリマー 、膜または非混和性液相から放出させる。 実施例30(反応経路37〜39)には、PASS法にトリチル樹脂を用いる ことを示す。この実施例では、塩化トリチル樹脂をチミジンヌクレオシド(5’ −ヒドロキシル基を介して)で誘導体化し、この樹脂結合ヌクレオシドを3’− ヒドロキシル基においてホスフィチル化し、次いでDCI活性化剤の存在下に、 わずかに過剰の5’−ジフェニルt−ブチルシリルチミジンヌクレオシド(3’ −OH)で処理する。結合および酸化工程の終了後、樹脂を洗浄してすべての未 反応物質を分離する。次いで通常の脱トリチル法により生成物(T−T二量体) を樹脂から分離する。実施例30にはこの方法を用いた三量体の製造も示す。 実施例31には、高分離能の1工程精製法にPASSを適用することを示す。 この実施例では、5’−DHDT誘導体化ヌクレオシドの3’−位をテトラブチ ルジフェニルシリル基で保護し、次いでPASS法により精製する。表10に示 すように、捕獲は100%であり、最終生成物の純度は91%であった。この実 施例は、カラムによる精製の代わりに、PASS法で用いる捕獲−放出法を採用 できることを証明する。 以下の実施例は説明のために示したにすぎず、本発明の範囲を限定するための ものではない。 実施例1. N−4−ベンゾイル−3’−(5’−t−ブチルジメチルシリル− 3’−(2−シアノホスホリル)チミジル)−2’−フルオロシチジン(16) の製造(反応経路4) 5’−t−ブチルジメチルシリルチミジン12(5’−TBDMS−チミジン) (0.15g,0.42mmol)を、アルゴン雰囲気下で乾燥アセトニトリル (10mL)に溶解した。シチジンアミダイト13(0.43g,0.50mm ol)、続いてテトラゾール(6.5mL,アセトニトリル中0.45M)を添 加した。15分後、反応混合物の逆相HPLC分析(C18,4.6×100m m,緩衝液A:100mM酢酸トリエチルアンモニウム,pH7.5,緩衝液B: アセトニトリル,0〜80%のB,2.5分にわたる)は、二量体(2.4分) ならびに未反応チミジン12(1.4分)および加水分解されたアミダイトモノ マー(2.1分)の存在を示した(図1)。反応混合物を系内で酸化した(10 mL,水/ピリジン中0.2Mのヨウ素)。酸化後のHPLC分析は、ピリジン (0.9分)、未反応チミジン12(1.4分)、酸化されたアミダイトモノマ ー15(1.8分)および酸化された二量体14(2.3分)の存在を示す(図 2)。 酸化後、反応混合物をアセトニトリルと共に、アセトニトリルで予め平衡化し たDEAEセファデックス(登録商標)床に通した。ろ液のHPLC分析は、図 3に示すように酸化されたアミダイトモノマー15が保持されたことを示す。ろ 液を減圧濃縮し、固体を60%アセトニトリル/水に再溶解し、70%水/アセ トニトリルで子め平衡化したC18チャンバーに装入した。チャンバーを70% 水/アセトニトリル、続いて50%水/アセトニトリルで洗浄して、未反応チミ ジン12を完全に溶離した。次いでチャンバーを水で洗浄し、80%酢酸/水で 処理して脱トリチル化した。脱トリチル化後、チャンバーを50%アセトニトリ ル/水で洗浄して、最終生成物16(m/e 922,生成物16+トリエチル アミン)を溶離した。HPLC分析は脱トリチル化種16が1.7分で溶出した ことを示す(図4)。16のESMS(エレクトロスプレー質量分析):計算値 820.27(M+);実測値922.2(M+H+TEA)。31P NMR(1 21MHz,CDCl3,H3PO4外標準)δ−0.73,−1.93。トリチ ル種はチャンバーに保持された。 実施例2. H−ホスホナートチミジン三量体(T−T−[3’,3’]−T) (20)の製造 3’−末端に3’,3’−ヌクレオチド間結合をもつH−ホスホナートチミジ ン三量体アセンブリーを、反応経路5に概説したように合成した。 反応経路5 5’−ジメトキシトリチルチミジン3’−H−ホスホナート17への結合 1:1 アセトニトリル:ピリジン(42mL)中における17(0.75g, 1.05mmol)の溶液に、アルゴン下で12(0.25g,0.7mmol ) を添加し、続いて95:5 アセトニトリル:ピリジン(8.4mL)中におけ る塩化ピバロイル(0.26mL,2.1mmol)の溶液を添加した。反応物 を10分間撹拌した時点で、逆相HPLC分析は12から二量体18への完全な 変換を示した。次いで混合物を真空濃縮し、CH2Cl2に溶解し、0.05M炭 酸水素トリエチルアンモニウムで抽出した。塩化メチレン層をブフナー漏斗上の DEAEセファデックス(登録商標)プラグに付与した。ろ液の逆相HPLC分 析は、未反応モノマー17の完全な分離を示した。ろ液の蒸発により二量体18 を定量的収率で単離し、その構造をNMRおよびESMS分析により確認した。 DEAEセファデックスプラグから、1M炭酸水素トリエチルアンモニウム洗浄 により未反応モノマー17を回収した。18のESMS:計算値946.4(M +);実測値946.3. 二量体18の脱トリチル化. 二量体18(0.85g,0.9mmol)を 、ZnBr2で飽和した塩化メチレン(10mL,約0.1M ZnBr2)に溶 解した。15分後、逆相HPLC分析は完全な脱トリチル化を示した。等容量の 1M酢酸アンモニウムで反応停止した。有機層を濃縮し、残留物を1:1 アセ トニトリル:水に溶解し、ブフナー漏斗上のC18プラグに通した。ろ液を蒸発 させて、0.29g(収率50%)の純粋な二量体19を得た。19のESMS :計算値644.2(M+);実測値645.3. 三量体20の製造. 1:1 ピリジン:アセトニトリル(23mL)中にお ける二量体19(0.25g,0.39mmol)の溶液に、17(0.41g ,0.58mmol)を添加し、続いて95:5 アセトニトリル:ピリジン( 4.5mL)中における塩化ピバロイル(0.14mL,1.16mmol)の 溶液を添加した。反応物をアルゴン雰囲気下で10分間撹拌した時点で、HPL Cは二量体19から三量体20への完全な変換を示した。混合物を蒸発乾固し、 CH2Cl2に溶解し、0.05M炭酸水素トリエチルアンモニウムで抽出し、有 機層をブフナー漏斗上のDEAEセファデックス(登録商標)プラグに付与した 。ろ液を蒸発させて、20を定量的収率で得た。20のESMS:計算値123 4.4(M+);実測値933.5(M+H+DMT喪失). 実施例3. 5’−O−(4,4’−ジオクタデシルトリフェニルメチル)チミ ジン−3’−O−(N,N−ジイソプロピル−2−シアノエチルホスホルアミダ イト(26)の製造 5’−保護基(D−E)として4,4’−ジオクタデシルトリフェニルメタノ ール(DOT)を含むホスホルアミダイトモノマーの組立てを反応経路6に示す 。 反応経路6 4,4’−ジオクタデシルオキシ−ベンゾフェノン(22) 金属ナトリウム (0.46g,20mmol)をエタノール(50mL)に溶解し、4,4’− ジヒドロキシベンゾフェノン(21)(1.0g,4.67mmol)を添加し 、続いて1−ブロモオクタデカン(7.8g,23.4mmol)および触媒量 のヨウ化ナトリウム(約30mg)を添加し、反応混合物を48時間還流した。 得られた懸濁液を冷却し、ろ過した。固体をジクロロメタン、続いてヘキサンで 洗浄し、白色固体を乾燥させて、化合物22(2.85g,収率84.8%)を 得た。 4,4’−ジオクタデシルトリフェニルメタノール(23) 無水THF(4 mL)中におけるベンゾフェノン22(0.3g,0.42mmol)の懸濁液 に臭化フェニルマグネシウム(0.55mL,THF中1.0M溶液,0.55 mmol)を添加し、反応物を3時間還流した。追加量の臭化フェニルマグネシ ウム(0.2mL)を添加し、5時間加熱を続けると、すべての出発物質が溶解 した。次いで反応物を冷却し、0.5M HClを添加した。この懸濁液をろ過 し、固体を水(3回)、ヘキサン(2回)およびジクロロメタン(2回)で洗浄 した。有機洗液をプールし、乾燥させ(MgSO4)、蒸発させて、23(0. 21g,収率63.6%)を白色固体として得た。 5’−O−(4,4’−ジオクタデシルトリフェニルメチル)チミジン(25 化合物23(2.1g,2.63mmol)をトルエンと共に2回蒸発させ、次 いでトルエン(30mL)に溶解した。塩化アセチル(11mL,154.7m mol)を添加し、反応物を3時間還流し、次いで蒸発させた。残留物をトルエ ンと共に2回蒸発させると粗製24が得られた。24にピリジン(30mL)、 ジメチルアミノピリミジン(DMAP)(25mg)およびチミジン(0.45 g,1.86mmol)を添加し、反応物を室温で一夜撹拌した。溶媒を減圧下 で蒸発させ、残留物をジクロロメタンに装入し、5%炭酸水素ナトリウムで洗浄 した。有機相を乾燥させ(MgSO4)、蒸発させ、残留物をシリカゲル上で精 製し(酢酸エチル/2%トリエチルアミン)、適切な画分を蒸発させた後、化合 物25(DOTチミジン)(1.6g,収率84%)を淡黄色固体として得た。 5’−O−(4,4’−ジオクタデシルトリフェニルメチル)チミジン−3’− O−(N,N−ジイソプロピル−2−シアノエチルホスホルアミダイト(26) DOTチミジン25をジクロロメタン(5mL)に溶解し、ジイソプロピルエ チルアミン(0.3mL,1.75mmol)および2−シアノエチルN,N− ジイソプロピルクロロ−ホスホルアミダイト(0.15mL,0.63mmol )を、氷浴冷却しながら添加した。氷浴を取り除き、反応物を室温で4時間撹拌 した時点で2−シアノエチルN,N−ジイソプロピルクロロ−ホスホルアミダイ ト(0.1mL)を追加し、反応物を室温で16時間撹拌した。反応溶液をジク ロロメタンで希釈し、5%炭酸水素ナトリウムで洗浄し、有機相を乾燥させ(M gSO4)、蒸発させた。残留物をシリカ上で、まずヘキサン、続いて20%酢 酸エチル/ヘキサン(すべて2%トリエチルアミンを含有)で溶離して精製し、 分割されたジアステレオマーとして26を得た(先に0.1g,後に0.18g ,収率46.7%)。 26a(先のジアステレオマー) 26b(後のジアステレオマー) 実施例4. 逆相樹脂上におけるアルキル置換トリチル基の分離 アルコール類、4,4’−ジオクタデシルトリフェニルメタノール(DOT) 、4−デシルオキシ−4’−メトキシトリタノール、およびジメトキシトリタノ ール(DMT)をC18逆相TLCプレートにスポットし、プレートを3種の異 なる溶媒(表1)で展開した。表1にみられるように、有機溶媒中ではDOT基 とC18樹脂の間に強い相互作用がある:たとえばメタノール(Rf=0)およ びアセトニトリル(Rf=0)。この相互作用により、C18逆相樹脂に対する トリチル保護基の親和性または相互作用に基づいて結合生成物を出発物質から1 工程で分離できる。 実施例5. 生成物捕獲のための疎水親和性を用いたPASSによる5’−HO −T−T−A−C−T−[3’,3’]−T−3’の製造 5’−HO−T−[3’,3’]−Tの製造. 5’−TBDPS−チミジン 12(0.99g,2.07mmol)を乾燥塩化メチレンと共に蒸発させ、1 0mLの乾燥塩化メチレンに溶解した。チミジンアミダイト(2.0g,2.6 9mmol)を添加し、続いてアセトニトリル中の0.5Mテトラゾール(21 mL,10.5mmol)を添加し、反応物をアルゴン下で撹拌した。90分後 、ヨウ素/水/ピリジン溶液(0.2M)を暗褐色が持続するまで添加し、続い て5%NaHSO3を色が黄色に戻るまで添加した。濃縮した反応物を分配し( CH2Cl2/水)、有機層をMgSO4で乾燥させ、蒸発乾固した。固体残留物 をメタノール/最小量の塩化メチレンに溶解し、水、次いでメタノールで平衡化 したDEAEセファデックス(登録商標)床75gにピペットで装入した。DE AEセファデックスを300mLのメタノールで洗浄し、メタノール洗液を合わ せて濃縮し、2.42gの白色泡状物を得た。 脱トリチル化: この白色泡状物を50mLの3%DCAに溶解し、室温で3 5分間撹拌し、次いで塩化メチレンで平衡化したシリカゲル80mL上に注いだ 。シリカゲルを150mLの3%DCA、続いて100%塩化メチレンから塩化 メ チレン中6%メタノールまでの溶液で洗浄した。適切な画分を合わせて濃縮し、 脱トリチル化二量体(5’−HO−T−[3’,3’]−T)1.58gを得た 。2工程プロセスについて90%の収率。 5’−HO−C−T−[3’,3’]−Tの製造. 5’−HO−T−[3’ ,3’]−T二量体(1.47g,1.76mmol)を高真空下で一夜乾燥さ せ、次いで乾燥CH2Cl2と共に蒸発させ、8.5mLの乾燥CH2Cl2に溶解 した。シチジンアミダイト(1.90g,2.28mmol)を添加し、続いて アセトニトリル中のテトラゾール(0.5M)(17.6mL,8.78mmo l)を添加し、反応物をアルゴン下で撹拌した。50分後、0.5Mヨウ素溶液 、続いて5%NaHSO3を、前記のように色が褐色から黄色に変化するまで添 加した。濃縮した反応物を分配し(CH2Cl2/水)、有機層を乾燥させ(Mg SO4)、蒸発乾固した。固体残留物をメタノール/最小量の塩化メチレンに溶 解し、水、次いでメタノールで予め平衡化したDEAEセファデックス(登録商 標)床75gにピペットで装入した。DEAEセファデックスを徐々に塩化メチ レンおよびメタノールで洗浄し、洗液を合わせて濃縮し、2.53gの黄色泡状 物を得た。 脱トリチル化: この白色泡状物を50mLの3%DCA中、室温で撹拌した 。2時間後、反応混合物を塩化メチレンで予め平衡化した80mLのシリカゲル 床にピペツトで装入した。混合物を3%DCA、続いて100%CH2Cl2から CH2Cl2中6%メタノールまでの溶液で溶離した。適切な画分を合わせて濃縮 し、脱トリチル化三量体(5’−HO−C−T−[3’,3’]−T)1.43 gを得た。2工程プロセスについて64%の収率。5’−HO−A−C−T−[3’,3’]−Tの製造. 脱トリチル化三量体 5’−HO−C−T−[3’,3’]−T(1.43g,1.1mmol)を高 真空下で一夜乾燥させ、次いで乾燥塩化メチレンと共に蒸発させ、6mLの乾燥 塩化メチレンに溶解した。アデニンアミダイト(1.24g,1.45mmol )を添加し、続いてアセトニトリル中の0.5Mテトラゾール(11mL,5. 57mmol)を添加し、反応物をアルゴン下で撹拌した。約60分後、0.5 Mヨウ素溶液を暗色が持続するまで添加した。次いで混合物を1時間撹拌し、濃 縮した。このガムを分配し(CH2Cl2/水)、有機層を合わせて乾燥させ(M g SO4)、濃縮し、2.46gの黄色固体を得た。DEAEセファデックス(登 録商標)精製せずに脱トリチル化を行った。 脱トリチル化: この泡状物を50mLの3%DCA中、室温で撹拌し、次い で塩化メチレンで平衡化したシリカ床(約120mL)にピペットで装入した。 反応混合物を3%DCA、続いて100%塩化メチレンから塩化メチレン中10 %メタノールまでで溶離した。適切な画分を合わせて濃縮し、脱トリチル化四量 体(5’−HO−A−C−T−[3’,3’]−T)1.41gを得た。2工程 プロセスについて72%の全収率。 5’−HO−T−A−C−T−[3’,3’]−Tの製造. 脱トリチル化四 量体5’−HO−A−C−T−[3’,3’]−T(1.41g,0.8mmo l)を高真空下で乾燥させ、次いで乾燥塩化メチレンと共に蒸発させ、4.5m Lの乾燥塩化メチレンに溶解した。チミジンアミダイト(0.78g,1.05 mmol)を添加し、続いてアセトニトリル中のテトラゾール(0.5M)(8 mL,4.02mmol)を添加し、反応物をアルゴン下で撹拌した。2時間後 、0.5Mヨウ素溶液を暗色が持続するまで添加した。次いで反応物を濃縮し、 このガムを分配し(CH2Cl2/水)、有機層を合わせて乾燥させ(MgSO4 )、濃縮して2.1gの黄色泡状物を得た。これをDEAEセファデックス(登 録商標)溶離前に質量分析および逆相HPLCにより分析した。酸化後の粗製反 応混合物の逆相HPLC分析は、五量体、ならびに未反応四量体(欠損配列)お よび加水分解されたアミダイトモノマーの存在を示した。ESMS(M−1)8 03.74×3. この黄色泡状物を最小量の塩化メチレンに溶解し、水、次いでメタノールで平 衡化したDEAEセファデックス(登録商標)床に装入した。DEAEセファデ ックスをメタノール、塩化メチレン、次いでアセトニトリルで洗浄した。適切な 画分を合わせて濃縮し、1.48gの物質を得た。 脱トリチル化: この物質を40mLの3%DCA中、室温で撹拌し、次いで 塩化メチレンで平衡化したシリカ床にピペットで装入した。これを3%DCA、 続いて100%塩化メチレンから塩化メチレン中20%メタノールまでの溶液で 溶離した。適切な画分を合わせて濃縮し、脱トリチル化五量体(5’−HO−T −A−C−T−[3’,3’]−T)0.98gを得た。2工程プロセスについ て64%の全収率。31P NMRおよびその積分値は生成物と一致する。 5’−HO−T−T−A−C−T−[3’,3’]−Tの製造. 脱トリチル 化五量体5’−HO−T−A−C−T−[3’,3’]−T(0.96g,0. 46mmol)を高真空下で乾燥させ、次いで乾燥塩化メチレンと共に蒸発させ 、5mLの乾燥塩化メチレンに溶解した。チミジンアミダイト(0.44g,0 .59mmol)を添加し、続いてアセトニトリル中のテトラゾール(0.5M )(4.5mL,2.27mmol)を添加し、反応物をアルゴン下で撹拌した 。溶液が均一でなかったので、2mLのアセトニトリルを添加した。溶液が均質 でなかったので、2mLのアセトニトリルを添加した。2時間後、さらに0.1 5gのモノマーを添加し、反応物を一夜撹拌した。0.5Mヨウ素溶液、続いて 5%NaHSO3を添加し、色を褐色から黄色に変化させた。濃縮した反応物を 分配し(CH2Cl2/水)、有機層を乾燥させ(MgSO4)、濃縮して1.6 1gの黄色固体を得た。これを質量分析により分析した。ESMS(M−1)1 384.01×2. 粗製反応混合物(1.48g)をC18樹脂に吸収させ、アセトニトリル、続 いて70%水/アセトニトリルで平衡化したC18樹脂床(約125g)に装入 した。樹脂をまず1:1 水:アセトニトリルで洗浄してモノマーを溶離し、続 いてアセトニトリルおよび塩化メチレンで洗浄して六量体を溶離した。適切な画 分を合わせて濃縮し、0.83g(収率66%)の固体を得た。 脱トリチル化: この固体を20mLの3%DCA中、室温で撹拌した。トリ ヘキシルシラン(2mL)を添加し、撹拌を続けた。ヘキサンを添加すると固体 が生成し、これをヘキサン/エーテルで洗浄して0.5gのピンク色固体を得た 。31P NMRおよびその積分値は生成物(5’−HO−T−T−A−C−T− [3’,3’]−T)と一致した。 ダウエックス(Dowex)C−1形を用いて固体試料から残留DCAを分離 できる。たとえばT−Aホスホルアミダイト二量体は、脱トリチル化およびヘキ サン沈殿後に約1.2当量のDCAを含有することがNMRにより認められた。 この二量体の試料(0.3g)をアセトニトリル(5mL)に溶解し、アセトニ トリルで予め平衡化したダウエックスC1形(15g)のカラムに装入した。こ の液体を滴下溶離し、次いでカラムを35mLのアセトニトリルで洗浄し、濃縮 して0.26gの白色泡状物を得た。NMRで検査した試料は酸の減少率95% を示す。 実施例6. 生成物捕獲のための疎水親和性を用いたPASSの自動化 結合反応、たとえば実施例2の12と17の反応(反応経路5)後、反応混合 物を抽出器112に入口128から送入する(図5)。炭酸水素トリエチルアン モニウム緩衝液(TBK)(0.05M)およびCH2Cl2を抽出器に入口13 0から添加し、混合物を撹拌する。層を分離させる。分離後、弁120を開くと 、塩化エチレン層は導電率測定器136を通過してDEAEセファデックス(登 録商標)プラグ114上に送られる。導電率の上昇は、CH2Cl2が完全に導電 率測定器を通過し、今度は水層が測定器に進入したことを示す。このとき弁12 0は、水層をDEAEセファデックスプラグからそらすように自動的に切り換わ る。有機層は、入口140からチャンバーに入るアルゴンでDEAEセファデッ クスプラグに押し込まれる。次いで、弁122により制御されて入口142から 添加されるCH2Cl2で、DEAEセファデックスプラグを洗浄する。オリゴヌ クレオチド生成物および未反応オリゴヌクレオチド出発物質(欠損配列)を含有 するCH2Cl2流出液を、弁124により制御された出口144から採集する。 CH2Cl2が完全に流出した後、セファデックスプラグ上に保持されている未反 応モノマーを1M TBKで溶離する。次いでセファデックスプラグをCH2C l2で再平衡化する。 次いでCH2Cl2溶出液を逆相樹脂に通し、結合生成物を欠損配列から分離す る。5’−末端にDMT基が結合している結合生成物は樹脂に保持され、欠損配 列はチャンバーから溶出する。次いで樹脂を酸性ジクロロ酢酸(CH2Cl2中3 %)で洗浄すると、これによりDMT保護基が開裂し、結合生成物がチャンバー から放出される。酸への過度の暴露による分解を防ぐために、結合生成物をpH 緩衝液中へ溶離する。溶出液を濃縮し、結合生成物を次の反応サイクルの出発物 質として用いる。 実施例7. 溶液相合成による3’−PEG固定15merDNAの製造 3’−末端修飾基として分子量20,000のポリエチレングリコール(PE G)を用い、配列5’−CTAAACGTAATGG−[3’,3’]−T−T −3’(配列番号:1)のオリゴヌクレオチドを製造した。ポリエチレングリコ ールは、各工程で生長しつつあるオリゴヌクレオチドを容易に沈殿させることが できる。この実施例には、典型的なPASSサイクルの場合のようなオリゴヌク レオチド結合生成物を樹脂に取り込む工程を必要としない、溶液相合成の基本工 程を概説する。したがってこの実施例により、PASSにおいて予想される生成 物捕獲が効率および生成物純度に与える影響が示される。各モノマー付加サイク ルでこのような生成物捕獲を行うと、従来の固相合成の場合のようなジエチルエ ーテルからの煩雑な沈殿はもはや必要ない。さらに、欠損配列が各モノマー付加 サイクルで分離されるので、PASSにより得られる生成物のアニオン交換クロ マトグラムは、図6にみられるように、多重ピークではなく単一ピークのみを示 すと予想される。 この実施例は、欠損配列から生成物を分離するための手段として生成物捕獲を 採用せずに3’−PEG固定オリゴヌクレオチドを溶液相合成により製造するた めの、各モノマー付加サイクルに続く一般法を示す。以下の実施例はすべてセル フシール隔壁付きの一口フラスコ内で行われた。使い捨てプラスチック注射器を 用いた。脱トリチル化5’−DMT−ヌクレオシド3’−O−PEG(5.0g )(20k,:装填量45μmol/g)をCH2Cl2中におけるジクロロ酢酸 (DCA)およびトリヘキシルシラン(6.4mL,80当量)の混合物50m Lに溶解した。9分後、脱トリチル化5’−HO−ヌクレオシド3’−O−PE Gをエーテル(2回)で沈殿させ、洗浄、ろ過および真空乾燥した。 結合反応: 5’−HO−ヌクレオシド3’−O−PEGを20mLの無水ア セトニトリルと共に3回蒸発させ、30分間真空乾燥した。フラスコをアルゴン でフラッシし、外部雰囲気に対し密閉した。隔壁を通して、5’−HO−ヌクレ オシド3’−O−PEGを溶解するための無水アセトニトリル50mL、無水ア セトニトリル中のアミダイト4.5mL(0.1M,2.0当量)、およびアセ トニトリル中のDCI 1.4mL(1.0M,6.0当量)を注入した。この 溶液をアルゴン下で25分間撹拌し、次いでエーテルで沈殿させ、20mLの無 水アセトニトリルと共に蒸発させることにより乾燥させた。 酸化: 沈殿を50mLの無水アセトニトリルに溶解し、アセトニトリル中8 mL(0.1M)のヨードベンゼンジアセテートを注入し、反応混合物を8分間 撹拌した。 キャッピング反応: 無水酢酸(6mL)、2,6−ルチジン(6mL)およ びN−メチルイミダゾール(6mL)を同時に上記溶液に注入し、反応混合物を さらに5分間撹拌した。先に脱トリチル処理に記載したように、キャップ付きオ リゴヌクレオチド−PEGポリマーをエーテルから沈殿させた。 結晶化: キャップ付きオリゴヌクレオチド−PEGポリマーを500mLの 無水エタノール(100mL/g)から60℃で結晶化することにより精製した 。 モノマー付加サイクルプロトコールを表2にまとめる。オリゴヌクレオチドの 3’−末端10塩基フラグメント(10mer)(CGTAATGG−[3’, 3’]−T−T)(配列番号:2)の製造についての段階的結合効率を表3に示 す。PEGから開裂し、かつ脱保護した後の粗製15mer(5’−CTAAA CGTAATGG−[3’,3’]−T−T−3’)(配列番号:1)のアニオ ン交換HPLCクロマトグラムを図6に示す。 実施例8. ジエン修飾トリチルアルコールの製造 実施例8(反応経路7および8)には、5’−O−(4,4’−ジ−3,5− ヘキサジエンオキシトリチル)チミジン3’−ホスホルアミダイトモノマー32 を含めた各種ジエン修飾トリチルアルコールの合成を記載する。 反応経路7 4,4’−ジ−3,5−ヘキサジエンオキシベンゾフェノン(29)の製造. 無水THF(335mL)中における3,5−ヘキサジエノール(27)(13 .7g,140mmol)(Martinら(1980)J.Am.Chem. Soc.102:5274−5279)の溶液に、4,4’−ジヒドロキシベン ゾフェノン(21)(10.0g,46.7mmol)およびトリフェニルホス フィン(36.7g,140mmol)を添加し、続いてジエチルアゾジカーボ ネート(DEAD)(22.0mL,140mmol)を徐々に添加した。反応 混合物をアルゴン下で一夜撹拌し、次いで真空下で蒸発乾固した。ジクロロメタ ン−ヘキサンから沈殿させて、残留試薬を除去した。ろ液を真空濃縮し、カラム クロマトグラフィー(シリカゲル;ヘキサン/CH2Cl2,3/2)により精製 して不純な生成物を得た。これを摩砕処理して(Et2O/ヘキサン,1/1) 、7.12gの化合物29を得た。ろ液をさらにカラムクロマトグラフィー(シ リカゲル;ヘキサン/CH2Cl2,3/2)により精製すると、さらに5.96 g の29が得られ、合計13.08g(75%)の化合物29が白色固体として得 られた。 4,4’−ジ−3,5−ヘキサジエンオキシトリチルアルコール(30)の製 . 化合物29(5.96g,15.91mmol)を無水THF(133m L)に、弱く加熱しながら溶解した。臭化フェニルマグネシウム(THF中1. 0M溶液32mL,32mmol)をこの溶液に添加し、混合物を室温でアルゴ ン下に5時間撹拌し、真空下で蒸発乾固した。残留物をジクロロメタンに再溶解 し、飽和塩化アンモニウム溶液、次いで水で洗浄した。有機相を乾燥させ(Mg SO4)、真空濃縮し、カラムクロマトグラフィー(シリカゲル;ヘキサン/C H2Cl2,1/9)により精製して、4.45g(62%)の化合物30を黄色 の油として得た。 5’−O−(4,4’−ジ−3,5−ヘキサジエンオキシトリチル)チミジン (5’−DHDTO−dT)(31)の製造 . 化合物30(3.5g,7.7 3mmol)をトルエン(2回)と共に蒸発させ、次いで無水トルエン(85m L)に溶解した。塩化アセチル(33mL,464mmol)をこの溶液に添加 し、反応混合物を加熱還流し、アルゴン下で撹拌した。4時間後、反応混合物を 真空濃縮し、粗生成物をピリジンと共に蒸発させ、次いで無水ピリジン(42m L)に溶解した。次いで、この粗生成物を含有する溶液に、ピリジンと共に蒸発 させて無水ピリジン(42mL)に溶解したチミジン(1.5g,6.18mm ol)を添加した。触媒量のジメチルアミノピリミジン(DMAP)を添加し、 反応混合物をアルゴン下で一夜撹拌し、そして溶媒を蒸発させた。残留物をジク ロロメタンに溶解し、5%炭酸水素ナトリウム水溶液、次いで水で洗浄した。有 機相を乾燥させ(MgSO4)、蒸発させ、カラムクロマトグラフィー(シリカ ゲル;EtOAc/ヘキサン,1/1)により精製して、3.53g(84%) の化合物31を灰白色固体として得た。 5’−O−(4,4’−ジ−3,5−ヘキサジエンオキシトリチル)チミジン 3’−ホスホルアミダイト(32)の製造 . 化合物31(3.0g,4.43 mmol)を無水ジクロロメタンに溶解し、ジイソプロピルエチルアミン(2. 7mL,15.5mmol)を添加した。この溶液を0℃に冷却し、2−シアノ エチル−N,N−ジイソプロピルクロロホスホルアミダイト(2.0mL,8. 86mmol)を添加した。反応混合物をアルゴン下で撹拌しながら室温にまで 高めた。4時間後、溶液をジクロロメタンで希釈し、5%炭酸水素ナトリウム水 溶液(2回)で洗浄した。有機相を乾燥させ(MgSO4)、真空濃縮し、カラ ムクロマトグラフィー(シリカゲル;EtOAc/ヘキサン,3/7)により精 製して、2.8g(72%)の化合物32を綿毛状の白色固体として得た。 反応経路8 4,4’−ジ−2,4−ヘキサジエンオキシベンゾフェノン(35)の製造. ジフルオロベンゾフェノン(34)(4.8g,22mmol)を無水DMF( 1L)に溶解した。NaH(95%,5.6g,220mmol)を添加し、溶 液を0℃に冷却した。この溶液に2,4−ヘキサンジオール(5.8mL,51 mmol)を徐々に添加し、反応混合物をアルゴン下で一夜撹拌しながら室温に まで高めた。反応混合物を真空濃縮し、ジクロロメタンに溶解し、水で洗浄した 。有機相を乾燥させ(MgSO4)、濃縮し、カラムクロマトグラフィー(シリ カゲル;ヘキサン/CH2Cl2,1/3)により精製して、2.07g(25% )の化合物35を白色固体として得た。 4,4’−ジ−2,4−ヘキサジエンオキシトリチルアルコール(36)の製 . 化合物35(2.0g)をTHF(45mL)に溶解し、臭化フェニルマ グネシウム(THF中1.0M溶液;10.6mL,10.6mmol)をこの 溶液に添加した。反応混合物を室温で3時間撹拌し、真空下で蒸発乾固した。残 留物をジクロロメタンに再溶解し、飽和塩化アンモニウム溶液、次いで水で洗浄 した。有機相を乾燥させ(MgSO4)、真空濃縮し、カラムクロマトグラフィ ー(シリカゲル;ヘキサン/CH2Cl2,1/9)により精製して、1.84g (77%)の化合物36を淡黄色固体として得た。 5’−ジ−(2,4−ヘキサジエンオキシ)トリチルチミジンホスホルアミダ イトモノマーは、化合物36から、5’−O−(4,4’−ジ−3,5−ヘキサ ジエンオキシトリチル)チミジンホスホルアミダイト(32)の製造について前 記に述べたものと同じ方法で製造できる。 実施例9. ジエン置換トリチルアルコールとN−エチルマレイミドのディール ス−アルダー付加環化 実施例9(反応経路9)には、ジエン置換トリチルアルコール―4,4’−ジ −3,5−ヘキサジエンオキシトリチルアルコール(30)および4,4’−ジ −2,4−ヘキサジエンオキシトリチルアルコール(36)―とN−エチルマレ イミドとのディールス−アルダー反応を記載する(それぞれ反応1および2)。表 4にこれら2反応につき種々の条件下での反応速度を示す。 反応経路9 3,5−ヘキサジエンオキシトリチルアルコール(30)のディールス−アル ダー反応−反応1 化合物30(50mg,0.11mmol)をアセトニトリル(0.75mL )および水(0.75mL)に溶解した。N−エチルマレイミド(N−Etマレ イミド)(138mg,1.1mmol)を添加し、反応混合物を室温で撹拌し た。3時間後、粗製反応混合物の1H NMR分析は反応が完了したことを示し た。反応混合物を濃縮し、ジクロロメタンで予め平衡化したシリカゲルプラグに 装入した。過剰のN−エチルマレイミドをジクロロメタンで洗い出し、生成物を 10%MeOH/CH2Cl2で溶離した。溶媒を減圧濃縮して、38mg(59 %)の化合物37を得た。 2,4−ヘキサジエンオキシトリチルアルコール(36)のディールス−アル ダー反応−反応2 化合物36(60mg,0.13mmol)をアセトニトリル(2.0mL) に溶解した。N−エチルマレイミド(166mg,1.3mmol)を添加し、 反応混合物を室温で撹拌した。24時間後、粗製反応混合物の1H NMR分析 は反応が完了したことを示した。反応混合物を濃縮し、ジクロロメタンで予め平 衡化したシリカゲルプラグに装入した。過剰のN−エチルマレイミドをジクロロ メタンで洗い出し、生成物を10%MeOH/CH2Cl2で溶離した。溶媒を減 圧濃縮して、50mg(54%)の化合物38を得た。 実施例10. ディールス−アルダー付加環化による生成物捕獲を用いた3’− PEG結合オリゴヌクレオチドの製造 実施例10(反応経路10)には、各モノマー付加サイクル後に行う、オリゴ ヌクレオチド生成物の共有結合捕獲のためにディールス−アルダー反応を用いた 3’−PEG固定オリゴヌクレオチド製造のための一般法を示す。 反応経路10 結合反応: PEG−dT−OH(20k,2.36g,0.11mmol, 装填量:46μmol/g)を、乾燥アルゴン雰囲気下で20mLの乾燥アセト ニトリル(CH3CN)に溶解した。この溶液に5’−O−(4,4’−ジ−3 ,5−ヘキサジエンオキシトリチル)チミジン3’−ホスホルアミダイト(32 )(140mg,0.16mmol)を添加し、続いてCH3CN中のDCI( 0.65mL,1.0M,6.0当量)を添加した。反応物を乾燥アルゴン雰囲 気下 で25分間撹拌した後、350mLの乾燥Et2Oを添加して20k−PEG含 有物質を沈殿させた。固体をろ過し、Et2O(100mLで2回)で洗浄し、 1時間真空乾燥して、2.3g(収率98%)の白色固体を得た。 酸化: 結合生成物39、未反応ホスホルアミダイト32および未反応PEG −dT−OHを含有する上記の白色固体を、20mLのCH2Cl2に溶解し、C H3CN中のヨードベンゼンジアセテート(8.55mL,0.1M,0.27 g)中で酸化する。8分間撹拌した後、反応混合物は未反応PEG−dT−OH 、酸化されたアミダイトモノマー40および酸化されたオリゴマー41を含有す る。次いでこの反応混合物を350mLの乾燥Et2Oで処理して20k−PE G含有物質を沈殿させ、固体をろ過し、100mLのEt2Oで2回洗浄する。 1時間真空乾燥した後、朱反応PEG−dT−OHおよびオリゴマー41を含有 する白色固体が単離される。 ディールス−アルダー付加環化: 上記の固体を20mLの50%H2O/C H3CNに再溶解し、5mLの50%H2O/CH3CNで予め湿らせたマレイミ ド官能化ポリスチレン1.2g(0.4mmol/樹脂gのマレイミド装填を基 準として10当量)に装入する。反応物をアルゴン雰囲気下で45℃に1時間温 める。上清液の逆相HPLC分析で、5’−保護オリゴマー41は完全に消費さ れたことが分かる。次いでマレイミド誘導体化ポリスチレン42をろ過し、10 mLの50%H2O/CH3CNで洗浄すると、3.5gの3’−PEG−5’− DHDTディールス−アルダー結合オリゴマー(42)が固体樹脂として得られ る。 脱トリチル化/オリゴヌクレオチド放出: 3.5gのディールス−アルダー 結合樹脂42(装填量:75μmol/g)を20mLのCH2Cl2に懸濁でき る。この懸濁液にCH2Cl2中におけるDCAおよびトリヘキシルシランの混合 物(6.4mL,80当量)を添加する。9分後、ポリスチレン−マレイミド樹 脂(44)をろ過により分離する。次いでPEG−ヌクレオシド(43)をEt2 O(500mL)で2回沈殿させ、洗浄、ろ過、および真空乾燥する。得られ たPEG−ヌクレオシドの5’−位を脱保護すると、シーケンスの次の結合反応 に使用できる。 実施例11. ディールス−アルダー生成物捕獲による非−PEG誘導体化オリ ゴヌクレオチドの製造 反応経路12には、ジエンとして5’−O−(4,4’−ジ−3,5−ヘキサ ジエンオキシトリチル)ヌクレオシド(5’−O−DHDT−ヌクレオシド)を 用い、ジエノフィルとしてマレイミド置換−固体支持体を用いたディールス−ア ルダー反応による、非−PEG誘導体化オリゴヌクレオチド製造のための一般反 応経路を示す。 反応経路12DHDT:4,4’−ジ−3,5−ヘキサジエンオキシトリチル 樹脂:マレイミド誘導体化固体支持体(CPG、シリカ、セルロース、HLPな ど) X:適切に保護した2’−置換基 Y:ホスフェート保護基 B:適切に保護、修飾または誘導体化した核酸塩基 R:オリゴヌクレオチドまたは3’−保護基 結合/酸化/捕獲シーケンス: CH3CN中で、長さnの適切な3’−ブロ ックしたオリゴヌクレオチド(50)をCH3CN中の1.0M DCI溶液で 処理することにより、2.0当量のアミダイトモノマー51と結合させる。3’ −ブロッキング基は脂質もしくは多糖類、またはより伝統的な溶液相ブロッキン グ基、たとえばアセチル、ピラニル、またはシリル基(たとえばt−ブチルジフ ェニルシリルエーテル)であってもよい。結合反応は25分未満を要し、TLC で監視できる。結合反応が終了すると、溶液をCH3CN中0.1M溶液として のヨードベンゼンジアセテート8.0当量で直接処理する。酸化シーケンスは8 分以内で完了し、粗製反応混合物をそのまま、ジエノフィルを含む固体支持体に 付与する。溶媒1:1 CH3CN:H2Oを用いることにより、ディールス−ア ルダー付加環化反応が促進される。このとき固体支持体に共有結合しているオリ ゴヌクレオチド52は、樹脂ビーズをろ過および洗浄するだけで、未反応出発オ リゴヌクレオチド50(欠損配列)および試薬類から容易に分離される。同様に 5’−O−DHDT基をもつアミダイトモノマー51も樹脂に結合する(53) 。 脱トリチル/放出シーケンス: オリゴヌクレオチドが共有結合している洗浄 、乾燥した樹脂(52)、および未反応モノマーホスフェート(53)を、3% DCA/CH2Cl2溶液で洗浄し、酸によるオリゴヌクレオチド分解を防ぐため に中和用緩衝液中へ溶離する。放出されたオリゴマー(54)およびモノマーホ スフェート(55)を、水性抽出により互いに分離する。有機相中の生成物オリ ゴヌクレオチドを乾燥させ、限外ろ過によりアセトニトリル中へ交換する。 実施例12. ディールス−アルダー付加環化による生成物捕獲を用いた二量体 の製造 反応経路15 5’−DHDTO−T−[3’,3’]−T−OSiPDBT−5’(56) の製造 . 5’−TBDPSiO−dT−3’−OH(12A)(0.21g, 0.43mmol)を10mLのアセトニトリルに溶解した。この溶液に5’− DHDTO−dTホスホルアミダイト(32)(0.5g,0.52mmol) を添加し、続いてアセトニトリル中1.0M DCI 3.0mL(3.0mm ol)を添加した。この溶液をアルゴン下で20分間撹拌し、このときピリジン /水中の0.2M I2溶液11mLを添加した。酸化反応を5分間進行させ、 DEAEセファデックス(登録商標)で4回ろ過すると、黄色がほとんど除かれ た。黄色固体56(0.23g)を単離した。 生成物捕獲: ポリスチレン支持されたマレイミド(PS−M)の使用量を以 下のように変更して、ディールス−アルダー捕獲反応を行った:10、5、2. 5、1当量。すべての反応についての以下の操作は下記のとおりであった。[3 ’,3’]−dT−dT−OTDHD二量体(11μmol)(56)を400 μL のアセトニトリルに溶解した。この溶液を1.0mLの3/1 CH3CN/水 中におけるPS−Mの懸濁液に添加し、次いで65℃に温めた。反応経過をTL C(2/1 EtOAc/ヘキサン)でRf=0.15の反応体の消失により、 またHPLC分析(C18,4.6×100mm,緩衝液A:100mM酢酸ト リエチルアンモニウム,pH7.5,緩衝液B:アセトニトリル,0〜80%の B,2.5分にわたる)により監視した。反応率は、未反応5’−TBDPSi O−dT−3’−OHモノマー(12A)(1.71分)に対する二量体物質(2 .65分)の初期比率を比較することにより判定された(図7参照)。2.5当 量、1.0当量および対照(PS−Mなし)について描いた線はすべて反応(二 量体の消失)が4時間後に起きたことに注目するのが重要である。この反応はデ ィールス−アルダー捕獲ではなく、二量体の分解(加水分解によると考えられる )である。HPLCトレース中に新しい物質が1.47分および2.30分に現 れる。この物質は5’−TBDPSiO−dT−3’−ホスフェート(1.47 分)および5’−DHDTO−dT−3’−ホスフェートであろう。加水分解に 際し5’−TBDPSiO−dT−3’−OHも生成すると予想されるので、デ ィールス−アルダー捕獲の相対比率をこれらのトレースから直接に求めることは できない。加水分解が起きる場合、内標準が適切でないからである。加水分解は 、後者の各トレースで明らかな5’−TBDPSiO−dT−3’−ホスフェー トの量に対し調整することにより補正できる。このプロセスは5当量および10 当量の場合には有意でない。 放出/脱トリチル化: 11μmolの[3’,3’]二量体で誘導体化した PS−M(57)286mgを、0.25mLのジクロロメタンに懸濁した。こ の溶液にジクロロメタン中3%DCAを2.6mL添加した。PS−Mは直ちに 明るい橙色に変化した。この懸濁液を5分間撹拌した後、ろ過によりジクロロメ タン溶液をPS−Mから分離した。得られた溶液を、直ちにダウエックスCl- イオン交換樹脂のパッドでジクロロメタンを用いてろ過した。次いでろ液を濃縮 して12mgの白色ガラス質固体を得た(若干の残留溶媒および脂肪族不純物を 含有)。1H NMRおよび31P NMRは目的生成物58と一致する。 実施例13. ディールス−アルダー付加環化によるフラグメント固定を用いた 2ブロックからのオリゴヌクレオチドの製造 PASSオリゴヌクレオチド合成経路によれば、オリゴヌクレオチドブロック を容易かつ効率的に製造でき、これらを反応経路16に示すように改変PASS サイクルで互いに結合させることができる。要約すると、前記のようにPASS モノマー付加サイクルで製造したオリゴヌクレオチドブロック59をマレイミド 樹脂と反応させて、樹脂固定オリゴヌクレオチドブロック61を得る。このブロ ックから三塩化チタンでリンカーLを還元開裂することにより3’−末端PEG を除去すると、遊離3’−末端をもつ樹脂結合フラグメント63が得られる。6 3をN,N−ジイソプロピル−2−シアノエチル−クロロホスフィンでホスフィ チル化すると、3’−末端ホスホルアミダイト64が得られる。次いで化合物6 4を、オリゴヌクレオチドブロック60の脱トリチル化で得たオリゴヌクレオチ ドブロック62に結合させる(マレイミド樹脂への捕獲、次いで脱トリチル化の 後)。結合反応後、ホスファイトトリエステル結合を酸化して対応するホスフェ ートトリエステルにし、続いて生成物オリゴヌクレオチドをジクロロ酢酸で樹脂 から開裂させることにより、オリゴヌクレオチドフラグメント60が得られる。 反応経路16実施例14. オリゴヌクレオチド製造のためのディールス−アルダー生成物捕 獲を用いるPASSの自動化 反応器212(図8)に結合試薬を添加し、実施例10の記載に従って反応を 進行させる。結合反応終了後、反応器214に収容されたジエンまたはジエノフ ィル修飾した樹脂または膜(以下、支持体と呼ぶ)に反応混合物を循環させて、 オリゴヌクレオチドを共有捕獲させる。捕獲工程に要する時間は、溶液からの結 合生成物消失をHPLCまたはインラインUVアッセイ(図示されていない)で 監視することにより制御できる。次いで支持体をすすいで、ジエンまたはジエノ フィルを含有しない欠損配列をすべて溶離する。オリゴヌクレオチドを支持体に 結合させた後、または溶液中でジエノフィル支持体に結合させる前に、酸化を行 うことができる。酸化溶液は脱トリチル化前に樹脂から完全に除去しなければな らない。この除去は、インライン導電率監視(図示されていない)により制御す るのが好都合である。次いで支持体をDCA/CH2Cl2ですすいで、生長しつ つあるオリゴマーおよび捕獲された過剰のモノマーを樹脂から分離する。こうし て、溶液中にあるのはDCA/CH2Cl2混合物中の5’−脱保護されたオリゴ ヌクレオチドおよびモノマーのみとなる。次いでこの混合物を膜分離器(218 )と接触させて、溶媒をアセトニトリルに交換し、さらにDCAおよび過剰のモ ノマーを分離する。あるいは、モノマーを沈殿または抽出により分離してもよい 。溶液中に残留する唯一の種は、アセトニトリル中の高分子結合したオリゴマー である。この溶液は、この時点で次の結合反応に使用できる状態である。 ジエノフィル支持体を用いてすべてのn−1種を分離すると、キャッピング工 程を用いなくてすみ、溶液は酸化またはジエノフィル支持体へ循環できる状態に なる。ジエノフィル支持体は、ジエノフィル部分と樹脂または膜との間の開裂性 リンカー、たとえばアミド結合を含むことができる。この開裂性リンカーにより 、ジエノフィル支持体を容易に再生できる。このようなリンカーは当業者に周知 である。 膜の評価ポリプロピレン限外ろ過膜に暴露した後のPEG化デオキシチミジン回収:アセ トニトリル溶媒系 . 1.49gのPEG−dT(46μmol dT/g)を 25mLのアセトニトリルに溶解することにより、2.74mMの20k PE G−デオキシチミジン(PEG−dT)溶液を調製した。次いでアリコート(2 mL)の溶液を、50mLファルコン(Falcon、登録商標)試験管内で面 積5.73cm2のポリプロピレン限外ろ過膜(3M、登録商標)の作業面に、 0.25、1および4時間暴露した。出発溶液をファルコン試験管からすすぎ出 し、膜をアセトニトリル25mLで2回の洗浄によりすすいだ。洗浄溶媒をPE G−dTについて260nmでの吸収により分光測光アッセイし、出発PEG− dTの吸収と対比した。膜を含まないファルコン試験管を2mLの出発溶液に4 時間暴露し、260nmでPEG−dTをアッセイすることにより、試験管やガ ラス器具への損失を測定する対照試験を行った。結果を表6に示す。ポリプロピレン限外ろ過膜に暴露した後のPEG化デオキシチミジン回収:塩化 メチレン溶媒系 . 1.48gのPEG−dT(46μmol dT/g)を2 5mLの塩化メチレンに溶解することにより、2.72mMの20k PEG− デオキシチミジン(PEG−dT)溶液を調製した。次いでアリコート(2mL )の溶液を、50mLファルコン(登録商標)試験管内で面積5.73cm2の ポリプロピレン限外ろ過膜(3M、登録商標)の作業面に、0.25、1および 4時間暴露した。出発溶液をファルコン試験管からすすぎ出し、膜を塩化メチレ ン25mLで2回の洗浄によりすすいだ。洗浄溶媒をPEG−dTについて26 0nmでの吸収により分光測光アッセイし、出発PEG−dTの吸収と対比した 。膜を含まないファルコン試験管を2mLの出発溶液に4時間暴露し、260n mでPEG−dTをアッセイすることにより、試験管やガラス器具への損失を測 定する対照試験を行った。結果を表7に示す。再生セルロース限外ろ過膜に暴露した後のPEG化デオキシチミジン回収:アセ トニトリル溶媒系 . 1.55gのPEG−dT(46μmol dT/g)を 25mLのアセトニトリルに溶解することにより、2.85mMの20k PE G−デオキシチミジン(PEG−dT)溶液を調製した。次いでアリコート(2 mL)の溶液を、50mLファルコン(登録商標)試験管内で面積5.73cm2 のポリプロピレン限外ろ過膜(ミリポア(Millipore)、10KPL GC)の作業面に、0.25、1、4および24時間暴露した。出発溶液をファ ルコン試験管からすすぎ出し、膜をアセトニトリル25mLでの洗浄によりすす いだ。膜を25mLのアセトニトリルに6日間ソーキングし、次いでさらに25 mLのアセトニトリルで洗浄した。洗浄溶媒をPEG−dTについて260nm での吸収により分光測光アッセイし、出発PEG−dTの吸収と対比した。膜を 含まないファルコン試験管を2mLの出発溶液に4時間暴露し、260nmでP EG−dTをアッセイすることにより、試験管やガラス器具への損失を測定する 対照試験を行った。結果を表8に示す。アセトニトリル/エーテル中でのPEG化デオキシチミジンの遠心分離:ジエチ ルエーテル、ジイソプロピルエーテルおよびN−ブチルエーテルの比較 . 0. 4855gのPEG−dT(46mol/g)を10mLのアセトニトリルに溶 解することにより、2.34mMの20k PEG−デオキシチミジン(PEG −dT)溶液を調製した。次いでアリコート0.5、0.25および0.125 mLを1mLのジエチルエーテル、ジイソプロピルエーテルまたはN−ブチルエ ーテルの添加により沈殿させた。沈殿を約4,400×gで2分間遠心した。上 清のPEG−dT含量を分光測光により測定し、出発PEG−dTの吸収と対比 した。1.5mLの出発溶液を上記方法で遠心およびアッセイすることにより、 取扱に対する損失を示す対照試験を行った。結果を図9に示す。流束およびFTIR評価 . ポリビニリデンジフルオリド(PVDF)およびポ リプロピレン膜を、下記の溶媒系でソーキングすることにより評価した:アセト ニトリル、塩化メチレン、アセトニトリル中の結合/キャッピング/酸化(c/ c/o)溶液、および塩化メチレン中の3%DCA混合物。直径1 1/2”の膜片 を各溶液に浸漬し、24時間ソーキングし、初期溶液の流束評価のために膜ホル ダーに挿入し、次いでさらにアセトニトリル流束評価のためにアセトニトリルで すすいだ。このように溶液中でのソーキング後、膜に保持されているかもしれな い過剰の試薬を膜試料からすすぎ出した。各種溶媒に暴露した後のアセトニトリ ル流束速度(flux rate)を表9に挙げる。これから分かるように、P VDFとポリプロピレン膜の間にはわずかな流束速度(mL/分/cm2)の変 化があるにすぎない。 保持試験において、再生セルロース膜はFTIRにより測定して若干のPEG を保持すると判定された。シリコーン、セラミック、ポリオレフィンおよびHD PE膜は調査中である。 実施例15. マレイミド−トリチルモノマーの合成 反応経路17 4,4’−ジ−(3−t−ブチルジメチルシリルオキシプロポキシ)−ベンゾ フェノン(66)の製造 . 4,4’−ジヒドロキシベンゾフェノン(21)( 10g,46.7mmol)をミツノブ(Mitsunobu)条件下に乾燥テ トラヒドロフラン中0℃で、t−ブチルジメチルシリルオキシ−3−プロパノー ル(粗製40g,約150mmol)、DEAD(22.1mL,140.0m mol)およびトリフェニルホスフィン(36.7g,140.0mmol)と 反応させた。反応物をアルゴン下で室温にまで高めた。24時間後、反応物を濃 縮し、塩類をヘキサン/エーテルで沈殿させ、ろ過した。残りの物質をカラムク ロマトグラフィー(シリカゲル;ヘキサンから85%ヘキサン/酢酸エチルまで の濃度勾配)により精製して、目的生成物である化合物66を14g得た。収率 54%。 4,4’−ジー(3−t−ブチルジメチルシリルオキシプロポキシ)−トリフ ェニルメタノール(67)の製造 . 保護されたベンゾフェノン66(5.7g ,10.2mmol)を40mLの乾燥THFに溶解し、臭化フェニルマグネシ ウム(20.5mL,20.4mmol)を添加した。反応物をアルゴン下に室 温で2時間撹拌し、濃縮し、ジクロロメタンと飽和塩化アンモニウムの間で分配 し、水で洗浄した。有機相を乾燥させ(MgSO4)、濃縮すると、6.5gの 黄色ガム状化合物67が定量的収率で得られ、これをそのまま次の工程に用いた 。 4,4’−ジ−(3−ヒドロキシプロポキシ)−トリフェニルメタノール(6 8)の製造 . トリチル化合物(67)(6.37g,10mmol)をアセト ニトリル中、室温で16時間、トリエチルアミンフッ化水素酸塩(3.64g, 30mmol)処理により脱保護した。反応物を濃縮し、カラムクロマトグラフ ィー(シリカ、濃度勾配:1:1 ヘキサン:酢酸エチルから酢酸エチル:5% メタノールまで、すべて1%トリエチルアミン含有)により精製して、2.8g の目的生成物68を黄色ガムとして得た。収率69%。 4,4’−ジ−(3−p−トルエンスルホンオキシプロポキシ)−トリフェニ ルメタノール(69)の製造 . アセトニトリル中における塩化トシル(1.4 3g,7.49mmol)および2,4,6−コリジン(1mL,7.49mm ol)の溶液を、アセトニトリル15mL中の化合物68(1.39g,3.4 mmol)に添加した。反応物をアルゴン下に室温で2.5日間撹拌し、次いで 濃縮した。残留物をカラムクロマトグラフィー(シリカ、ヘキサン中60%酢酸 エチル、1%トリエチルアミン含有)により精製して、0.6gのトシル化化合 物69を得た。収率25%。 4,4’−ジー(3−アジドプロポキシ)−トリフェニルメタノール(70) の製造 . 乾燥DMF 15mL中における69(0.6g,0.84mmol )の溶液に、リチウムアジド(0.12g,2.51mmol)を添加した。反 応物をアルゴン下に室温で一夜撹拌し、濃縮し、カラムクロマトグラフィー(シ リカ、ヘキサン中60%酢酸エチル、1%トリエチルアミン含有)により精製し て、0.38g(100%)の化合物70を黄色ガムとして得た。 4,4’−ジ−(3−アミノプロポキシ)−トリフェニルメタノール(71) の製造 . アジド(70)(0.25g,0.55mmol)をメタノール中で 活性炭と共に加温し、ろ過および濃縮した。残留物を50mLのメタノールに再 溶解し、55mgのカーボン上5%パラジウムを添加した。フラスコを排気し、 水素充填バルーンを添加した。室温で1時間後、触媒をろ過した。反応物を濃縮 し、そのまま次の工程に用いた。 4,4’−ジ−(3−マレイミドプロポキシ)−トリフェニルメタノール(7 3)の製造 . 粗製残留物71を50mLの1:1 アセトニトリル:水に溶解 し、氷浴中で撹拌した。メトキシカルボニルマレイミド試薬(72)(0.16 g,0.98mmol)を添加し、2時間にわたってpHを観察した(10.1 から5に低下)。次いで1M硫酸でpHを2に調整し、反応物を濃縮した。残留 物を酢酸エチルとブラインの間で分配した。有機層を濃縮し、1:1 アセトニ トリル:水に再溶解し、10mLの5%炭酸水素ナトリウムと共に撹拌した。1 7分後、反応物を1M硫酸でpH3の酸性にした。酢酸エチル(20mL)を添 加し、この溶液を分配し、水層を酢酸エチルで逆抽出した。有機層を合わせて濃 縮し、カラムクロマトグラフィー(シリカ、酢酸エチルとヘキサンの混合物)に より精製して、0.104gの生成物73を得た。収率36%。 実施例16. 非PASSオリゴヌクレオチド合成における欠損配列の選択的分 離−ジエン修飾キャッピング試薬によるキャッピングと後続のジエノフィル樹脂 または膜上への欠損配列種の捕獲 3,5−ヘキサジエン酸無水物(74)、3,5−ヘキサジエンオキシ酢酸無 水物(75)およびトリヘキサジエンオキシシリルクロリド(76)の製造 . 化合物74、75および76(反応経路18)を当技術分野で既知の標準法によ り 製造する。化合物74は、3,5−ヘキサジエノールから対応するヘキサジエン 酸に酸化し、次いで脱水することにより製造できる。化合物75は無水ヨード酢 酸と3,5−ヘキサジエノールの反応により得られ、化合物76は四塩化ケイ素 と3,5−ヘキサジエノールの反応生成物である。化合物74、75および76 は、これらの合成方法のほか他の多様な方法で製造できる。 3’−PEG固定式溶液相合成におけるキャッピング試薬としての化合物75 の使用と後続の欠損配列分離 . 実施例7に記載したように溶液相合成を行い、 ただしキャッピング試薬を変更し、かつ欠損配列分離工程を追加する。キャッピ ング工程では、等量の3,5−ヘキサジエンオキシ酢酸無水物(75)、2,6 −ルチジンおよびN−メチルイミダゾールを同時に溶液に注入し、撹拌する。マ レイミド誘導体化ポリスチレン樹脂を反応混合物に添加し、撹拌を続ける。樹脂 をろ過分離し、実施例7の脱トリチル化法に記載したようにポリマーをエーテル から沈殿させる。 従来の固相合成におけるキャッピング試薬としての化合物76の使用と後続の 欠損配列分離 . 従来の固相DNA、RNAおよび修飾オリゴヌクレオチド合成 を固相合成装置製造業者から得られる説明に従って実施する。ただしキャッピン グ試薬に、トリ(3,5−ヘキサジエンオキシ)シリルクロリド76を無水酢酸 の代わりに用いる。オリゴヌクレオチドを支持体から開裂させ、脱保護した後、 粗製オリゴヌクレオチドを水/アセトニトリルに装入し、マレイミド誘導体化ポ リスチレンを溶液に添加する。反応が完了すると、樹脂結合した欠損配列をろ過 し、生成物オリゴヌクレオチドを必要であればさらに精製する。 実施例17. 5’−DHDTO−dTとPTADのディールス−アルダー反応 反応経路22に、ジエン置換トリチルアルコール5’−O−(4,4’−ジ− 3,5−ヘキサジエンオキシトリチル)チミジン(5’−DHDTO−dT)( 31)とPTAD(82)のディールス−アルダー反応を記載する。 反応経路22 無水CDCl3 3mL中における5’−DHDTO−dT(31)51mg (31μmol)の溶液に、CDCl3 1.2mL中における4−フェニル− 1,2,4−トリアゾリン−3,5−ジオン(PTAD)(82)22mg(1 20μmol)の溶液(0.1M)を0.1mLずつアルゴン雰囲気下で添加し た。5’−DHDTO−dT(31)溶液に添加するとほぼ直ちに、PTADの 深赤色が漂白された。反応を1H NMRにより監視した。出発物質(31)に 特異なピーク下の面積をディールス−アルダー付加物に特異なピーク下の面積と 比較すると、図10に示したグラフが得られる。図中、5’−DHDTO−dT (31)による5.80ppmのピークの消失が表すように、0.1M PTA D溶液0.6mL(60μmol)を添加すると完全な反応が起きて、予想どお りビス−ディールス−アルダー付加物83が形成されることが分かる。 実施例18. 4−(4−ウラゾール)安息香酸(87)の製造 反応経路23に4−(4−ウラゾール)安息香酸(87)の合成を示す。 反応経路23 セミカルバゾール(86)の製造. トルエン100mL中における4−イソ シアナト安息香酸エチル(84)10g(52mmol)の溶液に、54gのエ チルカルバゾール(85)を添加した。反応混合物を2時間還流すると、その間 に白色沈殿が生成した。反応混合物を氷浴中で10分間冷却した後、固体をろ過 し、100mLのトルエンで2回洗浄した。14時間真空乾燥した後、14.8 gの白色固体セミカルバゾール86が単離された(収率96%)。 4−(4−ウラゾール)安息香酸(87)の製造. セミカルバゾール86( 14.6g,49mmol)を100mLの4N NaOHに懸濁し、2時間還 流すると、その間に白色沈殿が徐々に溶解した。氷浴中で25分間冷却した後、 4 N HClの滴加により反応混合物のpHを1に調整すると、白色固体が溶液か ら沈殿した。この固体をろ過し、300mLの水で4回洗浄し、P25上で18 時間真空乾燥して、11.0g(収率100%)の化合物(87)を得た。 実施例19. 4−(4−ウラゾール)安息香酸によるアミノ官能化樹脂の誘導 体化 反応経路24は、4−(4−ウラゾール)安息香酸(87)によりアミノ官能 化樹脂を誘導体化するための一般法を示す。この一般法は、アミノプロピルシリ カゲル、アミノプロピルCPG、ノバシン(商標)TGアミノ樹脂HL、および アルゴゲル(商標)を含めた多様なアミノ官能化樹脂に有効に適用できた。 反応経路24 ウラゾール誘導体化樹脂(88)の製造. 50mLのDMF中で予め膨潤させたアミノメチルポリスチレン(装填量=0 .9mmol/g)10.1gの懸濁液を、5%ピリジン含有DMF 100m L中におけるウラゾール87 3.13g(14mmol)およびHOBT 2 . 3g(16.9mmol)の溶液に添加した。この反応混合物に7.3mL(4 7mmol)のDICを添加した。反応物を穏やかに4時間撹拌し、固体をろ過 し、次いで100mLのDMFで2回、100mLのMeOHで2回、100m LのCH2Cl2で2回、100mLのアセトンで2回、最後に100mLのCH2 Cl2で2回洗浄した。P25上で48時間真空乾燥した後、固体をニンヒドリ ン滴定により遊離第一級アミノ官能基について試験し、陰性と判定された。 実施例20. 樹脂上でのウラゾールの直接形成によるアミノ官能化樹脂の誘導 体化 反応経路25は、樹脂上でウラゾールを直接形成することによりアミノ官能化 樹脂を誘導体化するための一般法を示す。 反応経路25 イソシアナート誘導体化TGアミノ樹脂(90)の製造. 5.4gのテンタ ゲル−NH2樹脂89の懸濁液を40mLのCH2Cl2中で予め膨潤させた。こ の懸濁液にTEA(0.5mL)を添加し、混合物を5分間撹拌した。次いでト リホスゲン(186mg)を添加し、反応混合物を室温でさらに3時間撹拌した 後、反応混合物をろ過し、固体を100mLのCH2Cl2で3回洗浄して、5. 3gの黄色固体(90)を得た。ニンヒドリン滴定は第一級アミン基について陰 性の試験結果を示した(ただし、ニンヒドリン/酸溶液中でこの物質を放置する と、イソシアナートの分解により、遊離アミンを示す深青色がきわめて徐々に生 じた)。この固体について拡散反射法で得たIRスペクトルは、2285cm-1 に強いイソシアナートピークを示す。 ウラゾール誘導体化TGアミノ樹脂(92)の製造. トルエン35mL中に おけるTG−イソシアナート樹脂5.13gの懸濁液に186mgのエチルカル バゾールを添加し、反応混合物を85℃に加熱した。2.5時間後、反応混合物 をろ過し、固体を50mLのトルエンで3回、50mLのCH2Cl2で3回洗浄 して、5.4gのTG−セミカルバゾール樹脂91を得た。IRスペクトルはイ ソシアナートが残っていないことを示した。明瞭な一組のカルボニル吸収が17 42および1701cm-1に現れる。この固体を20mLの2N KOHに再懸 濁し、95℃に45分間加熱した。次いで反応混合物をろ過し、固体を40mL の水で3回、40mLのMeOHで3回、40mLのCH2Cl2で3回洗浄した 。1696cm-1に単一のカルボニル吸収をもつ生成物ウラゾール誘導体92の IRスペクトルは、出発TG−樹脂90のものと明らかに異なる。 実施例21. ウラゾール官能化固体支持体から1,2,4−トリアゾリン−3 ,5−ジオン(93)への酸化 実施例20には、ウラゾール官能化固体支持体を酸化して1,2,4−トリア ゾリン−3,5−ジオン(TAD)にするための多様な方法を示す(反応経路2 6)。PTADの酸化は求核体の存在に感受性である。ウラゾールからTADへ の酸化により、文献記載のように明るい赤色、橙色または紫色の溶液が得られる (Keanaら(1983)Org.Chem.48:1982)。 反応経路26 ペンタフルオロヨードベンゼンビス(トリフルオロアセテート)による酸化. ペンタフルオロヨードベンゼンビス(トリフルオロアセテート)を用いた可溶性 ウラゾール87および多数のウラゾール誘導体化固体の酸化はいずれも、DMF 中およびCH2Cl2中の両方で予想どおりに進行した。この酸化剤とDHDT− 保護オリゴヌクレオチドとの適合性は、この酸化剤の存在下でディールス−アル ダー反応を行うことにより試験された。したがってDMF中における3’−HO −dT−5’−ODHDTの溶液を、酸化された樹脂に酸化剤の存在下で添加し た。溶媒としてDMFを用いると、3’−HO−dT−5’−ODHDTが固体 支持体から赤色を効率的に漂白した。これはディールス−アルダー反応が起きて いることの信頼できる指標であることが分かっている。しかし溶媒としてCH2 Cl2を用いると、酸化されたTAD樹脂に3’−HO−dT−5’−ODHD Tを添加すると速やかにDHDT部分の脱トリチル化が起きる。 四酸化二窒素による酸化. ウラゾールを酸化して1,2,4−トリアゾリン −3,5−ジオンにするのに、より広く用いられる試薬のひとつは四酸化二窒素 (N24)である。この酸化剤は、可溶性ウラゾール87の酸化、およびイソシ アナートを経てウラゾールに直接誘導体化されたTGアミノ樹脂(実施例20参 照))の酸化に有効であることが証明された。この酸化剤は、アミドリンカーを 介して樹脂に結合したウラゾールの酸化には有効でない。 N−ブロモスクシンイミドによる酸化. N−ブロモスクシンイミド(NBS )は、ウラゾール前駆物質からTADを形成する、安定な、比較的安全に取扱え る酸化剤である。それはDMFに易溶性であり、CH2Cl2に比較的可溶性であ る。この酸化剤は、可溶性ウラゾール87の酸化、およびアミドリンカーを介し て種々の樹脂に結合したウラゾール(実施例19参照))の酸化に有効であるこ とが証明された。しかしこの酸化剤は、イソシアナートを経てウラゾールに直接 誘導体化されたTGアミノ樹脂(実施例20参照))の酸化には有効でない。し たがってこの酸化剤はN24と相補的反応性をもつ(上記参照)。酸化剤として NBSまたはN24を使用することの主な欠点は、両酸化剤がウラゾール基質の 酸化に際し酸性副生物を放出し、その結果、DHDT−保護オリゴヌクレオチド の導入前に副生物を固体支持体から除去しなければDHDT部分が速やかに脱ト リチル 化されることてある。 ウラゾール誘導体化した固体支持体をNBSで酸化するための一般法. DM F 0.73mL中におけるN−ブロモスクシンイミド130mg(0.73m mol)の溶液(0.1M)を、1.5mLのCH2Cl2中で予め膨潤させたポ リスチレンーウラゾール0.3g(装填量=0.9mmol/g)の懸濁液に添 加した。固体は赤橙色に変化し、溶液は添加すると直ちに明るい黄色に変化した 。酸化を30〜45分間進行させた時点で固体をろ過し、15mLのDMFで4 回(DMFろ液が無色透明になるまで)、続いて20mLのCH2Cl2で4回、 洗浄した。DMF溶媒をCH2Cl2で置換すると、固体は明るい赤色に変化した 。ポリスチレン−TADは溶媒をすべて除去して保存しても安定であることが試 験により認められているが、酸化した材料を直ちに使用した。 実施例22. ウラゾールカプロン酸によるアミノメチルポリスチレン樹脂の誘 導体化 反応経路27に、ウラゾールカプロン酸によるアミノメチル化ポリスチレン樹 脂の合成および誘導体化を示す。 反応経路27 6−イソシアナトヘキサン酸エチルのセミカルバジド(95)の製造. ベン ゼン(108mL)中における6−イソシアナトヘキサン酸エチル(94)(8 .0g,43.2mmol,ランカスターから市販)の溶液をエチルカルバゼー ト(4.95g,47.51mmol)で処理し、混合物をアルゴン雰囲気下で 1時間加熱還流した。この溶液を徐々に室温にまで放冷した。反応混合物を真空 濃縮すると白色固体が得られ、これを熱酢酸エチル(170mL)に溶解した。 熱ヘキサン(260mL)を添加すると、白色沈殿が生成した。固体セミカルバ ジド95を採集し(11.22g,収率90%)、1H NMR、13C NMR 、IR、MSおよび元素分析により解明した。 6−(4−ウラゾール)カプロン酸エチルエステル(96)の製造. 無水エ タノール(250mL)中におけるセミカルバジド95(11.31g,39. 09mmol)の溶液を、アルゴン雰囲気下にナトリウムエトキシド(5.32 g,78.18mmol)で処理した。この黄橙色溶液を15時間加熱還流した 。その間に溶液は淡黄色になった。この溶液を徐々に室温にまで放冷し、1M HCl/EtOHでpHを3に調整した。次いで溶液をろ過し、ろ液を真空濃縮 した。残留物をCH2Cl2に装入し、濃縮した。この操作を3回繰り返し、残留 物を高真空下で一夜放置した。生成物である化合物96をさらに精製せずに用い た。 6−(4−ウラゾール)カプロン酸(97)の製造. メタノール(250m L)および水(250mL)中における化合物96(39.09mmol)の溶 液をLiOH・H2Oで処理し、混合物を3時間撹拌した。メタノールを真空下 で除去し、1M HClでpHを2に調整した。この水溶液を分液漏斗に移し、 酢酸エチルおよび塩化メチレンで数回抽出した。有機相を合わせて乾燥させ(N a2SO4)、ろ過し、濃縮すると、6.14gのウラゾール97(96からの収 率73.6%)が白色固体として得られ、これをさらに精製せずに用いた。 ウラゾールカプロン酸で誘導体化したアミノメチル化ポリスチレン樹脂の製造 . DMF(60mL)中で予め40分間膨潤させたアミノメチル化ポリスチレン樹 脂(6.11g,装填量=1.13mmol/g,6.90mmol)の懸濁液 を、6−(4−ウラゾール)カプロン酸(97)(1.60g,7.53mmo l)、1,3−ジイソプロピルカルボジイミド(DIC)(4.45g,5.5 mL,35.26mmol)、1−ヒドロキシベンゾトリアゾール(BtOH) (1.93g,12.61mmol)およびピリジン(42mL)と混合した。 この懸濁液をアルゴン下で15時間振とうした。次いで溶媒をろ過除去し、樹脂 をDMF(50mLで2回)、MeOH(50mLで2回)、塩化メチレン(5 0mLで2回)、アセトン(50mLで2回)、および塩化メチレン(50mL で2回)で洗浄した。樹脂をデシケーター内でP25により24時間減圧乾燥し て、6−(4−ウラゾール)カプロン酸誘導体化した2%アミノメチル化ポリス チレン樹脂(98)8.12gを得た。この樹脂を元素分析により分析した:計 算装填量=1.16mmol/g。 TAD−カプロアミド樹脂(99)の製造. 塩化メチレン(10mL)中の 誘導体化樹脂98(0.520g,製造装填量=1.38mmol/g,0.7 18mmol)の懸濁液を、アルゴン下で15分間、穏やかに振とうした。懸濁 液を0℃に冷却し、次亜塩素酸t−ブチル(0.173g,1.59mmol) で処理した。懸濁液は直ちに明るいピンク色に変化し、これを室温に達するまで 30分間、穏やかに振とうした。真空ラインに接続したガス分散管を通してろ過 することにより、溶媒を排出した。樹脂を塩化メチレン(10mLで2回)、D MF(10mLで2回)、および塩化メチレン(10mLで2回)で洗浄した。 pHを監視すると、洗浄終了時には中性になった。樹脂を高真空下にP25上で 15時間減圧乾燥して、0.360gの濃いピンク色の樹脂(99)(TAD− カプロンアミド樹脂)を得た。IR(KBr)1754、1672cm-1。tr ans,trans−1,4−ジフェニル−1,3−ブタジエンを用いた滴定に よる分析は、0.46mmol/gの装填量を示した。第2バッチの樹脂の酸化 および滴定により、0.78mmol/gの装填量が示された。 実施例23. ビス−TADのモノディールス−アルダー反応によるジエノフィ ル誘導体化樹脂の製造 ビス−1,2,4−トリアゾリン−3,5−ジオン(ビス−TAD)(104) の製造 . 反応経路28にビス−TAD(104)の合成を示す。 反応経路28 セミカルバジド(102)の製造. 4,4’−メチレンービス(2,6−ジ イソプロピルアニリン)(100)(30.0g,81.9mmol)を、隔壁 シールしてアルゴンパージした1Lの丸底フラスコ中へ秤量した。フラスコに5 00mLの塩化メチレンを撹拌装入した。ホスゲン(トルエン中の1.93M溶 液105mL,1.25当量)を注射器で速やかに添加し、混合物を5分間撹拌 した。飽和NaHCO3水溶液(200mL)を反応混合物に撹拌添加し、混合 物を30分間激しく撹拌した。反応混合物を2Lの分液漏斗に注入し、水相を分 離廃棄した。混合物をさらに飽和NaHCO3(100mLで2回)およびブラ イン(100mLで1回)で洗浄した。有機相をNa2SO4で乾燥させ、ろ過し 、溶媒を真空下で除去した。得られた油(101)をトルエンに再溶解し、1L の三つ口丸底フラスコに移した。合計500mLになるのに十分なトルエンを添 加し、フラスコをアルゴンでパージした。エチルカルバゼート(25.5g,1 .5当量)を一度に添加し、15分間激しく撹拌した。フラスコに還流冷却器を 取り付け、混合物を18時間還流した。混合物を室温にまで冷却し、生成した沈 殿を採集し、塩化メチレンで洗浄し、高真空下で乾燥させて、45.5gのセミ カルバジド102を得た。1H NMRは純生成物に一致するスペクトルを示す 。 ビス−ウラゾール(103)の製造. 500mLの三つ口丸底フラスコをア ルゴンパージした。フラスコに無水エタノール(500mL)を装入し、0℃に 冷却した。水素化リチウム(2.60g,327mmol)を一度に添加し、1 5分間激しく撹拌して反応させた。フラスコを撹拌およびアルゴンパージしなが ら室温にした。セミカルバジド102(25.0g,40.9mmol)をフラ スコに一度に添加し、フラスコに還流冷却器を取り付けた。混合物を還流させ、 18時間反応させた。生成した沈殿をろ過し、脱イオン水に再溶解した。pHが 約1になるまで濃HClを添加した。沈殿を採集し、無水エタノールと共に蒸発 させ、高真空下で一夜乾燥させた。この反応で20.6gのビスーウラゾール( 103)を得た。1H NMRは純生成物に一致するスペクトルを示す。 ビス−1,2,4−トリアゾリン−3,5−ジオン(104)の製造. ビス −ウラゾール(103)(18.0g,33.6mmol)を、撹拌下で0℃に 冷却しながら塩化メチレン(150mL)に懸濁した。全開したシリンダーから 四酸化窒素を溶液に10分間吹き込んだ。撹拌中の反応混合物からこの四酸化窒 素流入を止め、0℃で5分間、さらに室温で1時間撹拌した。溶媒および過剰の ガスを真空下で除去して、17.52gのビス−1,2,4−トリアゾリン−3 ,5−ジオン(ビス−TAD)(104)を得た。1H NMRは純生成物に一 致するスペクトルを示す。 ヘキサジエンによるアミノメチル化ポリスチレン樹脂の誘導体化. 反応経路 29にヘキサジエンによるアミノメチル化ポリスチレン樹脂の誘導体化を示す。 3種の異なるアミノメチル化樹脂:1%架橋ポリスチレン(1%DVB−PS− AM,0.98mmol/g);2%架橋ポリスチレン(2%DVB−PS−A M,1.38mmol/g);および高架橋ポリスチレン(HCL−PS−AM ,装填量0.3mmol/g)をヘキサジエンで官能化した。 反応経路29 3種の樹脂それぞれ5gを30mLの50:50(v/v)CH2Cl2/DMF で湿らせ、20分間膨潤させた。別個にヘキサジエンカルボン酸(105)(1 .3g)をDMF(23mL,22.8g)に溶解し、次いでピリジン(2mL ,1.95g)およびヒドロキシベンゾトリアゾール(HOBT)(2.04g )を添加した。混合物を10分間撹拌し、膨潤樹脂を入れた容器に移した。これ により1.5当量のヘキサジエンカルボン酸が各樹脂上に移された(2%DVB −PS−AMには24.66g、HCL−PS−AMには3.11g)。次いで ジイソプロピルカルボジイミド(DIC)を各樹脂に添加し(2%DVB−PS −AMには4.64g、HCL−PS−AMには0.7g)、樹脂を振とう機の 台に乗せ、17時間弱く振とうした。次いで樹脂をDMF:CH2Cl2:ピリジ ン(47.5:47.5:5)洗浄液50mLで5回、およびCH2Cl2洗浄液 50mLで5回すすぎ、24時間真空乾燥して、ヘキサジエン誘導体化樹脂(1 06)を得た。 ヘキサジエン誘導体化樹脂とビス−1,2,4−トリアゾリン−3,5−ジオ ンのモノディールス−アルダー反応による誘導体化ポリスチレン樹脂の製造 . 反応経路30に、ヘキサジエン誘導体化樹脂とビス−1,2,4−トリアゾリン −3,5−ジオンのモノディールス−アルダー反応による樹脂の誘導体化を示す 。 反応経路30 ビス−TAD(104)(3.12g,5.9mmol)を5mL(6.42 g)のジクロロメタンに装入した。この溶液2.2mL(2.8g,1.96m mol)を直接に3種の異なる乾燥樹脂:1%DVB−PS−ヘキサジエン(0 .27mmol);2%DVB−PS−ヘキサジエン(0.39mmol);お よびHCL−PS−ヘキサジエン(0.09mmol)(106)上に移した。 この樹脂とビス−TADのスラリーを16時間低速撹拌した時点で、すべての樹 脂を塩化メチレン(5mLで8回)で洗浄し、真空乾燥して、対応する誘導体化 樹脂(107)を得た。ジフェニルブタジエンの捕獲により装填量を評価した。 実施例24. チオカルボニル誘導体化樹脂とのディールス−アルダー付加環化 による生成物捕獲を用いたPASS 反応経路31 アセトニトリル(または炭酸プロピレン(米国特許出願第60/079,85 4号、1998年3月30日出願、表題“オリゴヌクレオチド合成のための炭酸 プロピレンの使用”、その全体を本明細書に援用する)その他の適切な溶媒もし くは溶媒混合物)中における、5’−HO−オリゴヌクレオチド(DNA/RN A,任意長さ)および5’−DHDT−ヌクレオシドホスホルアミダイトと4, 5−ジシアノイミダゾールの結合反応混合物を、過ヨウ素酸テトラアルキルアミ ンの塩化メチレン溶液(またはホスホロチオエート製造のための硫化試薬)で処 理する。その5’−末端にDHDT含有モノマーを取り込んだ目的生成物として の5’−DHDT−オリゴヌクレオチドホスホトリエステル(108)を含有す るこの混合物を、次いで過剰のチオカルボニル誘導体化樹脂(109)を入れた 容器に移す。DHDT含有生成物がすべてチオカルボニルジエノフィルとのディ ールス−アルダー反応により溶液から除かれると(逆相HPLC分析により判定 )、樹脂(111)を洗浄して、DHDTを含有しないすべての種を分離する。 樹脂が清浄になるまで洗浄されると、次いで塩化メチレン中3%DCAで処理し て、捕獲された物質を放出させる。捕獲された生成物がすべて放出されるまで樹 脂を洗浄する。これらの洗液すべてを水性リン酸緩衝液(約pH7.0)で抽出 して、酸を中和し、かつ加水分解された未反応アミダイトを分離する。乾燥塩化 メチレン層を蒸発させて、目的生成物を得る。 実施例25. ニトロアクリラート誘導体化樹脂とのディールス−アルダー付加 環化による生成物捕獲を用いたPASS 反応経路32 アセトニトリル(または炭酸プロピレンその他の適切な溶媒もしくは溶媒混合 物)中における、5’−HO−オリゴヌクレオチド(DNA/RNA,任意長さ )および5’−DHDT−ヌクレオシドホスホルアミダイトと4,5−ジシアノ イミダゾールの結合反応混合物を、過ヨウ素酸テトラアルキルアミンの塩化メチ レン溶液(またはホスホロチオエート製造のための硫化試薬)で処理する。その5 ’−末端にDHDT含有モノマーを取り込んだ目的生成物としての5’−DHD T−オリゴヌクレオチドホスホトリエステル(108)を含有するこの混合物を 、次いで過剰のニトロアクリラート誘導体化樹脂(113)を入れた容器に移す 。DHDT含有生成物がすべてニトロアクリラートジエノフィルとのディールス −アルダー反応により溶液から除かれると(逆相HPLC分析により判定)、樹 脂(115)を洗浄して、DHDTを含有しないすべての種を分離する。樹脂が 清浄になるまで洗浄されると、次いで塩化メチレン中3%DCAで処理して、捕 獲された物質を放出させる。捕獲された生成物がすべて放出されるまで樹脂を洗 浄する。これらの洗液すべてを水性リン酸緩衝液(約pH7.0)で抽出して、 酸を中和し、かつ加水分解された未反応アミダイトを分離する。乾燥塩化メチレ ン層を蒸発させて、目的生成物を得る。 実施例26. 系内で生成したチオカルボニル誘導体化樹脂とのディールス−ア ルダー付加環化による生成物捕獲を用いたPASS 反応経路33 アセトニトリル(または炭酸プロピレンその他の適切な溶媒もしくは溶媒混合 物)中における、5’−HO−オリゴヌクレオチド(DNA/RNA,任意長さ )および5’−DHDT−ヌクレオシドホスホルアミダイトと4,5−ジシアノ イミダゾールの結合反応混合物を、過ヨウ素酸テトラアルキルアミンの塩化メチ レン溶液(またはホスホロチオエート製造のための硫化試薬)で処理する。その5 ’−末端にDHDT含有モノマーを取り込んだ目的生成物としての5’−DHD T−オリゴヌクレオチドホスホトリエステル(108)を含有するこの混合物を 、次いで過剰の誘導体化樹脂117を入れた容器に移す。この混合物を加熱して チオスルフィナート(117)を分解させ、固体支持体に結合した対応するチオ アルデヒド(119)にする。DHDT含有生成物がすべてチオアルデヒドジエ ノフィルとのディールス−アルダー反応により溶液から除かれると(逆相HPL C分析により判定)、樹脂(121)を洗浄して、DHDTを含有しないすべて の種を分離する。樹脂が清浄になるまで洗浄されると、次いで塩化メチレン中3 %DCAで処理して、捕獲された物質を放出させる。捕獲された生成物がすべて 放 出されるまで樹脂を洗浄する。これらの洗液すべてを水性リン酸緩衝液(約pH 7.0)で抽出して、酸を中和し、かつ加水分解された未反応アミダイトを分離 する。乾燥塩化メチレン層を蒸発させて、目的生成物を得る。 実施例27. 系内で生成したニトロソホルメート誘導体化樹脂とのディールス −アルダー付加環化による生成物捕獲を用いたPASS 反応経路34 アセトニトリル(または炭酸プロピレンその他の適切な溶媒もしくは溶媒混合 物)中における、5’−HO−オリゴヌクレオチド(DNA/RNA,任意長さ )および5’−DHDT−ヌクレオシドホスホルアミダイトと4,5−ジシアノ イミダゾールの結合反応混合物を、過ヨウ素酸テトラアルキルアミンの塩化メチ レン溶液(またはホスホロチオエート製造のための硫化試薬)で処理する。その5 ’−末端にDHDT含有モノマーを取り込んだ目的生成物としての5’−DHD T−オリゴヌクレオチドホスホトリエステル(108)を含有するこの混合物を 、次いで過剰の誘導体化樹脂(123)を入れた容器に移す。混合物中に存在す る過剰の過ヨウ素酸塩がヒドロキシカルバミン酸エステル誘導体化樹脂を酸化し て、ニトロソホルメート誘導体化樹脂(125)にする。DHDT含有生成物が すべ てニトロソホルメートジエノフィルとのディールス−アルダー反応により溶液か ら除かれると(逆相HPLC分析により判定)、樹脂(127)を洗浄して、D HDTを含有しないすべての種を分離する。樹脂が清浄になるまで洗浄されると 、次いで塩化メチレン中3%DCAで処理して、捕獲された物質を放出させる。 捕獲された生成物がすべて放出されるまで樹脂を洗浄する。これらの洗液すべて を水性リン酸緩衝液(約pH7.0)で抽出して、酸を中和し、かつ加水分解さ れた未反応アミダイトを分離する。乾燥塩化メチレン層を蒸発させて、目的生成 物を得る。次いでこれを他のPASSサイクルに出発5’−HO−オリゴとして 使用できる。 実施例28. トリアゾールジオン誘導体化樹脂とのディールス−アルダー付加 環化による生成物捕獲を用いたPASSサイクル(無水) PS−ウラゾール樹脂の酸化: CH2Cl2 20mL中におけるPS−ウラ ゾール1.7gの懸濁液を、DMF 15mL中のNBS 2.7gで処理した 。次いで反応混合物をろ過し、明るい赤色の固体を10mLのDMFで3回、2 0mLのCH2Cl2で5回洗浄した。この固体を1時間真空乾燥し、15mLの CH2Cl2に再懸濁した。 結合/酸化反応: CH2Cl2 1.5mL中におけるTBDPSiO−dT −[3’,3’]−dT−OH二量体(125mg)の溶液を、ACN中の0. 22M DHDTO−dTアミダイト溶液(モレキュラーシーブ上に保存し、使 用前にろ過)1.0mLと混合した。この溶液に、ACN中の1.0M DCI 溶液(モレキュラーシーブ上に保存し、使用前にろ過)1.8mLを添加した。 溶液は15分後に乳白色に変化し、3mLのCH2Cl2を添加しても溶液を澄明 化できなかった。30分後、結合が完了したことがHPLCにより判定された( 図13A)。次いでこの三量体を、CH2Cl2中の1.0M過ヨウ素酸テトラブ チルアンモニウム溶液の添加により酸化した。8分後に酸化が完了したことがH PLCにより判定された(図13B)。 固相ディールス−アルダー捕獲反応: 上記の粗製反応混合物をそのまま、酸 化された樹脂に注射器で添加した。10分後、捕獲が完了したことがHPLCに より判定された。25分後、薄いピンク色の樹脂が完全に漂白されて淡黄色にな った。これはTADがACNまたはDCIに対し不安定なためであろう。次いで 樹脂を30mLのCH2Cl2で8回洗浄して、不純物や未反応物質を分離した。 洗液と酸化された物質との比較を図13Cに示す。 脱トリチル/放出反応: 次いで樹脂を10mLのCH2Cl2に懸濁し、CH2 Cl2中の3%DCA 20mLで処理して、捕獲されていた物質を脱トリチル 化し、放出させた。その後の洗浄中に、固体から少量のトリチル(橙色によって 明らか)が浸出した。固体からUV活性物質かもはや浸出しないことがTLCで 示されるまで、固体を30mLのCH2Cl2で5回洗浄した。次いで淡橙色の洗 液をヘキサンでそれらの容量の2倍に希釈した。全容量の約1/4にまで溶媒を 真空下で除去した。新たなヘキサンを用いてこの操作を繰り返し、CH2Cl2を ヘキサンで完全に交換した。この溶媒交換操作中に、溶液から三量体−OHが沈 殿した。この固体沈殿を100mLのヘキサンで3回摩砕処理し、ACNに再溶 解した。このACN溶液をダウエックス(商標)−1−クロリド樹脂のパッドに 通して洗浄し、残留DCAを除去した。溶媒を除去し、140mgの桃色固体を 単離した。ヘキサン摩砕処理洗液からさらに12mgが回収され、合計収量15 2mg(収率89%)となった。最終HPLCおよび31P−NMR(d3−AC N)を図13Dおよび13Eに示す。 実施例29. ヒドロホウ素化によるジエン合成 反応経路27にヒドロホウ素化によるジエン−オールの一般合成法を示す。 反応経路35 このアルコールは、9−BBN(131)または(Sia)2BH(示されて いない)を用いて合成できる。その安定性、扱いやすさ、およびカラムクロマト グラフィーによる反応副生物―1,5−シクロオクタンジオール―からの生成物 の精製しやすさのため、9−BBNが好ましい。3−メチル−2−ブタノール( (Sia)2BHを用いたヒドロホウ素化により生成する主な副生物)は112 ℃で沸騰し、ピリジンと共に数回蒸発させることにより除去され、目的アルコー ルが残る。次いでSiO2を用いるシリカゲルカラムクロマトグラフィーにより これを精製する。70℃より高い温度での蒸留ではジエンが重合することが知ら れている。 4,6−ヘキサジエン−1−オール(135)の合成. 撹拌棒および125 mLの目盛付きP.E.滴下漏斗を備えた250mLの三つ口丸底フラスコをオ ーブン乾燥し、組み立て、熱時隔壁シールする。この装置をアルゴンパージ下で 冷却する。ガラス注射器をすべてオーブン乾燥し、組み立て、アルゴンパージ下 で冷却する。 この装置にTHF(10mL)および1,3,6−ヘプタトリエン129(4 .6g,48mmol)を注射器で装入する。9−BBN(131)(THF中 の0.5M溶液88mL,44mmol)を滴下漏斗にカニューレ装入する。フ ラスコを−10℃に冷却し、9−BBNを30分かけて添加する。反応混合物を さらに2.5時間撹拌し、その間、温度を0〜−10℃に維持する。NaH2P O4水溶液(5M溶液13.3mL)およびNaOH水溶液(6M溶液10.6 mL)を300mLの三角フラスコに添加し、0℃に冷却する。撹拌しながらH22水溶液(30%溶液30mL)を添加する。次いで反応混合物を撹拌しなが ら、緩衝化した酸化混合物に30分かけて徐々に滴加する。混合物を0℃にさら に1.5時間、続いて室温に2時間保持する。溶液が混濁しない場合、これは混 合物が2層でないことを示し、混合物が混濁するまで撹拌しながら水を追加する 。水相の分離を補助するために、撹拌しながら固体K2CO3を添加する。次いで 、30mLのブラインを入れた分液漏斗にこの混合物を注入し、混合物を振とう する。水相をエーテルで2回抽出し、有機相を合わせてMgSO4で乾燥させ、 ろ過し、溶媒を除去する。アルコール(135)は真空蒸留(約70℃で分解) またはカラムクロマトグラフィー(CH2Cl2中5%EtOAc)で精製できる 。 実施例30. トリチル誘導体化した固体支持体を用いたPASS 実施例129(反応経路37〜39)にはPASSにおけるトリチル誘導体化 した固体支持体の使用を示す。 反応経路37 トリチルチミジン樹脂(146)の製造. 4−メトキシトリチルクロリド樹 脂(143)(10g,1%架橋ポリスチレン,カルビオケム−ノバビオケムか ら入手,トリチル装填量0.53mmol/g)を、乾燥ジメチルアミノピリジ ン(DMAP)(130mg)、続いてチミジン(145)(1.99g,樹脂 のトリチル装填量を基準として1.5当量,ピリジンからの同時蒸発により乾燥 )およびピリジン(60mL)で処理した。このスラリーをオービタルシェーカ ーにより室温で46時間混合した。スラリーをガラスフィルターに乗せ、未反応 チ ミジンがすべて分離されるまでピリジンおよび塩化メチレンで洗浄した。洗浄し た樹脂を2時間真空乾燥すると、10.93gのカナリア黄色固体(146)が 得られた。乾燥樹脂(0.109g)を10mLのメスフラスコ内で塩化メチレ ン中3%ジクロロ酢酸5mLにより処理し、この溶液をマークまでDMSOで希 釈した。試料樹脂から放出されたチミジン量をHPLCアッセイ(4.6×25 0mmフェノモネックス・ジュピターC18カラム,水/アセトニトリル濃度勾 配,2%から40%アセトニトリルまで,20分間にわたる)で測定し、チミジ ン0.29mmol/樹脂g(理論値の約55%)であることが認められた。 トリチルチミジンホスホルアミダイト樹脂(147)の製造. トリチルチミ ジン樹脂(146)(5.12g,1.48mmol)を一夜真空乾燥した。樹 脂を乾燥フラスコにアルゴン下で装入し、DCI(352mg,2.9mmol ,2当量)および乾燥塩化メチレン(30mL)、続いてシアノエチルテトラプ ロピルホスホルジアミダイト(0.95mL,2.9mmol,2当量)で処理 した。この混合物をオービタルシェーカーにより室温で1時間混合し、次いでガ ラスフィルター付き漏斗に移し、塩化メチレンで洗浄して、結合していない物質 をすべて分離した。樹脂を室温で64時間真空乾燥して、5.02gの固体、化 合物147(回収率92%)を得た。 トリチル樹脂上でのチミジン二量体の製造. 反応経路38にトリチル誘導体 化樹脂を用いたチミジン二量体の製造を示す。 反応経路38 5gのチミジンホスホルアミダイト樹脂(147)に、、DCI(0.365 g,3.1mmol,2.26当量)および5’−t−ブチルジフェニルシリル −O−チミジン−3’−OH(12A)(1.5g,3.1mmol,2.26 当量)を添加した。これらの乾燥固体にアルゴン下で、乾燥アセトニトリル(1 0mL)および塩化メチレン(5mL)を添加した。5’−t−ブチルジフェニ ルシリル−O−チミジン−3’−OHの量が一定になったと思われるまで(約4 時間;この試薬を約1.3倍当量使用)、結合反応をHPLCにより監視した。 25mLの塩化メチレンに溶解した過ヨウ素酸テトラブチルアンモニウム(1. 35g,3.1mmol)の添加により混合物を酸化した。この溶液をオービタ ルシェーカーで8分間混合した。混合物を粗いガラスフィルターでろ過し、ポリ マーを塩化メチレン(50mLで20回)で洗浄して、結合していない反応成分 をすべて分離した。このポリマー(148)に塩化メチレン中3%ジクロロ酢酸 750mLを50mLずつ添加して、樹脂から二量体生成物を脱トリチル化した 。中和しかつジクロロ酢酸を除くために750mLの0.2Mリン酸緩衝液(p H 7.5)中へ生成物をろ過して、樹脂から分離した。塩化メチレン層を650m Lのリン酸緩衝液で2回洗浄した。塩化メチレン層を硫酸ナトリウムで乾燥させ 、ろ過および蒸発させて1.06g(92%)の二量体149を得た。31P−N MR(121MHz,DMSO)δ−2.49および−2.55(s,ジアステ レオトピック)。Ms m/e;C3948512PSi,計算値837.8; 実測値836.6(エレクトロスプレ−ES-モード).樹脂から開裂した後の 逆相HPLCを図14に示す。 トリチル樹脂上でのチミジン三量体の製造. 反応経路39にトリチル誘導体 化樹脂上でのチミジン三量体の製造を示す。 チミジンホスホルアミダイト樹脂147(4.72g,約1.27mmol, 1.3当量)に、DCI(0.246g,2.1mmol,2.0当量)および 5’−HO−T−T二量体(149)(0.840g,1.0mmol,制限試 薬)を添加した。この固体混合物を真空乾燥し、次いでアルゴンでパージした。 これらの固体に、アルゴン下で10mLの乾燥アセトニトリルおよび5mLの塩 化メチレンを添加した。5’−HO−T−T二量体が消費されるまで(約180 分)、結合反応をHPLCにより監視した。20mLの塩化メチレンに溶解した 過ヨウ素酸テトラブチルアンモニウム(1.08g,2.5mmol)の添加に より、混合物を酸化した。この溶液をオービタルシェーカーで混合し、次いで粗 いガラスフィルターでろ過し、ポリマーを塩化メチレンおよびアセトニトリルで 洗浄して、結合していない反応成分をすべて分離した。このポリマー(151) に塩化メチレン中3%ジクロロ酢酸500mLを50mLずつ添加して、樹脂か ら二量体生成物を脱トリチル化した。中和しかつジクロロ酢酸を除くために50 0mLの0.2Mリン酸緩衝液(pH7.5)中へ生成物をろ過して、樹脂から 分離した。塩化メチレン層を500mLのリン酸緩衝液で2回洗浄し、硫酸ナト リウムで乾燥させ、ろ過し、蒸発させ、真空下に64時間置いて、1.04g( 87%)の三量体152を得た。31P−NMR(121MHz,DMSO)δ− 1.50および−1.54(s,ジアステレオトピック),−2.49および− 2.55(s,ジアステレオトピック)。Ms m/e;C52648192S i,計算値1195.14;実測値1193.9(エレクトロスプレーES-モ ード).樹脂から開裂した後の三量体152の逆相HPLCを図15に示す。 実施例31. PASS法を用いたモノマーの保護および精製 反応経路40 DHDT 2’−fC 3’−TBDPSi(154)の製造. この実験は 2.70mmol規模で行われた。DMF 3mL中のイミダゾール(0.69 0g,9.86mmol)、TBDPSi−Cl(2,314g,8.43mm ol)、および塩化メチレン10mL中のDHDT fC 3’−OH(153 )(シチジンはアセチル保護されている)(1.97g,2.7mmol)を混 和することにより、DHDT 2’−fC 3’−TBDPS(154)を形成 した。DHDT fC 3’−OHをアルゴン下で、撹拌棒を備えた50mLの 丸底フラスコに添加した。65分後、逆相HPLC(C18可逆カラム,10% から90%までのアセトニトリル/NH4OAc,30℃で30分間にわたる) により反応が完了したことが判定された(図16A)。 ディールス−アルダー付加環化による捕獲: 次いで5’−DHDT 2’− fC 3’−TBDPS(154)(48.6%)を、下記によりPTAD−P S樹脂とのディールス−アルダー付加環化により捕獲した。DHDT 2’−f C 3’−TBDPS(154)(9.48g)の溶液を、PTAD−PS樹脂 (17.46g)を入れたフリット付き容器に移した。捕獲前に樹脂上で2回洗 浄した。捕獲溶液をTLCで監視した。逆相HPLC(C18可逆カラム,10 %から90%までのアセトニトリル/NH4OAc,30℃で30分間にわたる) により捕獲が44分以内に完了したことが判定された(図16B)。次いで、T LCでUV活性物質が検出できなくなるまで、樹脂をDCMで洗浄した(100 mLで7回)。 放出: 化合物154を放出させるために、樹脂をDCM中3%DCA(70 mLで5回)で洗浄した。次いで樹脂をDCM(70mLで2回)で洗浄した。 DCAおよびDCMによるそれそれの放出一洗浄後直ちに、500mLの0.2 M(pH7.5)Na2HPO4緩衝液を入れた分液漏斗に洗液を移した。分液漏 斗の内容物を相分離させ、各相を排出した。有機相を500mLの0.2M N a2HPO4で再度洗浄した。再び相分離させ、排出した。図16Cに有機相と水 相両方の逆相HPLCクロマトグラムを示す。図16Cから分かるように、生成 物(5’−HO 2’−fC 3’−TBDPS(155))はすべて有機相中 にある。表10に、保護されたモノマー155の収率および純度を示す。捕獲率 は100%であった。生成物の1H−NMR分析(CDCl3)を図16Dに示す。 。MS予想質量525.64;実測値525.4。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,ML,MR, NE,SN,TD,TG),AP(GH,GM,KE,L S,MW,SD,SZ,UG,ZW),EA(AM,AZ ,BY,KG,KZ,MD,RU,TJ,TM),AL ,AM,AT,AU,AZ,BA,BB,BG,BR, BY,CA,CH,CN,CU,CZ,DE,DK,E E,ES,FI,GB,GE,GH,GM,GW,HU ,ID,IL,IS,JP,KE,KG,KP,KR, KZ,LC,LK,LR,LS,LT,LU,LV,M D,MG,MK,MN,MW,MX,NO,NZ,PL ,PT,RO,RU,SD,SE,SG,SI,SK, SL,TJ,TM,TR,TT,UA,UG,US,U Z,VN,YU,ZW (72)発明者 セトル,アレシア アメリカ合衆国コロラド州80027,スペリ アー,イースト・リバーベンド・ストリー ト 1497 (72)発明者 ツァイ,ヤンシェン アメリカ合衆国カリフォルニア州94303, パロ・アルト,コロラド・プレイス 1072 (72)発明者 ファン,ジャンピン アメリカ合衆国コロラド州80026,ラファ イエット,オーチャード・コート 1407 (72)発明者 ヒル,ケン アメリカ合衆国コロラド州80466,ネダー ランド,イースト・フィフス・ストリート 115 (72)発明者 スミス,ランドール・エス アメリカ合衆国コロラド州80301,ボール ダー,ハビタット・ドライブ 6175,ナン バー 1072 (72)発明者 イェッジ,ジョン アメリカ合衆国コロラド州80501,ロング モント,コリー・ストリート 916

Claims (1)

  1. 【特許請求の範囲】 1.オリゴヌクレオチドの溶液相合成方法であって、 a)5’−保護モノマー単位を出発物質と反応させて、生成物を含有する反応 混合物を調製し;そして b)生成物を、5’−保護基の存在に基づいて、未反応出発物質、未反応5’ −保護モノマー単位、副生物および試薬から分配する ことを含む方法。 2.5’−保護モノマー単位が次式: (式中: Bは核酸塩基であり; Aは2’−糖置換基であり; A’は2’−糖置換基であり; Wは、ホスホルアミダイト、H−ホスホナート、ホスフェートトリエステル、 メチルホスホナート、ホスホルアミデート、および保護されたオリゴヌクレオチ ドよりなる群から独立して選択され、ここで、保護されたオリゴヌクレオチドは ホスホルアミダイト、H−ホスホナート、ホスフェートトリエステル、メチルホ スホナート、ホスホルアミデートよりなる群から選択される3’−末端基を有し ; D−Eはアルコール保護基(1またはそれ以上)である) を有する、請求項1記載の方法。 3.Eが下記の構造を有するトリチル基:(式中のDは下記よりなる群から独立して選択され:H、OR4、共役ジエン単 位を有するアルキル基または置換アルキル基、共役ジエン単位を有するアルコキ シ基または置換アルコキシ基、CH2=CHCH=CHCH2CH2O−、CH2= CHCH=CHCH2CH2CH2O−、アルケニル基または置換アルケニル基、 マレイミド置換アルコキシ基、ジエノフィル置換アルコキシ基、アルコキシ基、 共役ジエン単位を有するアルキルアミノ基または置換アルキルアミノ基、マレイ ミド置換アルキルアミノ基または置換アルキルアミノ基、ジエノフィル部分を有 するアルキルアミノ基または置換アルキルアミノ基、固体支持体、たとえば樹脂 、ポリマーまたは膜、1,3−双極子基、開環メタテシス重合を行うことができ る置換基、たとえば7−オキサノルボレン含有置換基、ジスルフィド、アルデヒ ド類、および金属キレート化剤、ジエノフィルまたはジエン単位を有するシリル エーテル;ここで R4は、所望により置換された炭化水素(C1〜C20アルキル、C2〜C20アル ケニルル、C2〜C20アルキニル)、所望により置換された複素環、t−ブチル ジメチルシリルエーテル、トリイソプロピルシリルエーテル、ヌクレオシド、炭 水化物、蛍光標識およびホスフェートよりなる群から選択される) である、請求項2記載の方法。 4.Dが下記の化合物よりなる群から独立して選択される、請求項3記載の方 法: 式中、 Y=O,NH,S,P(H)(OR4),P(OR4)2,POH(O)(OR4),NH(CO),(CO)NH,O(CO)(CO)O,NH(CO)NH ,NH(CO)O,O(CO)NH,NH(CS)NH,NH(CS)O,O(CS)N なし,SO,SO2; L=連結基; X=電子吸引基または電子供与基; 5.樹脂が、シリカ、セルロース、ポリプロピレン、ポリビニルアルコール、 メタクリラート、ポリスチレンおよびポリエチレングリコールよりなる群から選 択される、請求項3記載の方法。 6.トリチル基が下記の構造: (式中のPは固体支持体である)を有する、請求項3記載の方法。 7.Eが下記の構造:を有するレブリン酸基であり、式中のDが下記の化合物よりなる群から独立して 選択される、請求項2記載の方法: 式中、 Y=O,NH,S,P(H)(OR4),P(OR4)2,POH(0)(OR4),NH(CO),(CO)NH,O(CO)(CO)O,NH(CO)NH ,NH(CO)O,O(CO)NH,NH(CS)NH,NH(CS)O,O(CS)N なし,SO,SO2; L=連結基; X=電子吸引基または電子供与基; 8.Eが下記の構造のうちのいずれか: を有するシリル基であり、式中のDが下記の化合物よりなる群から独立して選択 される、請求項2記載の方法: 式中、 Y=O,NH,S,P(H)(OR4),P(OR4)2,POH(O)(OR4),NH(CO),(CO)NH,O(CO)(CO)O,NH(CO)NH ,NH(CO)O,O(CO)NH,NH(CS)NH,NH(CS)O,O(CS)N なし,SO,SO2; L=連結基; X=電子吸引基または電子供与基; 9.分配が、1,2,4−トリアゾリン−3,5−ジオン、ビス−1,2,4 −トリアゾリン−3,5−ジオン、TAD−カプロアミド、チオカルボニル、ニ トロアクリラート、ニトロソホルメートおよびマレイミドよりなる群から選択さ れるジエノフィルで誘導体化された固体支持体を通して、反応混合物を溶離する ことにより行われる、請求項1記載の方法。 10.チオカルボニルが、チオケトン、チオアルデヒド、チオエステル、チオ カルバメート、チオカーボネートおよびチオアミドよりなる群から選択される、 請求項9記載の方法。 11.チオカルボニル誘導体化した樹脂が系内で生成する、請求項9記載の方 法。 12.ニトロソホルメート誘導体化した樹脂が系内で生成する、請求項9記載 の方法。 13.オリゴヌクレオチドの溶液相合成方法であって、 a)5’−保護モノマー単位を出発物質と反応させて、生成物および出発物質 を含有する反応混合物を調製し; b)工程a)の反応混合物を有機溶媒に可溶性の酸化剤で酸化し; c)工程b)の混合物に固体支持体を添加し、その際、酸化された生成物は固 体支持体との共有結合反応により固体支持体に保持され、出発物質は溶媒中に残 留し; d)固体支持体を洗浄して出発物質を分離し; e)固体支持体を希酸で洗浄することにより、酸化された生成物を固体支持体 から溶離し;そして f)所望により前記工程の溶出液を中和する ことを含む方法。 14.工程b)の前に工程c)を行う、請求項13記載の方法。 15.共有結合反応が、ディールスーアルダー反応、1,3−双極子付加環化 反応、2+2付加環化反応および求核置換反応よりなる群から選択される、請求 項13記載の方法。 16.次式の化合物:(式中、 R’は、ジエン、ジエノフィル、1,3−双極子およびアルケンよりなる群か ら選択され; Xは、ハロゲン、ヒドロキシル、OR”およびOArよりなる群から選択され 、ここでR”はアルキル基または置換アルキル基であり、Arは芳香族基または ヘテロ芳香族基である)。 17.R’が4,6−ヘプタジエンである、請求項16記載の化合物。 18.請求項16記載の化合物と、固体支持体に結合したジエノフィル、固体 支持体に結合したジエン、ジエンおよびジエノフィルよりなる群から選択される 化合物とのディールスーアルダー反応により形成される化合物。 19.R’が4,6−ヘプタジエンである、請求項18記載の化合物。 20.ジエノフィルが1,2,4−トリアゾリン−3,5−ジオンである、請 求項18記載の化合物。 21.次式の化合物: (式中: Bは核酸塩基であり; Aは2’−糖置換基であり; A’は2’−糖置換基であり; Wは、ホスホルアミダイト、H−ホスホナート、ホスフェートトリエステル、 メチルホスホナート、ホスホルアミデート、および保護されたオリゴヌクレオチ ドよりなる群から独立して選択され、ここで、保護されたオリゴヌクレオチドは ホスホルアミダイト、H−ホスホナート、ホスフェートトリエステル、メチルホ スホナート、ホスホルアミデート、および脱保護されたオリゴヌクレオチドより なる群から選択される3’−末端基を有し; R’はジエンまたはジエノフィルから選択される)。 22.請求項21記載の化合物と、固体支持体に結合したジエノフィル、固体 支持体に結合したジエン、ジエンおよびジエノフィルよりなる群から選択される 化合物とのディールス−アルダー反応により形成される化合物。 23.R’が4,6−ヘプタトリエンである、請求項22記載の化合物。 24.ジエノフィルが1,2,4−トリアゾリン−3,5−ジオンである、請 求項22記載の化合物。 25.次式の化合物: (式中、 R’は、ジエン、ジエノフィル、1,3−双極子およびアルケンよりなる群か ら選択され; R4は、所望により置換された炭化水素(C1〜C20アルキル、C2〜C20アル ケニルル、C2〜C20アルキニル)、所望により置換された複素環、t−ブチル ジメチルシリルエーテル、トリイソプロピルシリルエーテル、ヌクレオシド、炭 水化物、蛍光標識およびホスフェートよりなる群から選択され; Xは、ハロゲン、ヒドロキシル、OR”およびOArよりなる群から選択され 、ここでR”はアルキル基または置換アルキル基であり、Arは芳香族基または ヘテロ芳香族基である)。 26.R’が3,5−ヘキサジエン、2,4−ヘキサジエンまたは4,6−ヘ プタジエンよりなる群から選択される、請求項25記載の化合物。 27.請求項25記載の化合物と、固体支持体に結合したジエノフィル、固体 支持体に結合したジエン、ジエンおよびジエノフィルよりなる群から選択される 化合物とのディールス−アルダー反応により形成される化合物。 28.R’が3,5−ヘキサジエン、2,4−ヘキサジエンまたは4,6−ヘ プタジエンよりなる群から選択される、請求項27記載の化合物。 29.ジエノフィルがマレイミドおよび1,2,4−トリアゾリン−3,5− ジオンよりなる群から選択される、請求項27記載の化合物。 30.Xが存在せず、正に荷電した化合物となる、請求項27記載の化合物。 31.次式の化合物: (式中: Bは核酸塩基であり; Aは2’−糖置換基であり; A’は2’−糖置換基であり; Wは、ホスホルアミダイト、H−ホスホナート、ホスフェートトリエステル、 メチルホスホナート、ホスホルアミデート、および保護されたオリゴヌクレオチ ドよりなる群から独立して選択され、ここで、保護されたオリゴヌクレオチドは ホスホルアミダイト、H−ホスホナート、ホスフェートトリエステル、メチルホ スホナート、ホスホルアミデート、および脱保護されたオリゴヌクレオチドより なる群から選択される3’−末端基を有し; R’は、ジエンまたはジエノフィルから選択され; R4は、所望により置換された炭化水素(C1〜C20アルキル、C2〜C20アル ケニルル、C2〜C20アルキニル)、所望により置換された複素環、t−ブチル ジメチルシリルエーテル、トリイソプロピルシリルエーテル、ヌクレオシド、炭 水化物、蛍光標識およびホスフェートよりなる群から選択される)。 32.Wがホスホルアミダイト、H−ホスホナート、および保護されたオリゴ ヌクレオチドよりなる群から選択され、ここで、保護されたオリゴヌクレオチド はホスホルアミダイトまたはH−ホスホナートから選択される3’−末端基を有 する、請求項31記載の化合物。 33.AおよびA’が独立して、H、2H、3H、Cl、F、OH、NHOR1 、NHOR3、NHNHR3、NHR3、=NH、CHCN、CHCl2、SH、S R3、CFH2、CF2H、CR2 2Br、−(OCH2CH2nOCH3、OR4、お よびイミダゾールよりなる群から選択され; R1が、Hおよびアルコール保護基よりなる群から選択され; R2が、=O、=S、H、OH、CCl3、CF3、ハライド、所望により置換 されたC1〜C20アルキル(環式、直鎖および分枝鎖を含む)、アルケニル、ア リール、C1〜C20アシル、ベンゾイル、OR4、およびエステルよりなる群から 選択され; R3が、R2、R4、CN、C(O)NH2、C(S)NH2、C(O)CF3、S O24、アミノ酸、ペプチドおよびその混合物よりなる群から選択される、 請求項31記載の化合物。 34.AがH、OH、NH2、Cl、F、−(OCH2CH2nOCH3、NH OR、OR4、OSiR4 3よりなる群から選択され;A’がHである、 請求項31記載の化合物。 35.R’が3,5−ヘキサジエン、2,4−ヘキサジエンおよび4,6−ヘ プタジエンよりなる群から選択される、請求項31記載の化合物。 36.請求項31記載の化合物と、固体支持体に結合したジエノフィル、固体 支持体に結合したジエン、ジエンおよびジエノフィルよりなる群から選択される 化合物とのディールス−アルダー反応により形成される化合物。 37.R’が3,5−ヘキサジエン、2,4−ヘキサジエンおよび4,6−ヘ プタジエンよりなる群から選択される、請求項36記載の化合物。 38.ジエノフィルがマレイミドおよび1,2,4−トリアゾリン−3,5− ジオンよりなる群から選択される、請求項36記載の化合物。 39.オリゴヌクレオチドの溶液相合成方法であって、 a)5’−位に第1固体支持体と反応しうる保護基を含む5’−保護モノマー 単位を出発物質と反応させて、生成物、5’−保護モノマー単位および出発物質 を含有する反応混合物を調製し、その際、第1固体支持体が1,2,4−トリア ゾリン−3,5−ジオンであり; b)反応混合物を第1固体支持体が収容されたクロマトグラフィー樹脂チャン バーに循環させ、その際5’−保護モノマー単位および生成物が第1固体支持体 と共有結合反応し、これにより固体支持体に保持され; c)第1固体支持体を第1溶媒で洗浄して出発物質を溶離し; d)保持された5’−保護モノマー単位および生成物を含有する第1固体支持 体を希酸で洗浄し、次いで第2有機溶媒で溶離して、生成物を5’−保護モノマ ー単位と共に放出させて分離し;そして e)工程d)で得た有機排出液を第2固体支持体に通すことにより、生成物を 5’−保護モノマー単位から分離し、その際5’−保護モノマー単位は第2固体 支持体に保持され、生成物は第2溶媒により溶離される ことを含む方法。 40.次式の化合物:
JP54450398A 1997-04-21 1998-04-20 オリゴヌクレオチドの溶液相合成方法 Pending JP2001520660A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US84382097A 1997-04-21 1997-04-21
US08/843,820 1997-04-21
PCT/US1998/008192 WO1998047910A1 (en) 1997-04-21 1998-04-20 Method for solution phase synthesis of oligonucleotides

Publications (1)

Publication Number Publication Date
JP2001520660A true JP2001520660A (ja) 2001-10-30

Family

ID=25291099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54450398A Pending JP2001520660A (ja) 1997-04-21 1998-04-20 オリゴヌクレオチドの溶液相合成方法

Country Status (6)

Country Link
EP (1) EP0979233A4 (ja)
JP (1) JP2001520660A (ja)
AU (1) AU7152098A (ja)
CA (1) CA2286320A1 (ja)
IL (1) IL132377A0 (ja)
WO (1) WO1998047910A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070859A1 (ja) * 2004-01-27 2005-08-04 Takeshi Wada フルオラス担体およびそれを用いたオリゴヌクレオチド誘導体の製造方法
JP2006512336A (ja) * 2002-12-18 2006-04-13 アベシア・リミテッド オリゴヌクレオチド・シントン類を精製する方法
JP2010528028A (ja) * 2007-05-18 2010-08-19 ダーマコン, インコーポレイテッド 新規発色性シリル保護基およびオリゴヌクレオチド化学合成における新規発色性シリル保護基の利用
JP2012111728A (ja) * 2010-11-26 2012-06-14 Nokodai Tlo Kk 高分散性液相支持体を用いたオリゴヌクレオチド合成法
JP2013519764A (ja) * 2010-02-16 2013-05-30 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング 可逆的な架橋を有する機能材料
JP2013519763A (ja) * 2010-02-16 2013-05-30 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング 制御可能な粘度を有する機能材料
JP6322350B1 (ja) * 2016-11-11 2018-05-09 積水メディカル株式会社 新規トリチル保護剤
WO2018088527A1 (ja) * 2016-11-11 2018-05-17 積水メディカル株式会社 新規トリチル保護剤

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427678B2 (en) 1998-01-08 2008-09-23 Sigma-Aldrich Co. Method for immobilizing oligonucleotides employing the cycloaddition bioconjugation method
GB9825687D0 (en) * 1998-11-25 1999-01-20 Link Technologies Ltd Oligonucleotide conjugation
EP1287404A4 (en) * 2000-05-01 2003-10-15 Proligo Llc METHOD FOR IMMOBILIZING OLIGONUCLEOTIDES USING THE CYCLOADDITION BIKONJUGATION METHOD
DE10041221A1 (de) * 2000-08-22 2002-03-14 Deutsches Krebsforsch Verfahren zur Herstellung von wasserlöslichen Saccharidkonjugaten und Saccharidmimetika durch Diels-Alder-Reaktion und ihre Verwendung als Therapeutika oder Diagnostika
US7172905B2 (en) 2001-08-07 2007-02-06 The University Of Chicago Polypeptide immobilization
AU2003210629A1 (en) 2002-01-23 2003-09-02 Proligo, Llc Methods for the integrated synthesis and purification of oligonucleotides
JP4791043B2 (ja) 2002-12-31 2011-10-12 プロリゴ・エルエルシー 同一固体支持体上で、2以上のオリゴヌクレオチドをタンデムに合成するための方法および組成物
WO2007003054A1 (en) * 2005-07-06 2007-01-11 Shoichet Molly S Method of biomolecule immobilization on polymers using click-type chemistry
WO2015061246A1 (en) * 2013-10-21 2015-04-30 Isis Pharmaceuticals, Inc. Method for solution phase detritylation of oligomeric compounds
KR101889893B1 (ko) * 2015-06-12 2018-08-22 애니젠 주식회사 선별적 용해도를 갖는 트리페닐메탄 유도체 및 그의 용도
EP3468981A1 (en) * 2016-06-14 2019-04-17 Biogen MA Inc. Hydrophobic interaction chromatography for purification of oligonucleotides
KR102399022B1 (ko) * 2016-06-20 2022-05-17 세키스이 메디칼 가부시키가이샤 신규 디페닐메탄 보호제
CN111491941B (zh) * 2017-12-19 2023-08-08 积水医疗株式会社 新型烷基二苯甲烷保护剂

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU627134A1 (ru) * 1977-06-16 1978-10-05 Предприятие П/Я М-5885 Способ получени тетрафурфурилоксисилана
WO1991011467A1 (en) * 1990-01-26 1991-08-08 Isp Investments Inc. Alkenyl ethers and radiation curable compositions
GB9307014D0 (en) * 1993-04-02 1993-05-26 Laporte Plc Protecting group for use in oligodeoxyribonucleotide synthesis
DE59404522D1 (de) * 1993-09-17 1997-12-11 Ciba Geigy Ag TTTr als Schutzgruppe in der Nukleotidsynthese
US5580731A (en) * 1994-08-25 1996-12-03 Chiron Corporation N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith
US5597909A (en) * 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
WO1997014706A1 (en) * 1995-10-19 1997-04-24 Nexstar Pharmaceuticals, Inc. Method for solution phase synthesis of oligonucleotides
US5874532A (en) * 1997-01-08 1999-02-23 Nexstar Pharmaceuticals, Inc. Method for solution phase synthesis of oligonucleotides and peptides
US6737236B1 (en) * 1997-01-08 2004-05-18 Proligo, Llc Bioconjugation of macromolecules

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167672B1 (ko) 2002-12-18 2012-07-20 아베시아 바이오테크놀러지, 아이엔씨. 올리고뉴클레오티드 신톤을 정제하는 방법
JP2006512336A (ja) * 2002-12-18 2006-04-13 アベシア・リミテッド オリゴヌクレオチド・シントン類を精製する方法
JP4824931B2 (ja) * 2002-12-18 2011-11-30 アベシア・バイオテクノロジー・インコーポレーテッド オリゴヌクレオチド・シントン類を精製する方法
JPWO2005070859A1 (ja) * 2004-01-27 2007-09-13 猛 和田 フルオラス担体およびそれを用いたオリゴヌクレオチド誘導体の製造方法
JP4945129B2 (ja) * 2004-01-27 2012-06-06 株式会社キラルジェン フルオラス担体およびそれを用いたオリゴヌクレオチド誘導体の製造方法
WO2005070859A1 (ja) * 2004-01-27 2005-08-04 Takeshi Wada フルオラス担体およびそれを用いたオリゴヌクレオチド誘導体の製造方法
JP2010528028A (ja) * 2007-05-18 2010-08-19 ダーマコン, インコーポレイテッド 新規発色性シリル保護基およびオリゴヌクレオチド化学合成における新規発色性シリル保護基の利用
JP2013519764A (ja) * 2010-02-16 2013-05-30 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング 可逆的な架橋を有する機能材料
JP2013519763A (ja) * 2010-02-16 2013-05-30 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング 制御可能な粘度を有する機能材料
US8916635B2 (en) 2010-02-16 2014-12-23 Evonik Roehm Gmbh Functional materials with reversible crosslinking
US8987380B2 (en) 2010-02-16 2015-03-24 Evonik Roehm Gmbh Functional materials with controllable viscosity
JP2012111728A (ja) * 2010-11-26 2012-06-14 Nokodai Tlo Kk 高分散性液相支持体を用いたオリゴヌクレオチド合成法
JP6322350B1 (ja) * 2016-11-11 2018-05-09 積水メディカル株式会社 新規トリチル保護剤
WO2018088527A1 (ja) * 2016-11-11 2018-05-17 積水メディカル株式会社 新規トリチル保護剤
KR20190082767A (ko) * 2016-11-11 2019-07-10 세키스이 메디칼 가부시키가이샤 신규 트리틸 보호제
US10981940B2 (en) 2016-11-11 2021-04-20 SEKISUl MEDICAL CO., LTD. Trityl protecting agent
KR102421025B1 (ko) 2016-11-11 2022-07-14 세키스이 메디칼 가부시키가이샤 신규 트리틸 보호제

Also Published As

Publication number Publication date
EP0979233A4 (en) 2001-03-21
CA2286320A1 (en) 1998-10-29
WO1998047910A1 (en) 1998-10-29
IL132377A0 (en) 2001-03-19
EP0979233A1 (en) 2000-02-16
AU7152098A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
JP2001520660A (ja) オリゴヌクレオチドの溶液相合成方法
AU712779C (en) Method for solution phase synthesis of oligonucleotides
US5874532A (en) Method for solution phase synthesis of oligonucleotides and peptides
US5614622A (en) 5-pentenoyl moiety as a nucleoside-amino protecting group, 4-pentenoyl-protected nucleotide synthons, and related oligonucleotide syntheses
CA2627208C (en) Polynucleotide containing a phosphate mimetic
US6646118B2 (en) Solid phase synthesis
CA2091559A1 (en) Method of linking nucleosides with a siloxane bridge
US6001966A (en) Method for solution phase synthesis of oligonucleotides and peptides
KR20040016826A (ko) 포스포로티오에이트 올리고뉴클레오티드의 제조방법
US5717085A (en) Process for preparing codon amidites
JP2003517467A (ja) ホスホチオエーテトリエステル及びオリゴヌクレオチドの調製方法
US6632938B2 (en) Processes of purifying oligonucleotides
US20030195351A1 (en) Methods for the integrated synthesis and purification of oligonucleotides
AU738032B2 (en) Method for solution phase synthesis of oligonucleotides
CN114014902B (zh) 一种二聚核苷酸及其合成方法
JP2003513101A (ja) 感光性保護基を有するヌクレオシド誘導体
WO2022255469A1 (ja) ホスホロチオエート及びボラノホスフェートを含むキメラ型核酸オリゴマー、及びその製造方法
AU5402901A (en) Method for solution phase synthesis of oligonucleotides